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Two-dimensional turbulence self-organizes through a process of energy accumulation at large scales,
forming a coherent flow termed a condensate. We study the condensate in a model with local dynamics, the
large-scale quasigeostrophic equation, observed here for the first time. We obtain analytical results for the
mean flow and the two-point, second-order correlation functions, and validate them numerically. The
condensate state requires partiyþ time-reversal symmetry breaking. We demonstrate distinct universal
mechanisms for the even and odd correlators under this symmetry. We find that the model locality is
imprinted in the small scale dynamics, which the condensate spatially confines.
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Introduction.—Understanding the interactions between
turbulent fluctuations and a mean flow is a central problem
in fluid mechanics. Such interactions usually prevent a
prediction of the mean flow due to their nonlinear nature.
Recently, some progress was made in this direction for two-
dimensional turbulence [1,2]. In this case, the mean flow
spontaneously emerges from small-scale fluctuations in an
out-of-equilibrium process of self-organization. The under-
lying mechanism is that of an inverse transfer of energy—
from small to large scales, leading to the accumulation of
energy at large scales and the establishment of a system-
size mean flow termed a condensate [3].
Two-dimensional flow minimalistically encapsulates the

main dynamical constraints imposed by rotation and
density stratification, encountered in nature or in laboratory
experiments [4]. In fact, a cornerstone of the theory of
large-scale dynamics of geophysical flows, including the
formation of coherent structures such as jets and vortices, is
the quasigeostrophic (QG) approximation [5], which shares
the same fundamental structure as two-dimensional flow.
However, a general understanding of the feedback between
such structures and turbulence within the QG framework is
currently lacking.
In QG, there is a typical scale for the range of fluid

elements interactions, called the Rossby radius of defor-
mation Ld. The special cases which have been studied in
detail so far correspond to dynamics at scales much smaller
than Ld: the vortex condensate in two-dimensional incom-
pressible Navier-Stokes (2DNS) [1,2,6–10], and jets in the
presence of strong differential rotation (β effect) [11–15].
Here, we address the opposite limit, of scales much larger
than Ld (without differential rotation): the large-scale
quasigeostrophic (LQG) equation [16]. We observe the
condensate regime in LQG for the first time in numerical
simulations, and provide a detailed theoretical picture of the
mean-flow–turbulence interactions. Although the flow is

turbulent and the mean flow is sustained due to nonlinear
interactions, we show that the statistics can be captured
within a perturbative approach, the quasilinear approxima-
tion [17]. This reinforces the relevance of the approach for
low-order turbulence statistics in the presence of a strong
mean flow [1,2]. While in 2DNS fluid-element interactions
are long range, in LQG they are local. Comparing the two
cases, our work sheds light on the influence of the range of
interactions on the condensate state. Indeed, we show that
the statistics at large scales are determined by universal
underlying mechanisms. On the other hand, at small scales
we find that the locality of interactions has a dramatic
influence, with small-scale fluxes and dissipation sup-
pressed in regions where the mean flow is strong.
Framework.—Both the LQG equation and 2DNS can be

derived as limiting cases of the shallow water quasigeo-
strophic (SWQG) equation. This is an idealized model
widely used for flows in the atmosphere and oceans [5], and
for magnetically confined plasmas [18]. In the geophysical
context, it captures the dynamics of the free surface of a
rapidly rotating shallow fluid layer under the influence of
gravity. The inviscid SWQG equation reads ∂tqþ v · ∇q ¼
∂tqþ Jðψ ; qÞ ¼ 0, where q ¼ ð∇2 − L−2

d Þψ , is the poten-
tial vorticity, Jðψ ; qÞ ¼ ∂xψ∂yq − ∂yψ∂xq, and ψ is the
stream function related to the velocity field by v ¼ ẑ × ∇ψ.
The flow is assumed to be in geostrophic balance. Thus, ψ
is proportional to the deviation of the fluid layer height
from its mean. The system has Ld as a characteristic length
scale, determining the range of influence of a height
perturbation. If the domain size L ≪ Ld then every fluid
element will influence every other, and the flow will
become incompressible, giving the 2DNS. The opposite
limit Ld=L → 0 giving LQG (which can be made consistent
with the SWQG approximation [19]), corresponds to a very
rapidly rotating fluid where surface perturbations remain
completely localized. The dynamics become slow in this
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limit, requiring the rescaling of time as τ ¼ tðLd=LÞ2 (and
ψ accordingly), resulting in the LQG equation

∂τψ þ vω ·∇ψ ¼ ∂τψ þ Jðω;ψÞ ¼ fþα∇2ψ − νð−∇2Þpψ ;
ð1Þ

where we defined an effective velocity vω ¼ ẑ × ∇ω, f is a
forcing term, and the last two terms are dissipative—a
viscous term referred to as drag in the following, and a
hyperviscosity. The former provides the dominant dissipa-
tion mechanism at large scales, while the latter will
dominate at small scales. The inviscid invariants of (1)
are the kinetic energy Z ¼ 1

2

R ð∇ψÞ2d2x ¼ 1
2

R
v2d2x and

all moments of ψ , in particular the potential energy
E ¼ 1

2

R
ψ2d2x. The existence of two positive quadratic

invariants results in the inverse cascade of E and a direct
cascade (from large to small scales) of Z [20].
The LQG advection equation is similar to 2DNS but with

the roles of the vorticity ω ¼ ∇2ψ and the stream function
reversed. Indeed, LQG and 2DNS are part of a class of
active scalar equations where a scalar q is advected by a
velocity with stream function ϕ, and qk ¼ jkjmϕk [21], m
controlling the range of the dynamics [22]. For 2DNS,m ¼
2 and the dynamics is long range. For LQGm ¼ −2, so that
the advecting velocity is determined by active scalar gradi-
ents, making the dynamics local.
Simulations.—Direct numerical simulations (DNS) are

performed by integrating (1) using the Dedalus framework
[23]. Simulating in a doubly periodic box of dimensions
L≡ Ly ¼ 2Lx ¼ 2π, we enforce the formation of a jet-type
condensate by breaking the symmetry between the x and y
directions [24,25]. We use a spatial resolution of 64 × 128,
a white-in-time forcing with characteristic length scale lf ¼
2π=13, hyperviscosity with p ¼ 7 and ν ¼ 7.3 × 10−19 and
take α ¼ ð0.5; 1; 2Þ × 10−3. Condensation of E at large
scales requires a slow dissipation rate compared to
the eddy-turnover time at the box scale, amounting to
the condition δ≡ αðL2=ϵÞ1=3 ≪ 1, where ϵ ¼ hfψi is the
energy injection rate. Additional simulation details, includ-
ing for DNS with other parameters, are in [19].
The steady state condensate takes the form of two

alternating jets along the short side (x direction) of the
domain, as demonstrated in Fig. 1. Here, the jet structure is
selected by the domain geometry, unlike in β-plane
turbulence. Between the jets, there are two small vortices,
similarly to what was found in 2DNS [25].
Mean flow.—We now set out to obtain a statistical

description of the steady state LQG jet condensate. We
start by decomposing the flow into the mean Ψ ¼ hψi and
fluctuations ψ 0 ¼ ψ −Ψ. We will focus on the jet region,
where the flow is statistically homogeneous in x, and the
mean flow depends on y only. In particular, the mean
flow is in the x direction: U ¼ −∂yΨ. In the steady
state, averaging (1) and neglecting the influence of hyper-
viscosity at large scales we obtain

∂y½hvω0y ψ 0i − α∂yΨ� ¼ 0; ð2Þ

where we have used that Vω
y ¼ ∂xhωi ¼ 0. As mentioned

before, ψ is proportional to the layer height, thus (2)
can be interpreted as a mass balance and hvω0y ψ 0i as the
turbulent mass flux, analogously to the momentum flux
or Reynolds stress in 2DNS. We note that a constant
nonzero total flux is inconsistent with the symmetries of
our system, as there is no preferred direction aside from
the one imposed by the emerging mean flow, giving

hvω0y ψ 0i ¼ α∂yΨ: ð3Þ

Next, we obtain the potential energy balance of the mean
flow by multiplying (1) by Ψ and averaging

∂y½Ψhvω0y ψ 0i − αΨ∂yΨ� ¼ hvω0y ψ 0i∂yΨ − αð∂yΨÞ2: ð4Þ

Similarly, we obtain the potential energy balance of
fluctuations by multiplying (1) by ψ 0 and averaging,
giving

∂y

��
vω0y

ψ 02

2

��
¼ ϵ − hvω0y ψ 0i∂yΨ: ð5Þ

In writing (5) we have neglected the dissipation of
potential energy by fluctuations, since the development
of the condensate implies dissipation by fluctuations is
inefficient and thus small. Equations (4) and (5) reflect the
flow of potential energy in the system, where the inter-
action term hvω0y ψ 0i∂yΨ ¼ −Uhvω0y ψ 0i controls the out-of-
equilibrium transfer of energy between the fluctuations
and the mean flow. The inverse nature of potential energy
transfer in this system implies that it goes from the

(a) (b)

FIG. 1. LQG jet condensate in a periodic, rectangular box with
δ ¼ 0.052. (a) Vorticity snapshot ω ¼ ∇2ψ and (b) velocity
snapshot v ¼ ẑ × ∇ψ .
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fluctuations to the mean flow. This requires mass flux up
the gradient of the mean height: hψ 0vω0i · ∇Ψ > 0.
Because of relation (3) the left hand side of Eq. (4),

corresponding to the spatial flux of mean potential energy
Ψ2, vanishes. Thus, here unlike in 2DNS [1], all the energy
input from the fluctuations is dissipated locally by the mean
flow. Note that the transfer of potential energy to the mean
flow cannot be the dominant process in regions where
∂yΨ ¼ −U ≈ 0 since hvω0y ψ 0i∂yΨ is small there. For jets in a
periodic domain there always must be such a region asR
∇Ψd2x ¼ 0 identically.
Finally, to close the system of equations we assume

that interactions with the mean flow are much faster
than nonlinear interactions between fluctuations,
jhvω0y ψ 0i∂yΨj ≫ jhψ 0vω0 · ∇ψ 0ij, justified by the develop-
ment of a strong condensate for δ ≪ 1. This is called the
quasilinear approximation, which has a long history [17],
and was recently successfully used in a similar context for
2DNS [1]. Unlike 2DNS, in LQG the dynamics are local
(e.g., no pressure term), and thus so is the analysis,
obviating the need for further approximations.
Using (3) together with (5) in the quasilinear approxi-

mation gives the leading order solution

∂yΨ ¼ −U ¼ �
ffiffiffi
ϵ

α

r
; ð6Þ

hψ 0vω0y i ¼ � ffiffiffiffiffi
ϵα

p
; ð7Þ

implying a flat mean velocity profile U (and mass flux) for
each of the jets. We compare these predictions to results
from DNS in Fig. 2. For the averaging procedure, after
reaching steady state, we perform a temporal (over ∼1000

large scale turnover time) as well as a spatial average along
the x axis, utilizing the homogeneity of the system. For the
mean velocity profile, good agreement with (6) can be seen
in Fig. 2(a), demonstrating convergence to the leading
order prediction with decreasing δ. The main difference
between DNS and the theoretical prediction is the oscil-
lations of the jet velocity seen in DNS (see also Fig. 1),
which persist after averaging over long times. They appear
to be a subleading correction to the mean flow profile U
(controlled by a small parameter other than δ), not captured
at leading order. The mass flux hψ 0vω0y i is also computed
from DNS, shown in Fig. 2(b). It fluctuates about the
theoretical prediction, due to rapid fluctuations of vω0y
requiring additional statistics for convergence. Still, the
sign of the mass flux always matches the sign of ∂yΨ (in the
jet region), as is necessary for the inverse transfer.
Two-point correlation function.—Having obtained the

mean flow profile, we now examine the two-point (single-
time) correlation function hψ 0

1ψ
0
2i≡ hψ 0ðr1Þψ 0ðr2Þi where

ri ¼ ðxi; yiÞ. We obtain an equation for hψ 0
1ψ

0
2i at leading

order in perturbation theory from (1), neglecting dissipation
of the fluctuations, using the statistical homogeneity in x,
and the quasilinear approximation to neglect higher order
moments [19]. In addition, we use that from Eq. (6),
Vω
x ¼ 0 at leading order. We thus get

½L1 þ L2�hψ 0
1ψ

0
2i ¼ 2ϵΦ12; ð8Þ

where the operator Li ¼ ∂yiΨðyiÞ∇2
∂yi (no summation is

implied here) and hfðr1; tÞfðr2; t0Þi ¼ 2ϵΦ12δðt − t0Þ is the
force two-point correlation function with Φ12 ≡ΦðΔx=lf;
Δy=lfÞ. Using the mean profile Eq. (6), this equation reads

∂yþ∂y−∂x1hψ 0
1ψ

0
2i ¼ 2

ffiffiffiffiffi
ϵα

p
Φ12; ð9Þ

where we have defined the variables yþ ¼ ½ðy1 þ y2Þ=2�
and y− ¼ Δy=2 ¼ ½ðy1 − y2Þ=2�. Integrating (9) we get

hψ 0
1ψ

0
2i ¼ CðΔx;ΔyÞ þ 2yþ

ffiffiffiffiffi
αϵ

p
l2f

Z Δx
lf

0

dz
Z Δy

2lf

0

dz0Φ̃ðz; z0Þ;

ð10Þ

with Φ̃ðx;yÞ¼Φðx;yÞ−Φ̂ðkx¼0;yÞ−Φ̂ðx;ky¼0Þ, subtra-
cting the contribution to the forcing from kx ¼ 0 and
ky ¼ 0 modes [19]. The second term in (10) is the in-
homogeneous solution to Eq. (9), due to a balance between
the forcing and the mean flow. The first term, CðΔx;ΔyÞ, is
a homogeneous solution of (10), i.e., a zero mode of the
advection operator L1 þ L2 ¼ ∂yþ∂y−∂x1. This family of
zero modes is chosen assuming decaying correlations with
Δy → L=2, and using the result from DNS that the variance
hðψ 0Þ2i is constant in the jet region [19]. Deriving the
functional form and amplitude of the zero modes is beyond
the scope of this work. Empirically, our DNS results [19]

(a)

(b)

FIG. 2. (a) Horizontal velocity profile ∂yΨ, dashed line is the
prediction (6); (b) mass flux hvω0y ψ 0i, dashed line is the
prediction (7).
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point to the scaling hu02i ¼ −∂2ΔyCjð0;0Þ ∼ ðϵLÞ2=3δ−1=2 and
hv02i ¼ −∂2ΔxCjð0;0Þ ∼ ðϵLÞ2=3δ1=4, while from Eq. (7) the
off-diagonal term hu0v0i ¼ ðϵLÞ2=3ðy=LÞδ1=2. Thus, the
perturbation theory is indeed consistent, at most
hu02i=U2 ∼ δ1=2 ≪ 1.
PT symmetry breaking.—The condensate state owes its

existence to out-of-equilibrium fluxes which break time-
reversal symmetry. On the level of single time correlators
such symmetry breaking will manifest itself through a
combined parityþ time (PT) reversal, x → −x and t → −t,
breaking. Indeed, the inviscid LQG dynamics with a
homogeneous in x mean flow is statistically invariant
under PT. However, the mass flux hψ 0vω0y i (responsible
for the inverse transfer of energy) is odd under this
symmetry and can be nonzero only if it is broken.
We propose that even and odd under PT correlators are

determined through different mechanisms, reflected in the
decomposition of the two-point correlator (10) into, respec-
tively, the zero modes and inhomogeneous solution. The
inhomogeneous solution is determined by a balance
between the forcing, which breaks time reversal symmetry,
and the mean flow, which breaks parity (but preserves PT).
The homogeneous solution, on the other hand, is insensi-
tive to the forcing and instead is a zero mode of the
advection operator L1 þ L2. A similar structure was
inferred in 2DNS [2,9,10].
The inhomogeneous term in (10) is indeed odd under

PT: it changes sign under reflection x → −x (so that
Δx → −Δx) and, being a single-time quantity, does not
explicitly depend on time. We propose that it fully
determines odd correlators. The mass flux hψ 0vω0y i can
indeed be directly computed from it, in agreement with (7)
[19]. The limit of large scale separation L=lf ≫ 1 is
interesting to consider at this point, as in this limit we
expect universal behavior, independent of forcing details.
This is manifested in Eq. (10): the influence of the
inhomogeneous term becomes limited to separations
Δx;Δy≲ lf, meaning that its main role becomes to
determine single-point (odd) correlation functions [19].
Turning to even-under-PT correlators, if they are deter-

mined by zero modes then those should be even under PT,
implying Cð−Δx;ΔyÞ ¼ CðΔx;ΔyÞ. We verify this prop-
erty, as well as that the even part of hψ 0

1ψ
0
2i is independent

of yþ in the jet region, as expected for the zero modes,
in [19].
Arrest of the direct cascade.—The condensate neces-

sarily coexists with a direct cascade to small scales of a
second inviscidly conserved quantity—the kinetic energy
in LQG. As the direct cascade involves scales from the
forcing scale and smaller, we generally expect the mean
flow to have a negligible effect on it. This is indeed the case
in 2DNS [25] where the direct cascade of enstrophy
(squared vorticity) remains homogeneous and isotropic,
as reflected in an essentially spatially uniform enstrophy

dissipation rate. Surprisingly, we find this is not the case in
LQG, as seen in Fig. 3(a): the kinetic energy dissipation is
concentrated in regions in between the jets, being close to
zero elsewhere. To explain this inhomogeneity we turn to
the kinetic energy balance, obtained by multiplying the
derivative ∂i of (1) by ∂iψ

0 and averaging. In the steady
state, the balance of kinetic energy for the fluctuations
reads [19]:

∂y½J0y þ I0D� ¼ η −D0 þ T; ð11Þ

where η is the kinetic energy injection rate, I0D and D0
originate from the viscous terms and are the respective flux
and dissipation rate, T ¼ ∂yU∂yhvω0y ψ 0i is a transfer term
between the mean flow and the fluctuations, and J0y is a
spatial kinetic energy flux given by

J0y ¼ Uhvω0y u0i þ h∂yψ 0vω0 · ∇ψ 0i − hω0vω0y ψ 0i: ð12Þ

The transfer term T both here and in 2DNS can be
estimated to generically be much smaller than the injection
rate η [19]. It identically vanishes for the leading order
solution (6), (7). Furthermore, we expect the kinetic energy
fluctuations to have homogeneous statistics at small scales
(where they reside), so that spatial fluxes involving solely
fluctuations should be small. We thus expect the balance

∂y½Uhvω0y u0i� ¼ η −D0: ð13Þ

The key difference between Eq. (13) and the analogous
balance in 2DNS is in the spatial flux due to the mean flow,
preventing a local balance between injection and dissipa-
tion. It is this spatial flux which arrests the direct cascade in
regions where the mean flow U is strong, carrying the
injected kinetic energy away from those regions. By a
direct computation using (10), see [19], we find that

Uhvω0y u0i ¼ ∂yΨh∂yψ 0vω0y i ¼ ηy: ð14Þ

(a)

(b)

FIG. 3. (a) Mean kinetic energy dissipation normalized by η;
(b) The term hvω0y v0xi as measured from DNS, the theoretical
prediction (14) is marked by the dashed line.
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This is confirmed by a direct comparison to DNS in the jet
region, Fig. 3(b). Combining (11) and (14) we find that the
spatial flux carries all the injected kinetic energy before it
has time to cascade to small scales and dissipate there, in
agreement with Fig. 3(a).
Conclusion.—We presented results from a perturbative

analysis and direct simulations of LQG in the condensate
regime, observed here for the first time. Obtaining the two-
point correlation functions, we have revealed the different
mechanisms determining the odd and even correlators
under parityþ time reversal. While the former are deter-
mined at small scales by a balance between the forcing
(breaking time reversal) and the mean flow (breaking
parity), the latter are constrained to be zero modes of an
advection operator. In fact, this is also the underlying
structure in 2DNS [2,9,10], suggesting a universal picture
across different 2D flows. We also find an unexpected
influence of the mean flow on the direct cascade, which is
locally arrested in regions with a strong inverse energy
transfer. This phenomenon, absent in 2DNS, is explained
by the formation of an out-of-equilibrium spatial flux out of
regions where the mean flow is strong. This flux term is a
consequence of the locality of the dynamics, and is absent
for active scalar models with m > 0 and for SWQG with
Ld > lf [19]. It is, however, not ruled out for SWQG with
Ld < lf, of which LQG is a limiting case, and it will be
interesting to see if a similar expulsion of the direct cascade
could be observed there.
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