
Three-Dimensional Energy Transfer in Space Plasma Turbulence from
Multipoint Measurement

Francesco Pecora ,1,* Yan Yang ,1 William H. Matthaeus ,1 Alexandros Chasapis ,2 Kristopher G. Klein ,3

Michael Stevens ,4 Sergio Servidio ,5 Antonella Greco ,5 Daniel J. Gershman,6 Barbara L. Giles,6 and James L. Burch 7

1Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
2Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA

3Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA
4Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts 02138, USA
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A novel multispacecraft technique applied to Magnetospheric Multiscale Mission data in the Earth’s
magnetosheath enables evaluation of the energy cascade rate from the full Yaglom’s equation. The method
differs from existing approaches in that it (i) is inherently three-dimensional, (ii) provides a statistically
significant number of estimates from a single data stream, and (iii) allows visualization of energy flux in
turbulent plasmas. This new “lag polyhedral derivative ensemble” technique exploits ensembles of
tetrahedra in lag space and established curlometerlike algorithms.
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Introduction.—A long-standing problem in turbulence is
how energy is transferred across scales from large-scale
reservoirs to dissipation. The problem relates to fluids and
plasmas throughout the Universe, but until recent decades
was studied almost exclusively in the hydrodynamic con-
text. Experimental studies have always been crucial in the
development of the subject [1,2], but until now a full three-
dimensional evaluation of the Yaglom cascade rate has not
been accomplished (for a review, see [3]). Evaluating this
fundamental quantity is hindered by its inherently three-
dimensional and scale-dependent nature, while, as yet,
multiscale multipoint measurements have not been avail-
able in space missions. We present such an evaluation
below, using data from the Magnetosphere Multiscale
Mission (MMS) in the terrestrial magnetosheath.
de Kármán and Howarth [4] provided seminal results

that describe turbulence in terms of double and triple
correlations of fluctuations, indicating a balance between
time dependence, nonlinear transfer, and dissipation.
Based on the von Kármán-Howarth (vKH) equations,
Kolmogorov [5] derived an exact relation between the
third-order structure function and the rate at which energy
is “cascaded” through scales. Later, Yaglom [6] derived a
similar expression for a passive scalar (temperature) in
turbulence involving mixed velocity-temperature third-
order structure function. These results were derived for
homogeneous isotropic incompressible hydrodynamics.
Politano and Pouquet [7,8] generalized the hydrody-

namic results to incompressible magnetohydrodynamics
(MHD), a model often adopted as a good description of

space plasmas [9]. They extend the vKH equation to
include the properties of a magnetized fluid described by
the Elsässer fields z� ¼ v� b, where v is the velocity and b
the magnetic field in Alfvén units—normalized toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πnpmp

p
for proton number density np and mass mp.

The main result is a relation analogous to Kolmogorov’s
“4=5 law” [5] in the framework of homogeneous isotropic
magnetized fluids. However, for anisotropic systems,
typical of space plasmas, the isotropic assumption can
lead to biased results. Here, we will use the MHD energy
evolution equation with fully three-dimensional lag-
space differential operators, thus avoiding the isotropy
assumption when calculating the energy dissipation rate.
The vKH equation for MHD reads

∂

∂t
hjδz�j2i ¼ −∇l · hδz∓jδz�j2i þ 2ν∇2

lhjδz�j2i − 4ϵ�

ð1Þ

for kinematic viscosity ν. The Elsässer increments at vector
lag l are δz�ðlÞ ¼ z�ðxÞ − z�ðxþ lÞ. Derivatives ∇l are
in lag space and ϵ� is the energy dissipation (or cascade)
rate. In a turbulent plasma, one can roughly distinguish
three regimes: (i) the energy-containing range, where the
energy is provided to the system from the largest structures;
(ii) the dissipation range, where energy is eventually
dissipated at very small scales; and (iii) the inertial range,
at intermediate scales, through which energy is transferred
(“cascades”) from the injection to dissipation scales.
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The time-varying term on the left-hand side of Eq. (1)
usually dominates at very large spatial scales; the nonlinear
term—the first on the right-hand side—peaks at separations
that fall into the inertial range; and the dissipative term—
the second on the right-hand side—becomes important at
very small spatial scales. The sum of these terms is
proportional to the mean dissipation rate [10–13]. For
sufficient separations between injection and dissipation
scales, each term in Eq. (1) is dominant over a range of
scales in which the others are negligible. This condition is
usually associated with high Reynolds numbers or, equiv-
alently, very large systems. For lower Reynolds numbers
(e.g., in simulations), scale separation is not pristine,
and different contributions “leak” into neighboring scale
ranges. In this case, the evaluation of each term gives a
partial cascade rate estimate as it misses contributions from
the other terms at those scales.
When applying this theory to in situ spacecraft obser-

vations, the time derivative term is inaccessible since
spacecraft do not follow the flow [14]. The dissipative
term requires knowledge of underlying dissipative mech-
anisms, e.g., viscosity or Joule heating, which itself is a
separate problem, especially for noncollisional plasmas
[15–17]. Therefore, here, we focus on the nonlinear term
and the relationship

∇l · hδz∓jδz�j2i ¼ −4ϵ�; ð2Þ

which involves a mixed third-order structure function. By
analogy with [6], hδz∓jδz�j2i ¼ Y� is called Yaglom flux,
and ∇l · Y� ¼ −4ϵ� Yaglom’s law. The total dissipation
rate is ϵ ¼ ðϵþ þ ϵ−Þ=2. Equation (2) applies to anisotropic
systems since vKH is derived without assuming isotropy.
The terms in Eq. (1) overlap for incomplete scale separation
or if available lags are not in the inertial range. Then,
Eq. (2) provides a partial answer, interpreted as the
contribution to the total energy cascade rate from the
nonlinear term only.
Most previous (partial) cascade rate measurements in

space plasmas are limited to directional averages [18,19], a
combination of 2Dþ 1D models [20,21] or, the 1D
isotropic version of Eq. (2) [22–26]. Recent numerical

studies [10,13,27] showed that the directional dependence
of Yaglom’s equation is not negligible when a large-scale
magnetic field is present [even though such a field does not
appear in Eq. (1); see [28] ]. Therefore, isotropy is not a
good assumption, and instead, one requires measurements
in several directions in 3D lag space. Currently, as far as we
know, direct observations of the behavior of the full
Yaglom flux vector in anisotropic systems have been
conducted only in fluid experiments [29] and numerical
simulations [10]. It is known, for example, that an aniso-
tropic system has different extensions of the inertial range
in different directions [10,27,30,31]. A more comprehen-
sive description of turbulence can be obtained by studying
the Yaglom flux vector through which it is possible to
characterize the inertial range in various directions, thus
quantifying the degree of anisotropy. Below, we implement
a technique that enables numerous calculations of the lag-
space divergence in Eq. (2), thus obtaining a statistical
evaluation of the cascade rate.
Data.—We use data from MMS [32] for the magnetic

field from the fluxgate magnetometers [33], proton veloc-
ity, and electron density from the Fast Plasma Investigation
[34]. Measurements are available in burst mode at cadences
of 128 Hz, 150 ms, and 30 ms, respectively. For velocities,
spintone has been removed; the magnetic field data is
already despun by the mission. We use the electron density,
as it generally is more accurately determined, and assume
quasineutrality. Density signals have been checked not to
have values larger than 50 cm−3 that can be polluted by
instrumental inaccuracies. All data have been resampled to
the lowest common cadence of 150 ms. We analyzed
several intervals from [35] during which MMS was in the
magnetosheath. Properties of these intervals, such as the
magnetic and density fluctuations, ion plasma beta (ratio of
thermal to magnetic pressures), correlation lengths and
times, and ion inertial length, are listed in Table I, including
their mean turbulence cascade rates calculated using the
lag polyhedral derivative ensemble (LPDE) technique
described below.
Technique.—We implemented the LPDE technique

described in [31] through which it is possible to have
several estimates of the cascade rate using Yaglom’s law,

TABLE I. Reported are the dates and times of the analyzed intervals, magnetic δb=B and density δρ=ρ fluctuation levels (r.m.s. over
mean), proton plasma beta β (ratio between thermal and magnetic pressure), correlation time τc and length λc [36], ion inertial length di,
and the mean energy cascade rate ϵ obtained from the LPDE technique, with associated uncertainties calculated as the standard deviation
of their respective histograms.

Date (UTC) δb=B δρ=ρ β τc (s) λc (km) di (km) hϵi (106 J kg−1 s−1)

I 2017-09-28 06∶31:33–07:01:43 0.51 0.19 5.9 81.0 41229 46 −1.5� 0.8
II 2017-11-10 22∶35:43–22:52:03 3.17 0.43 8.3 2.9 1377 74 22.5� 9.5
III 2017-12-21 07∶21:54–07:48:01 1.92 0.31 4.7 6.1 652 50 24.8� 13.4
IV 2017-12-26 06∶12:43–06:52:23 0.82 0.21 4.5 16.3 3712 48 1.6� 0.4
V 2018-04-19 05∶10:23–05:41:53 2.99 0.29 15.0 5.1 1168 36 1.9� 0.7
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Eq. (2). The technique is based on the fact that derivatives
have to be computed in lag space to evaluate Yaglom’s
equation. Each pair of spacecraft i, j is separated by a
vector baseline l ¼ rij ¼ ri − rj, where ri is the position of
the ith spacecraft. Using MMS, we have four spacecraft
connected by six vector baselines, thus we can compute six
values of the increment δzijðrijÞ ¼ ziðriÞ − zjðrjÞ, where
i; j ¼ 1;…4, i < j.
Previously, the LPDE technique was tested using sim-

ulations and nine HelioSwarm-like spacecraft trajectories.
Here, the method is applied for the first time to real data
using MMS, with few improvements that provide a larger
pool of estimates.
In order to increase the number of estimates for the

dissipation rate, we notice that the choice of the order of the
pair is arbitrary, and, therefore, we can have additional six
points in lag space by just reversing the order of the pairs,
namely using j; i ¼ 1;…4; j < i. It means that we will
have a total of 12 points in lag space with δzji ¼ −δzij. Of
course, these additional points will not give independent
information but will be valuable in the construction of
tetrahedra as we will describe below.
Since we want to use algorithms that have been well-

tested usingMMS data in the past, e.g., the curlometer [37],
we examine only tetrahedral configurations, that is, we
rearrange our points in lag space in sets of four. The number
of nonrepeating partitions of K elements out of N total
elements is given by CK

N ¼ ðNKÞ ¼ ½N!=K!ðN − KÞ!�. If we
were to use the six points in lag space that come from
δzijðrijÞ, we would haveC4

6 ¼ ð6
4
Þ ¼ 15 possible tetrahedra.

When we add δzjiðrjiÞ, our available points become 12,
with a total of C4

12 ¼ ð12
4
Þ ¼ 495 tetrahedra. Evidently, not

all configurations are independent.
Indeed, an identical tetrahedron can be built using any four

points and their reflections. We discarded the solutions that
are obtained from these redundant identical tetrahedra.
Moreover, some configurations, those that are composed
of two points and their reflections, have their barycenter
coincidingwith the origin.These tetrahedrawould provide an
estimate of the cascade rate at zero lag, which is irrelevant.
Their number is C2

6 ¼ ð6
2
Þ ¼ 15. The total number of inde-

pendent estimates of Eq. (2) is therefore 1
2
ðC4

12 − C2
6Þ ¼ 240.

We also need to consider the quality of the tetrahedral
shape, which can affect the accuracy of the calculation of
the divergence, and therefore, impact the resulting estimate
of the dissipation rate. Indeed, well-behaved real-space
configurations (close in shape to a regular tetrahedron) do
not necessarily translate into well-behaved lag-space tetra-
hedra. For the quality check of the 240 independent
tetrahedra in lag space, we make use of the elongation-
planarity parameters described in Paschmann and Daly
[38]. We compute the volumetric tensor in lag space
Ljk ¼ ð1=NÞPN

α¼1ðlαjlαk − lbjlbkÞ, where lαj is the
jth component of the vertex α. Averaging these over the

vertices gives the jth component of the mesocenter,
lbj ¼ hlαjiα. We use N ¼ 4. Calculating the three eigen-
values of the volumetric tensor, λ1 ≥ λ2 ≥ λ3, we can define
elongation (E) and planarity (P) parameters as E ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffi
λ2=λ1

p
and P ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffi
λ3=λ2

p
, respectively. We will con-

sider suitable for our analysis all tetrahedra constrained in a
certain region of the EP plane defined by the distance
parameter dEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ P2

p
. We initially use only results

obtained from lag tetrahedra such that dEP ≤ 0.6. For these,
the errors should be smaller than 20% (see p. 408 of
Paschmann and Daly [38]). Additionally, this threshold
automatically rejects tetrahedra that are nearly planar or
collinear.
Results.—We computed the Yaglom flux Y� using the 12

available MMS baselines as described in the previous
section. We evaluate the divergence by selecting the 12
points in lag space, in subsets of four, covering all possible
240 independent lag tetrahedra. This procedure has been
applied to all intervals listed in Table I. Since the results are
qualitatively similar, here we show those pertaining to
interval IV (December 26, 2017). After estimating the
cascade rate using lag tetrahedra in the region of the EP
plane defined as dEP ≤ 0.6, we gradually increase the
threshold to d�EP ≤ 0.85, verifying that this procedure does
not affect the results to the precision that we report. By
doing so, the number of estimates increases from 27 to 134
and therefore we decided to keep the larger number of
available points for statistical purposes. In Fig. 1, we report
the elongation and planarity values for the lag tetrahedra,
together with the chosen threshold d�EP ¼ 0.85 and the
initial reference threshold dEP ¼ 0.6. Tetrahedra in lag
space give a rather uniform coverage of the EP plane, with
a few points at P ¼ 1 indicating flat geometries.

FIG. 1. Geometrical characteristics for lag tetrahedra. The
dashed line indicates the threshold d�EP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ P2

p
¼ 0.85.

Lag tetrahedra with dEP ≤ d�EP are used for further analysis,
and the others are discarded. For reference, we also indicated the
threshold at dEP ¼ 0.6 with a dotted line.
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As an additional convergence test, we added random
noise with a flat distribution to the data time series. For
different quantities, we used different amplitudes to mimic
instrumental uncertainties [39]. Specifically, the imposed
uncertainties range for density and velocity from 5% to
25%, and 0.05–0.2 nT for the magnetic field. Even when all
uncertainties are set at their maximum amplitude, the
results are within the errors of the estimated values
with the original time series, confirming the robustness
of LPDE.
In solving Yaglom’s equation, each estimated value of

the cascade rate is assigned to the increment corresponding
to the mesocenter of the lag tetrahedron that is used to
compute the divergence. The scatter plot of the values of the
cascade rate as a function of the amplitude of the meso-
center jlj in lag space is shown in Fig. 2. A visualization of
some of the lag tetrahedra used to compute the divergence
is given in Fig. 3(a).
From the average, the value that we obtain for the

cascade rate is hϵi ¼ ð1.6� 0.4Þ106 J kg−1 s−1. The quoted
uncertainty is the standard deviation about the mean of the
measured distribution. The values obtained for the cascade
rates are comparable to those in the literature [19].
However, the present results are more robust since we
have not assumed isotropy [13], and the large number of
estimates per interval allows consideration of the signed
value [40]. Indeed, for some intervals, even if the majority
of the estimates are positive, we find a few that are negative.
This suggests that additional care is needed when only
single estimates are available. An isolated negative value
may be nonrepresentative and provide misleading inter-
pretations, e.g., invoking inverse cascade processes. In
general, increasing the number of observation positions

decreases error. This will be the case when using the present
method in future multispacecraft missions. For implemen-
tation in numerical simulations, see [31].
Another quantity that is of physical interest is the

Yaglom flux itself Y ¼ ½ðYþ þ Y−Þ=2�, as it is related to
the nonlinear transfer of energy across scales. For a
homogeneous, isotropic system, one expects the Yaglom
flux to have magnitudes proportional to the distance from
the origin and radially pointing toward it. Previous numeri-
cal studies [10] provided a picture of how the Yaglom flux
behaves in lag space. In particular, it was confirmed that Y
is larger in magnitude further from the origin and, when the
system is anisotropic, it shows some deflections from the
radial trend. In space plasmas, it has not been possible to
visualize the behavior of the Yaglom flux prior to the
development of the LPDE technique.

FIG. 2. Scatter plot of the cascade rate as a function of lag
tetrahedra mesocenter position. On the side, the histogram of the
results is reported. The horizontal black dashed line indicates the
average of the histogram, and the blue shaded region represents
the variability around the mean.

FIG. 3. (a) Yaglom flux vectors in lag space with some
tetrahedra, over which Yaglom’s law is solved (shaded volumes).
(b) Same plot without highlighted tetrahedra. It is possible to
appreciate the swirling motion of the Yaglom flux pointing
toward the origin (indicated by the black sphere).
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From the present results, we know the flux vector at
six (12) points in lag space and can examine its behavior, as
shown in Fig. 3(b). This visualization of the Yaglom flux
using space data confirms the expected basic features. The
arrows’ lengths in the figure are proportional to the
magnitude of the Yaglom flux, and we notice that they
become smaller as they approach the origin of the system
where dissipation will eventually deal with the energy that
has been transferred there. Moreover, we observe a swirling
of the arrows around the origin, instead of radially pointing
toward it as it would if turbulence was isotropic.
Discussion and conclusions.—We applied the novel

LPDE multispacecraft technique, Pecora et al. [31], to
MMS measurements in the magnetosheath to evaluate the
turbulence cascade rate due to Yaglom’s term in the vKH
equation. The technique is here extended by exploiting the
symmetry properties of the mixed third-order structure
function. This provides a statistically significant ð> 100Þ
number of estimates of the cascade rate by computing the
full divergence in Eq. (2). Moreover, we are also able to
visualize, for the first time in space plasmas, the Yaglom
flux vector that is responsible for transferring energy
toward smaller scales from the inertial range.
Previously, cascade rate estimation in space plasmas has

been limited to one value per interval and mostly employ-
ing a 1D version of Yaglom’s equation [e.g., [3,22] ]. This
approximation, however, assumes isotropy, as well as the
usage of Taylor’s hypothesis, which convolves space and
time correlations.
Anisotropy has an effect on the direction of the Yaglom

flux Y in both fluid experiments [29] and plasma simu-
lations [10]. When a mean magnetic field is present, Y
tilts toward the plane perpendicular to the direction of the
field. Therefore, the directionality of Y is a measure of
anisotropy. In solar wind, third-order structure functions
have been used to obtain cascade rates employing Taylor
hypothesis and an isotropic or two-dimensional (2D) plus
1D paradigm [3,20–22]. In numerical simulations, it was
shown that the isotropic assumption can provide imprecise
cascade rates, and variability due to directional sampling
can be an order of magnitude or more [10,13,27]. Improved
results are obtained when both the parallel and perpen-
dicular components of Y are considered [10,20,21].
These former studies, along with the present results,
confirm that the full vectorial nature of Y must be taken
into account to obtain realistic estimates.
Another important issue is statistical convergence. When

single point estimates are employed, one may require many
samples, possibly spanning years, for convergence of
cascade estimates [21]. In that case, the ensemble is highly
nonlocal and does not characterize a single time period. By
providing many estimates in a single sample, the present
method avoids this complication.

In this work, we observe features of the Yaglom flux that
have never been observed in space plasmas before and that
agree with fluid experiments [29] and numerical simula-
tions [10]. We see that (i) Y magnitudes become smaller
when approaching smaller scales where energy is even-
tually dissipated, and (ii) the tilting of the flux vectors, a
departure from the often-assumed radial convergence,
possibly due to the anisotropy of the system.
A point to emphasize is that the MMS mission provides

lags that are smaller than the inertial scale and therefore,
albeit precise, this is a partial evaluation of the full energy
cascade rate that would require the computation of all terms
in the vKH equation.
Another important concept to address is the scale

dependence of the dissipation rate. If one could measure
all terms exactly, the dissipation rate would be constant
across scales [11–13]. However, different contributions
appear to be dominant at different scales. The precision
required to compute the divergence in Yaglom’s law does
not allow the usual implementation of Taylor’s hypothesis.
This restriction results in a limited range of accessible scales
as shown in Fig. 2. In particular, we find tetrahedra spanning
scales for about half of a decade and therefore decided to
provide an average value within this interval rather than
forcing a scaling law. The result, although partial, sets a
lower limit to the value of the total dissipation rate.
Current space missions do not allow for a complete

evaluation of the total cascade rate, which is composed of
several channels. Commonly addressed are compressible
[40] and Hall [11,41] corrections that require additional
assumptions (e.g., isothermal equation of state [42]). In this
Letter, we focused on the nonlinear contribution of the
incompressible channel that does not require further
assumptions.
The present result advances multispacecraft techniques

for measurement of anisotropic turbulence properties in
space plasmas [30,38,43]. We (i) eliminate reliance on the
Taylor hypothesis, (ii) obtain the cascade rate with no
assumption of rotational symmetry, and (iii) provide a
statistically significant number of estimates using even
short intervals. The technique may be applied to theories of
energy conversion that include compressibility, Hall, and
other kinetic effects not considered here.
Current limitations such as restrictions to the magneto-

sheath and to scales smaller than the inertial range will be
overcome once the next generation of multiscale multi-
spacecraft missions, such as HelioSwarm [44,45] and
Plasma Observatory [46], appear in the solar wind.

F. P. thanksS.Oughton for his useful comments. Supported
by NASA MMS under Grant No. 80NSSC19K0565 at
the University of Delaware and 80NSSC21K0454,
80NSSC22K0688 grants at the University of Colorado
Boulder. K. G. K. was supported by NASA Contract
No. 80ARC021C0001.

PHYSICAL REVIEW LETTERS 131, 225201 (2023)

225201-5



*Corresponding author: fpecora@udel.edu
[1] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechan-

ics, Vols 1 and 2 (MIT Press, Cambridge, 1971, 1975).
[2] S. B. Pope, Turbulent Flows (Cambridge University Press,

Cambridge, 2000).
[3] R. Marino and L. Sorriso-Valvo, Scaling laws for the energy

transfer in space plasma turbulence, Phys. Rep. 1006, 1
(2023), scaling laws for the energy transfer in space plasma
turbulence.

[4] T. de Karman and L. Howarth, On the statistical theory of
isotropic turbulence, Proc. R. Soc. A 164, 192 (1938).

[5] A. N. Kolmogorov, Dissipation of energy in the locally
isotropic turbulence, Proc. Math. Phys. Sci. 434, 15
(1941).

[6] A. Yaglom, On the local structure of a temperature field in a
turbulent flow, Dokl. Akad. Nauk SSSR 69, 743 (1949),
https://archive.org/details/nasa_techdoc_19880069107/mode/
2up.

[7] H. Politano and A. Pouquet, Dynamical length scales for
turbulent magnetized flows, Geophys. Res. Lett. 25, 273
(1998).

[8] H. Politano and A. Pouquet, von Kármán–Howarth equation
for magnetohydrodynamics and its consequences on third-
order longitudinal structure and correlation functions, Phys.
Rev. E 57, R21 (1998).

[9] A. Barnes, Hydromagnetic waves and turbulence in the
solar wind, in Solar System Plasma Physics, edited by E. N.
Parker, C. F. Kennel, and L. J. Lanzerotti (North-Holland,
Amsterdam, 1979), Vol. I, p. 251.

[10] A. Verdini, R. Grappin, P. Hellinger, S. Landi, and W. C.
Müller, Anisotropy of third-order structure functions in
MHD turbulence, Astrophys. J. 804, 119 (2015).

[11] P. Hellinger, A. Verdini, S. Landi, L. Franci, and L. Matteini,
von Kármán–Howarth equation for hall magnetohydrody-
namics: Hybrid simulations, Astrophys. J. Lett. 857, L19
(2018).

[12] Y. Yang, W. H. Matthaeus, S. Roy, V. Roytershteyn, T. N.
Parashar, R. Bandyopadhyay, and M. Wan, Pressure—strain
interaction as the energy dissipation estimate in collisionless
plasma, Astrophys. J. 929, 142 (2022).

[13] Y. Wang, R. Chhiber, S. Adhikari, Y. Yang, R.
Bandyopadhyay, M. A. Shay, S. Oughton, W. H.
Matthaeus, and M. E. Cuesta, Strategies for determining
the cascade rate in mhd turbulence: Isotropy, anisotropy, and
spacecraft sampling, Astrophys. J. 937, 76 (2022).

[14] G. I. Taylor, The spectrum of turbulence, Proc. R. Soc. A
164, 476 (1938).

[15] Y. Yang, W. H. Matthaeus, T. N. Parashar, C. C. Haggerty,
V. Roytershteyn, W. Daughton, M. Wan, Y. Shi, and S.
Chen, Energy transfer, pressure tensor, and heating of
kinetic plasma, Phys. Plasmas 24, 072306 (2017).

[16] D. Verscharen, K. G. Klein, and B. A. Maruca, The multi-
scale nature of the solar wind, Living Rev. Solar Phys. 16, 5
(2019).

[17] O. Pezzi, H. Liang, J. L. Juno, P. A. Cassak, C. L. Vásconez,
L. Sorriso-Valvo, D. Perrone, S. Servidio, V. Roytershteyn,
J. M. TenBarge, and W. H. Matthaeus, Dissipation measures
in weakly collisional plasmas, Mon. Not. R. Astron. Soc.
505, 4857 (2021).

[18] K. T. Osman, M. Wan, W. H. Matthaeus, B. Breech, and S.
Oughton, Directional alignment and non-Gaussian statistics
in solar wind turbulence, Astrophys. J. 741, 75 (2011).

[19] R. Bandyopadhyay, A. Chasapis, R. Chhiber, T. N. Parashar,
W. H. Matthaeus, M. A. Shay, B. A. Maruca, J. L. Burch,
T. E. Moore, C. J. Pollock, B. L. Giles, W. R. Paterson, J.
Dorelli, D. J. Gershman, R. B. Torbert, C. T. Russell, and
R. J. Strangeway, Incompressive energy transfer in the
earth’s magnetosheath: Magnetospheric multiscale obser-
vations, Astrophys. J. 866, 106 (2018).

[20] B. T. MacBride, C. W. Smith, and M. A. Forman, The
turbulent cascade at 1 au: Energy transfer and the third-
order scaling for mhd, Astrophys. J. 679, 1644 (2008).

[21] J. E. Stawarz, C. W. Smith, B. J. Vasquez, M. A. Forman,
and B. T. MacBride, The turbulent cascade and proton
heating in the solar wind at 1 au, Astrophys. J. 697,
1119 (2009).

[22] L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F.
Lepreti, P. Veltri, R. Bruno, B. Bavassano, and E.
Pietropaolo, Observation of inertial energy cascade in
interplanetary space plasma, Phys. Rev. Lett. 99, 115001
(2007).

[23] V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, and R.
Bruno, Scaling laws of turbulence and heating of fast solar
wind: The role of density fluctuations, Phys. Rev. Lett. 103,
061102 (2009).

[24] L. Z. Hadid, F. Sahraoui, and S. Galtier, Energy cascade rate
in compressible fast and slow solar wind turbulence,
Astrophys. J. 838, 9 (2017).

[25] R. Bandyopadhyay, L. Sorriso-Valvo, A. Chasapis, P.
Hellinger, W. H. Matthaeus, A. Verdini, S. Landi, L.
Franci, L. Matteini, B. L. Giles, D. J. Gershman, T. E.
Moore, C. J. Pollock, C. T. Russell, R. J. Strangeway,
R. B. Torbert, and J. L. Burch, In situ observation of hall
magnetohydrodynamic cascade in space plasma, Phys. Rev.
Lett. 124, 225101 (2020).

[26] N. Andrés, F. Sahraoui, S. Huang, L. Z. Hadid, and S.
Galtier, The incompressible energy cascade rate in aniso-
tropic solar wind turbulence, Astron. Astrophys. 661, A116
(2022).

[27] B. Jiang, C. Li, Y. Yang, K. Zhou, W. H. Matthaeus, and M.
Wan, Energy transfer and third-order law in forced aniso-
tropic MHD turbulence with hyperviscosity, J. Fluid Mech.
974, A20 (2023).

[28] M. Wan, W. H. Matthaeus, H. Karimabadi, V. Roytershteyn,
M. Shay, P. Wu, W. Daughton, B. Loring, and S. C.
Chapman, Intermittent dissipation at kinetic scales in
collisionless plasma turbulence, Phys. Rev. Lett. 109,
195001 (2012).

[29] C. Lamriben, P.-P. Cortet, and F.Moisy,Directmeasurements
of anisotropic energy transfers in a rotating turbulence
experiment, Phys. Rev. Lett. 107, 024503 (2011).

[30] F. Sahraoui, M. L. Goldstein, G. Belmont, P. Canu, and L.
Rezeau, Three dimensional anisotropic k spectra of turbu-
lence at subproton scales in the solar wind, Phys. Rev. Lett.
105, 131101 (2010).

[31] F. Pecora, S. Servidio, L. Primavera, A. Greco, Y. Yang, and
W. H. Matthaeus, Multipoint turbulence analysis with He-
lioSwarm, Astrophys. J. Lett. 945, L20 (2023).

PHYSICAL REVIEW LETTERS 131, 225201 (2023)

225201-6

https://doi.org/10.1016/j.physrep.2022.12.001
https://doi.org/10.1016/j.physrep.2022.12.001
https://doi.org/10.1098/rspa.1938.0013
https://doi.org/10.1098/rspa.1991.0076
https://doi.org/10.1098/rspa.1991.0076
https://archive.org/details/nasa_techdoc_19880069107/mode/2up
https://archive.org/details/nasa_techdoc_19880069107/mode/2up
https://archive.org/details/nasa_techdoc_19880069107/mode/2up
https://doi.org/10.1029/97GL03642
https://doi.org/10.1029/97GL03642
https://doi.org/10.1103/PhysRevE.57.R21
https://doi.org/10.1103/PhysRevE.57.R21
https://doi.org/10.1088/0004-637X/804/2/119
https://doi.org/10.3847/2041-8213/aabc06
https://doi.org/10.3847/2041-8213/aabc06
https://doi.org/10.3847/1538-4357/ac5d3e
https://doi.org/10.3847/1538-4357/ac8f90
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1063/1.4990421
https://doi.org/10.1007/s41116-019-0021-0
https://doi.org/10.1007/s41116-019-0021-0
https://doi.org/10.1093/mnras/stab1516
https://doi.org/10.1093/mnras/stab1516
https://doi.org/10.1088/0004-637X/741/2/75
https://doi.org/10.3847/1538-4357/aade04
https://doi.org/10.1086/529575
https://doi.org/10.1088/0004-637X/697/2/1119
https://doi.org/10.1088/0004-637X/697/2/1119
https://doi.org/10.1103/PhysRevLett.99.115001
https://doi.org/10.1103/PhysRevLett.99.115001
https://doi.org/10.1103/PhysRevLett.103.061102
https://doi.org/10.1103/PhysRevLett.103.061102
https://doi.org/10.3847/1538-4357/aa603f
https://doi.org/10.1103/PhysRevLett.124.225101
https://doi.org/10.1103/PhysRevLett.124.225101
https://doi.org/10.1051/0004-6361/202142994
https://doi.org/10.1051/0004-6361/202142994
https://doi.org/10.1017/jfm.2023.743
https://doi.org/10.1017/jfm.2023.743
https://doi.org/10.1103/PhysRevLett.109.195001
https://doi.org/10.1103/PhysRevLett.109.195001
https://doi.org/10.1103/PhysRevLett.107.024503
https://doi.org/10.1103/PhysRevLett.105.131101
https://doi.org/10.1103/PhysRevLett.105.131101
https://doi.org/10.3847/2041-8213/acbb03


[32] J. L. Burch, T. E. Moore, R. B. Torbert, and B. L. Giles,
Magnetospheric multiscale overview and science objectives,
Space Sci. Rev. 199, 5 (2016).

[33] C. T. Russell et al., The magnetospheric multiscale mag-
netometers, Space Sci. Rev. 199, 189 (2016).

[34] C. Pollock et al., Fast plasma investigation for magneto-
spheric multiscale, Space Sci. Rev. 199, 331 (2016).

[35] Y. Yang, F. Pecora, W. H. Matthaeus, S. Roy, M. E. Cuesta,
A. Chasapis, T. Parashar, R. Bandyopadhyay, D. J.
Gershman, B. L. Giles, and J. L. Burch, Quantifying the
agyrotropy of proton and electron heating in turbulent
plasmas, Astrophys. J. 944, 148 (2023).

[36] W. H. Matthaeus, C. W. Smith, and J. W. Bieber, Correla-
tion lengths, the ultrascale, and the spatial structure of
interplanetary turbulence, AIP Conf. Proc. 471, 511
(1999).

[37] M.W. Dunlop, A. Balogh, K.-H. Glassmeier, and P. Robert,
Four-point cluster application of magnetic field analysis
tools: The curlometer, J. Geophys. Res. 107, 23 (2002).

[38] G. Paschmann and P.W. Daly, Analysis Methods for Multi-
Spacecraft Data, ISSI Scientific Reports Series SR-001,
ESA/ISSI, 1998.

[39] https://hpde.io/NASA/NumericalData/MMS.
[40] L. Z. Hadid, F. Sahraoui, S. Galtier, and S. Y. Huang,

Compressible magnetohydrodynamic turbulence in the
earth’s magnetosheath: Estimation of the energy cascade

rate using in situ spacecraft data, Phys. Rev. Lett. 120,
055102 (2018).

[41] N. Andrés, F. Sahraoui, S. Galtier, L. Z. Hadid, R. Ferrand,
and S. Y. Huang, Energy cascade rate measured in a
collisionless space plasma with MMS data and compressible
Hall magnetohydrodynamic turbulence theory, Phys. Rev.
Lett. 123, 245101 (2019).

[42] N. Andrés, F. Sahraoui, S. Galtier, L. Z. Hadid, P. Dmitruk,
and P. D. Mininni, Energy cascade rate in isothermal
compressible magnetohydrodynamic turbulence, J. Plasma
Phys. 84, 905840404 (2018).

[43] M. L. Goldstein, P. Escoubet, K.-J. Hwang, D. E. Wendel,
A.-F. Viñas, S. F. Fung, S. Perri, S. Servidio, J. S. Pickett,
G. K. Parks et al., Multipoint observations of plasma
phenomena made in space by cluster, J. Plasma Phys. 81,
325810301 (2015).

[44] H. E. Spence, HelioSwarm: Unlocking the multiscale mys-
teries of weakly-collisional magnetized plasma turbulence
and ion heating, in AGU Fall Meeting Abstracts (2019),
Vol. 2019, pp. SH11B–04.

[45] K. G. Klein et al., HelioSwarm: A multipoint, multiscale
mission to characterize turbulence, Space Sci. Rev. 219, 74
(2023).

[46] A. Retinò et al., Particle energization in space plasmas:
Towards a multi-point, multi-scale plasma observatory, Exp.
Astron. 54, 427 (2022).

PHYSICAL REVIEW LETTERS 131, 225201 (2023)

225201-7

https://doi.org/10.1007/s11214-015-0164-9
https://doi.org/10.1007/s11214-014-0057-3
https://doi.org/10.1007/s11214-016-0245-4
https://doi.org/10.3847/1538-4357/acb25a
https://doi.org/10.1063/1.58686
https://doi.org/10.1063/1.58686
https://doi.org/10.1029/2001JA005088 
https://hpde.io/NASA/NumericalData/MMS
https://hpde.io/NASA/NumericalData/MMS
https://doi.org/10.1103/PhysRevLett.120.055102
https://doi.org/10.1103/PhysRevLett.120.055102
https://doi.org/10.1103/PhysRevLett.123.245101
https://doi.org/10.1103/PhysRevLett.123.245101
https://doi.org/10.1017/S0022377818000788
https://doi.org/10.1017/S0022377818000788
https://doi.org/10.1017/S0022377815000185
https://doi.org/10.1017/S0022377815000185
https://doi.org/10.1007/s11214-023-01019-0
https://doi.org/10.1007/s11214-023-01019-0
https://doi.org/10.1007/s10686-021-09797-7
https://doi.org/10.1007/s10686-021-09797-7

