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Transient electron dynamics near the interface of counterstreaming plasmas at the onset of a relativistic
collisionless shock (RCS) is investigated using particle-in-cell simulations. We identify a slingshotlike
injection process induced by the drifting electric field sustained by the flowing focus of backward-moving
electrons, which is distinct from the well-known stochastic acceleration. The flowing focus signifies the
plasma kinetic transition from a preturbulent laminar motion to a chaotic turbulence.We find a characteristic
correlation between the electron dynamics in the slingshot acceleration and the photon emission features. In
particular, the integrated radiation from the RCS exhibits a counterintuitive nonmonotonic dependence of the
photon polarization degree on the photon energy, which originates from a polarization degradation of
relatively high-energy photons emitted by the slingshot-injected electrons. Our results demonstrate the
potential of photon polarization as an essential information source in exploring intricate transient dynamics in
RCSs with relevance for Earth-based plasma and astrophysical scenarios.
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Plasma shocks are characterized by rapid steepening of a
nonlinear wave, the eventual overtaking by its rear part, and
the irreversible energy transfer to the surrounding particles
[1–3]. They are of extensive interest in various scenarios. In
the laboratory, a nonrelativistic shock can generate multi-
MeV ions in plasma-based accelerators [4–9], improve the
thermonuclear gain of inertial confinement fusion [10–13],
and provide a platform for investigating astrophysical
phenomena [14–20]. For astrophysics, the shock formed
by supernova remnants offers plausible mechanisms toward
understanding the origin of TeV cosmic leptons [21–24]
and galactic PeVatrons [25], while relativistic collisionless
shocks (RCSs) are ubiquitous in pulsar wind nebulae [26],
active galactic nuclei [27], and gamma-ray bursts (GRBs)
[28]. Recent observations suggest that the RCS-prompted
afterglow radiation indicates a peculiar long GRB from the
merger of a compact binary system [29–32] rather than the
core collapse of massive stars [33], which restimulates
the research interest of relevant RCSs [34].
The RCS brewed from GRBs is prone to load with e�

pairs, since the γ-ray photons ahead of the GRB ejecta turn
into e� via γ-γ reaction [35–37]. Meanwhile, the magneti-
zation level of the unshocked interstellar medium is so
low that the unmagnetized initial condition is generally

considered [38]. Here, the magnetized filamentation turbu-
lence, self-generated through the filamentation merging
and magnetic loop coalescence [39–46], is crucial for
determining Weibel-mediated shock microstructures [47–
54], where electrons, undergoing severe swirling and
trace crossing, no longer travel in a quasilayer form. The
electrons might experience stochastic acceleration, akin to
the Fermi process [55,56], which has been well recognized
as sources of energetic electrons in the Universe [57–67].
Previous studies of unmagnetized RCSs primarily focus on
the electron energization and equipartition between elec-
trons and ions through stochastic acceleration [68–72]
where electrons scatter off the self-generated turbulent
magnetic structures [73–75]. However, it remains largely
unexplored how the plasma transits from the nonturbulent
flow to kinetic turbulence and how this transition impacts
the acceleration and radiation features in the RCS.
As a versatile information carrier of multimessenger

astrophysics [76–78], photon polarization is critical for
measuring the magnetic configuration near black holes [79]
and crab nebulae [80]. Therefore, the question arises
whether the polarization feature of spontaneously emitted
photons can be employed to reveal the mechanism respon-
sible for the turbulence transition in a RCS.
In this Letter, we investigate the transient electron

dynamics in the transition to turbulence near the counter-
streaming interface of an unmagnetized pair-loaded RCS
precursor, which is potentially associated with the outflow
of GRBs. We employ particle-in-cell (PIC) simulations to
examine the photon emission and observe an anoma-
lous nonmonotonic dependence (NMD) of the photon
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polarization degree on the photon energy. We found that the
NMD indicates a specific mechanism of electron accel-
eration, which we term as slingshot injection, caused by a
drifting electric field due to the flowing focus of backward-
moving electrons. Our slingshot model could be the
essential reason accounting for the long-term directed
electron heating via electric fields near a RCS precursor
[81–83]. Utilizing Hamiltonian analyses, we elucidate that
the backward-flowing focus marks the plasma transition to
a turbulent regime in the RCS, which in the electron’s
transverse phase space is exhibited as the change from the
phase-locked to the phase-slipping dynamics. The NMD
photon properties stem from a polarization degradation of
relatively high-energy photons emitted by the slingshot-
injected electrons. The correlation among the NMD of
photon polarization, the slingshot injection, and the back-
ward-flowing focus emphasizes the importance of the
transition region to the turbulence in characterizing the
acceleration and radiation in the RCS.
We have carried out 2D simulations of counterstreaming

RCSs; see Fig. 1. The latter is initiated when a uniform
plasma flow with a bulk Lorentz factor γ0 ¼ 50, injected
from the right side, is reflected from the left side boundary,
which adopts a reflection condition [58]. The periodic
boundary condition is set in the lateral direction. We
consider the flow consisting of electrons, positrons, and

ions with the same drifting velocity and with the number
density of ne0, np0, and ni0, respectively. The charge
neutralization ne0 ¼ np0 þ Zini0 is satisfied initially, and
the ion with charge (mass) Zi ¼ 1 (mi ¼ 1836me) is used.
The ratio η≡ ni0=ðni0 þ np0Þ∈ ð0.01; 1Þ denotes the pro-
portion of ions among the whole positive charged particles.
The simulation domain is 200λpe × 20λpe with resolution
Δx ¼ Δy ¼ λpe=50 and Δt ¼ 0.95Δx=c. Each cell is filled
with 48 macroparticles for each species. Here, ωpe ¼
ðne0e2=ε0meÞ1=2 (λpe ¼ 2πc=ωpe) is the plasma frequency
(skin depth), with the electron charge (mass) e (me), the
vacuum permittivity ε0, and the speed of light c. The
models of the photon polarization have been implemented
in the EPOCH code [84,85]. Unless otherwise indicated, we
discuss results from the fiducial simulation with γ0 ¼ 50
and η ¼ 0.4.
The snapshot of the electron density ne in Fig. 1(a)

exhibits that the filamentation exclusively exists at the front
of the RCS interface. Between two adjacent filaments, an
electron focusing point emerges, and, following that, two
oblique density strips stretch out [see Fig. 2(b)]. Behind the
strips, the coherent filaments and focusing points disappear
while the turbulence shows up. A nontrivial thing is that the
photons with energy εph ≡ ℏωph > 10−2ℏωm

ph are primarily
emitted by electrons near the interface, where ωm

ph ∼
108ωpe is the photon cutoff frequency and ℏ the Planck
constant. In contrast, in the case of η ¼ 0.01, the energetic
photon emission predominantly occurs in the turbulent
region [see Fig. 1(b)], even though the preturbulent
structures are extended to a larger range.
The degree of the photon’s linear polarization along the

direction of the electron’s transverse acceleration is char-
acterized by the Stokes parameter Q [101], formulated
as [85]

Q¼ εeðεe − εphÞK2=3ðζÞ
½ε2e þ ðεe − εphÞ2�K2=3ðζÞ− εeðεe − εphÞK̃1=3ðζÞ

; ð1Þ

where KnðζÞ is the modified secondary Bessel function,
K̃1=3ðζÞ ¼

R
∞
ζ K1=3ðzÞdz, ζ ¼ 2εph=½3χeðεe − εphÞ�, and

εe ¼ γemec2 the electron energy; χe ≡ ðeℏ=m3
ec4ÞjFμνpνj

is the electron quantum strong-field parameter with the
field tensor Fμν and the electron four-momentum pν. At
χe ≪ 0.1, ∂Q=∂εph > 0 predicted by Eq. (1) manifests a
monotonic dependence of Q on ωph, because for the
higher-frequency radiation the formation length is shorter
and the preservation of the local polarization degree is
improved. This monotonic dependence is confirmed by the
results of η ¼ 0.01 [see Figs. 1(c) and 1(d)], where
electrons experience stochastic acceleration [59] and the
photon emission is isotropic in the angular space. However,
for η ¼ 0.4 [see Figs. 1(c) and 1(d)], the averaged polari-
zation degree hQi versus ωph exhibits NMD, with a

FIG. 1. The dynamics of a counterstreaming RCS: the electron
density ne at t ¼ 80π=ωpe for (a) η ¼ 0.4 [96] and (b) η ¼ 0.01
[97], where lines present the typical electron-moving tendency
with stars marking the photon emission and the histograms
display the spatial distribution of emitted photons with
ωph > 10−2ωm

ph. (c) hQi and ωphdNph=dωph versus ωph.
(d) hQi and dNph=dθph versus θph.
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polarization dip ΔQω ≈ 4.5% and a bandwidth ratio
Bω ≡ ωm

ph=ω
�
ph ∼ 103, contradictory to the forementioned

monotonic dependence. Here, ω�
ph is the local maximum

point of the function hQi versus ωph [see Fig. 1(c)]. In the
angular distribution, hQi has a polarization valley
ΔQθ ≈ 11%, and the photon emission tends to be more
collimated within an emission angle θph ≲ 15°. The features
of the slingshot acceleration and the photon NMD are
confirmed by 3D PIC simulations [85].
To unveil the reason of the counterintuitive NMD, we

focus on the electron dynamics within the dashed box
marked in Fig. 1(a). For the deflection of backward-moving
electrons nearby the interface, the effective plasma density
approximates ηne0 and the charge density has a sinusoidal
profile ρ ∼ jejηne0 cos½kyðy − ycÞ� with ky ∼ ωpe=2c the
periodic wave number and yc the relative central axis
[85]. The self-generated transverse electric and magnetic
field is EyðyÞ ¼ ðjejηne0=ε0kyÞ sin½kyðy− ycÞ� and BzðyÞ ¼
cEy, respectively. As justified by simulations, the energy
exchange dγe=dt is insignificant, and, thus, the transverse
dynamics is described by ÿþ ðΩ2=kyÞ sin½kyðy − ycÞ� ¼ 0,
with Ω2 ¼ 2ηne0e2=ε0γ0me. Then the corresponding
Hamiltonian can be derived as [85]

H⊥ðy; ẏÞ ¼
Ω2

k2y
cos½kyðy − ycÞ� þ

1

2
ẏ2: ð2Þ

Following H⊥ðy; ẏÞ ¼ H⊥ðy0; 0Þ, the electron transverse
motion is analyzed as

t ¼ kyffiffiffi
2

p
Ω

Z
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos½kyðy0 − ycÞ� − cos½kyðy − ycÞ�
p : ð3Þ

The trajectories predicted by Eq. (3) demonstrate that the
backward-moving electrons would be focused into y ¼ yc
at a restoring time tr ∼ 0.6π=Ω, as confirmed by simulation
results [see Figs. 2(a) and 2(b)].
After the backward-flowing focus, the electrons start to

transit from the preturbulent motion to turbulence, inter-
preted as a shrinking of the Hamiltonian’s separatrix. The
separatrixH⊥ðy; ẏÞ≡H⊥ðyc; 0Þ ¼ Ω2=k2y divides the elec-
tron dynamics into the confined phase-locked and the
escaping phase-slippage regions. If the magnetic field
decreases with the equivalent restoring frequency reduced
from Ω to Ω0, the phase space volume encompassed by
the separatrix is shrunk from H⊥ðy; ẏÞ < Ω2=k2y to
H⊥ðy; ẏÞ < Ω02=k2y. Thus, the electrons within the region
of Ω02=k2y < H⊥ðy; ẏÞ < Ω2=k2y are released into the phase-
slippage region [see Fig. 2(c)]. The electron release breaks
the coherent filament structure and deteriorates the trans-
verse inhomogeneity, leading to the onset of the plasma
turbulence.
The transition from the preturbulent flowing focus to the

turbulence is illustrated by the evolution of the particle

separation [see Fig. 2(d)], where δr is the distance between
an electron and its closest partner at the beginning and δr
refers to the averaged value. After the focus at
ωpet=2π ∼ 45, the signature of the chaotic dynamics arises
with δr ∝ exp ðλlδtÞ characterized by the Lyapunov expo-
nent λl ≈ 0.15ωpe=π [102]. The electrons exhibit a chaotic
behavior during the defocusing stage [103], where the
decrease of the exerted magnetic field jBzj proves the
shrinking of the Hamiltonian’s separatrix. Later, at
ωpet=2π ∼ 70, δr ∝ 0.2cδt=π implies a drifting tendency
because of the localized electrons prone to occupy the
whole interaction domain [104]. Eventually, at ωpet=2π >
130, δr ∝ 9ðωpeδt=2πÞ1=2 manifests the electrons’ random
walk procedure [105,106].
The flowing focus leads to a negative longitudinal electric

field Ex with a scale length δl [see Fig. 3(a)], favorable for
injecting electrons into the RCS. This injection resembles a
slingshot, where the filaments serve as the handhold, the
backward-moving electrons behave as the elastic string, and
the injected forward-moving electrons are the projectiles
[107]. The scale length is calculated as δl ∼ trc≈
π

ffiffiffiffiffiffiffiffiffi
γ0=η

p ðc=ωpeÞ. Given ∇ · E ¼ ρ=ε0, the field strength
is estimated as hExi ≈ π

ffiffiffiffiffiffiffi
ηγ0

p
mecωpe=jej [see Fig. 3(b)].

The flowing focus successively occurs for the replenished
backward-moving electrons, and the field Ex propagates

FIG. 2. (a) Schematic of the backward-flowing focus with the
predicted electron trajectories [98]. The brown (purple) markers
denote the magnetic (electric) field direction, and the green
arrows present the slingshot-injected electrons. (b) Enlargement
of the dashed box marked in Fig. 1(a), where the red (blue) lines
represent the backward- (forward-) moving electrons [99].
(c) Electron evolution in ðy; ẏÞ space with the blue dashed
(red dotted) lines contouring H⊥jΩ≈0.1ωpe

(H⊥jΩ0≈0.02ωpe
) [100].

(d) Time evolution of δr (δr) in gray (red).
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with a velocity vx ≈ vd ¼ ð1 − 1=γ20Þ1=2. In the interface’s
comoving frame ξ≡ x − vdt, the electron’s longitudinal
dynamics is determined by the Hamiltonian Πkðξ; pxÞ ¼
−jejφðξÞ þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ec2 þ p2
x

p
− vdpx with φðξÞ ¼

−
R
ExðξÞdξ [see Fig. 3(c)] [85]. Then the injection thresh-

old p−
th and the maximum achievable momentum pþ

th,
derived as [85]

pþ
th ∼ 2γ30 þ

3

2
γ0 −

2

γ0
and p−

th ∼ −
γ0
2
−

1

2γ0
: ð4Þ

Specifically, there are three types of slingshot-injected
electrons (see Fig. 3) [108]. The A electrons comoving with
Ex get a pronounced energy gain up to γe ∼ 103. The initially
backward-moving B electrons are below the threshold, i.e.,
px ∼ −γ0 < p−

th, but they are still injected, because the
magnetic deflection v × B leads to an attractor effect in
ðξ; pxÞ space [109], which drags the electrons toward the
degraded Hamiltonian Πk [see the red arrows in Fig. 3(c)]
[85]. The C electrons are trapped by the Ex induced by
assembling two stretched-out density strips behind the
flowing focus position. The slingshot acceleration is dis-
tinguishable from the previously identified stochastic accel-
eration, where electrons tend to be repetitively rebounded by
magnetic turbulence [73–75] and undergo Fermi-like sto-
chastic energization [68–73]. Figure 3(d) manifests that the
primary contribution of photon emission near the preturbu-
lent interface originates from the slingshot electrons. The

percentage of electrons undergoing a slingshot process
is 0.39%.
In the search for a criterion distinguishing between the

slingshot and stochastic electrons, we turn to the electron’s
longitudinal and transverse work Wk;⊥ [see Fig. 4(a)],
where Wk ¼ −

R jejExdx, W⊥ ¼ −
R jejEydy, and Wt ¼

Wk þW⊥; the integrals are calculated from the beginning
to the photon-emitting moment. The slingshot acceleration
relies on Ex while the stochastic process is isotropic,
meaning that the photon emission associated with
Wk=Wt → 1 (Wk=Wt → 0.5) belongs to the slingshot
(stochastic) mechanism [110]. Therefore, the condition
of Wk=Wt ≶ 0.75 is a reasonable criterion to distinguish
the photon emission from the stochastic or slingshot
mechanism. For the photons produced from the two
mechanisms, both of their hQi versus ωph [in Fig. 4(b)]
are monotonically increasing as predicted by Eq. (1).
However, the photon emission from the slingshot is shifted
to the higher-frequency range compared with the stochastic
scenario due to the enhanced energy of slingshot electrons
[see Fig. 4(c)]. Therefore, the NMD of hQi versus ωph

comes from the combination between the high polarization
degree stochastic photons and the low polarization degree
slingshot photons around ωph ∼ 106ωpe [see Fig. 4(b)].
Near this frequency region, the emission of both mecha-
nisms contributes.
The maximum slingshot energy γmsli is approximated as

γmsli ∼ jejhExiδt=mec ∼ π
ffiffiffiffiffiffiffi
ηγ0

p
ωpeδt when the electron

energy is far from the saturation γe ≪ pþ
th ∼ 106. The

energy gain of the stochastic process is estimated
using the random walk model [105]: γmsto ∼
0.5ðωpe;0δtÞ1=2γ3=40 η1=4 [85]. These estimates agree well
with the simulation results [Fig. 4(c)]. Following γmsli and
γmsto, the photon cutoff frequency ωm

ph for the slingshot and

stochastic mechanisms is predicted as ωm;sli
ph ∼ γm2

sli B ∝
γ3=20 η and ωm;sto

ph ∼ γm2
stoB ∝ γ20η

1=2 [see Fig. 5(a)] with the

magnetic field strength B ∝ γ1=20 .

FIG. 3. (a) Electric field Ex with the transverse profile of Bz and
Ey. (b) δl and hExi versus η. (c) Hamiltonian Πkðξ; pxÞ with the
red arrows denoting the moving tendency modified by the
magnetic deflection. (d) Time-evolved electron position, where
the black lines profile Bz and the red (blue) stars mark the photon
emission belong to the slingshot (stochastic) mechanism. Three
kinds of slingshot electrons are shown with the color of (A) cyan,
(B) lime, and (C) magenta.

FIG. 4. (a) Distribution ofWk;⊥ at the emissionmoment. (b) hQi
versus ωph for photons associated withWk=Wt ≶ 0.75, where the
red line reproduces the hQi versus ωph in Fig. 1(c). (c) Time-
evolved electron energy spectral γ2edN=dγe. The inset displays the
time-dependent electron maximum energy γme .
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Examining the NMD polarization features of the polari-
zation dip ΔQω and the bandwidth Bω, we conclude that
the high-frequency photon emission is dominated by the
slingshot mechanism due to fulfilling three criteria: (i) The
photon cutoff frequency originating from slingshot elec-
trons is much higher than via the stochastic mechanism,
i.e., ωm;sli

ph ≫ ωm;sto
ph , reformulated as η≳ η� ¼ 0.01γ0;

(ii) the number of the slingshot injected electron Nsli
e ∝

hExi should be larger than the most energetic part
of the stochastic electrons Nsto

e ∝ npe0, rearranged as
η≳ η† ∝ γ−10 ; (iii) the saturation of the slingshot acceler-
ation should be higher than the stochastic acceleration, i.e.,
pþ
th ≳ γmsto, expressed as γ0 ≳ γ� ¼ 2η1=9. The criteria of the

slingshot dominance predicted by η > max fη�; η†g and
γ > γ� agrees well with the simulation results [see
Fig. 5(b)]. The dependence of ΔQω and Bω on η and γ0
in Fig. 5(b) confirms that the NMD of the polarization
degree on photon energy is exclusively from the emission
dominated by the slingshot mechanism.
In conclusion, inspecting the origin of unexpected

polarization features of the photon radiation in the transient
preturbulent RCS precursor, we have identified the electron
slingshotlike acceleration mechanism, distinct from the
well-known stochastic acceleration [68–72]. Our results
have implications for both laboratory and astrophysical
phenomena. The identified features of the transition region
to turbulence, slingshot injection, and the photon polari-
zation dependence could be actualized in laboratory astro-
physics by using the combination of high-energy ion [111]
and e� beams [112]. Moreover, the slingshot electrons,
escaping from the preturbulent region to enter the magnetic
turbulent plasma [85], potentially behave as the prestage
injection for the subsequent Fermi acceleration in long-
term evolved RCSs [113]. Finally, the nontrivial photon
polarization dynamics implies the necessity of revising the
retrieval model for astrophysical magnetic configurations
based on radiation features [79,80,114,115].
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