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We show that vertical slender jets of liquid injected in air with a fully developed outlet velocity profile
have a universal shape in the common case in which the viscous force is much smaller than the gravitational
force. The theory of ideal flows with vorticity provides an analytical solution that, under negligible surface-
tension forces, predicts RjðZÞ ¼ ½ð1þ Z=4Þ1=2 − ðZ=4Þ1=2�1=2, where Rj is the jet radius scaled with the
injector radius and Z is the vertical distance scaled with the gravitational length, lg ¼ u2o=2g, where uo is the
mean velocity at the injector outlet and g is the gravitational acceleration. In contrast with Mariotte’s law,
Rj ¼ ð1þ ZÞ−1=4, previously reported experiments employing long injectors collapse almost perfectly
onto the new solution.
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Introduction.—The structure, dynamics, and rupture of
freely falling liquid jets in air have been the subject of
scientific inquiry for centuries [1,2]. Although early
insightful observations appear in Da Vinci’s Codex
Leicester [3], the first quantitative theory of falling liquid
columns is due to Mariotte [4], who made use of Torricelli’s
free-fall law ujðzÞ ¼ ðu2o þ 2gzÞ1=2, where ujðzÞ is the axial
velocity of the liquid, assumed to be uniform in the radial
direction, uo is the injection velocity, z is the vertical
distance measured downward from the release height, and g
is the gravitational acceleration [5]. When combined with
the liquid continuity equation, ujðzÞrjðzÞ2 ¼ uor2o, where
ro and rjðzÞ are the injector and jet radii, respectively, the
dimensionless jet radius RjðzÞ ¼ rjðzÞ=ro obeys Mariotte’s
law, Rj ¼ ð1þ 2gz=u2oÞ−1=4. The convective acceleration
of the liquid due to gravity, v · ∇v ∼ u2o=lg ∼ g, defines a
gravitational length lg ¼ u2o=2g such that

RjðZÞ ¼ ð1þ ZÞ−1=4; ð1Þ

in terms of the rescaled height Z ¼ z=lg ¼ z=ðFrroÞ, where
Fr ¼ lg=ro ¼ u2o=ð2groÞ is the Froude number.
Mariotte’s law (1) provides a highly accurate description

of the asymptotic structure of free liquid jets for Z ≫ 1, a
limit in which all the forces other than liquid inertia and
gravity become negligibly small [6]. These additional
forces include, among others, surface tension [7], viscous
stresses [8,9], aerodynamic forces [10,11], and the radial
diffusion of liquid momentum that takes place when the
initial velocity profile is nonuniform [12–17]. Here we
focus on the latter viscous relaxation effect, which is

particularly important in actual engineering flows due to
the fact that most liquid injection devices involve the
development of viscous boundary layers at the inner
injector wall, with the fully developed Poiseuille profile
as the canonical example of nonuniform exit conditions.
The downstream diffusion of the outlet vorticity in the free-
jet region depends on the Reynolds number, Re ¼ uoro=ν,
where ν is the kinematic viscosity of the liquid. When
Re≲ 1, the velocity profile becomes uniform within a
distance lν ∼ ro from the outlet. In contrast, when Re ≫ 1,
the viscous development length lν ∼ uor2o=ν ¼ Rero ≫ ro,
as deduced by balancing the convective acceleration,
v · ∇v ∼ u2o=lν, with the radial diffusion of momentum,
ν∇2v ∼ νuo=r2o. The structure of the relaxing free jet is thus
controlled by the ratio lν=lg ∼ 2gr2o=ðνuoÞ ¼ G ¼ Re=Fr.
The gravity number G allows us to distinguish two relevant
limiting cases: when G ≪ 1, the viscous relaxation takes
place under almost buoyancy-free conditions [12,14], and
the gravitational thinning occurs far downstream, where the
velocity profile is almost uniform. In the opposite limit
G ≫ 1, the viscous diffusion of momentum is negligible
along the initial gravitational thinning region.
Here we provide a first-principles description of the jet

structure in the frequently realized limit G ≫ 1 assuming,
for simplicity, the slenderness hypothesis Fr ≫ 1. To that
end, advantage is taken of the fact that viscous forces can be
neglected, in a first approximation, within the gravitational
stretching region 0 < z≲ lg ≪ lν. Under these conditions,
the theory of ideal flows with vorticity [18] is the
appropriate framework to describe the structure of the
falling jet.
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Theory of inviscid vortical jets.—Consider a liquid jet
emerging from a circular tube of radius ro, and injected
downward into a passive gaseous atmosphere at constant
pressure pa under the presence of a gravitational accel-
eration g. An example of the resulting liquid-air interface,
of constant surface-tension coefficient σ, can be observed in
Fig. 1, where the main variables used in the analysis are
also indicated. We describe the jet with use made of a
cylindrical coordinate system ðz; r; θÞ with origin at the
center of the injector exit and the axial coordinate z
pointing in the direction of gravity. The liquid velocity
field, v ¼ uðr; zÞez þ vðr; zÞer, is assumed incompressible,
inviscid, and axisymmetric, and thus satisfies the momen-
tum equation,

∇
�
u2 þ v2

2
þ p

ρ
− gz

�
¼ v ∧ ð∇ ∧ vÞ; ð2Þ

where p is the liquid pressure and jvj2=2 ¼ ðu2 þ v2Þ=2 is
the kinetic energy per unit mass. The projection of Eq. (2)
along the jet streamlines yields Bernoulli’s equation,

u2 þ v2

2
þ p

ρ
− gz ¼ Cl; ð3Þ

indicating that the total pressure remains constant along
each streamline, but is different for different streamlines.
Indeed, in contrast with the case of an irrotational flow, here
the value of Cl depends on the streamline due to the fact
that ∇ ∧ v ≠ 0. The continuity equation ∂zðruÞ þ ∂rðrvÞ ¼
0 provides the estimate vc ∼ uoro=lg ¼ uo=Fr ≪ uo for the
characteristic radial velocity, whereby the kinetic energy
jvj2=2 ≃ u2=2 with small OðFr−2Þ relative errors. In addi-
tion, it is useful to introduce a stream function ψ defined by
ru ¼ ∂rψ and rv ¼ −∂zψ , satisfying the continuity equa-
tion, such that Eq. (3) reads

U2ðΨ; ZÞ ¼ U2ðΨ; 0Þ þ Z þ PðΨ; 0Þ − PðΨ; ZÞ; ð4Þ

in its simplified dimensionless form, where U ¼ u=uo ¼
R−1dΨ=dR, Ψ ¼ ψ=ðuor2oÞ, P ¼ 2p=ðρu2oÞ, R ¼ r=ro, and

Z ¼ z=lg. To close the model, an appropriate expression for
the pressure P is needed. To that end, use is made of the
normal stress balance at the free surface,p − pa ¼ σC, where
C is twice the mean curvature of the free surface. The
slenderness assumption Fr ≫ 1 allows us to simplify the
curvature, C ¼ r−1j , and therefore the normal stress balance
may be reduced to p ¼ pa þ σ=rj, with relative errors
OðFr−2Þ ≪ 1. In addition, the radial pressure variations
inside the liquid Δrp can also be neglected with the same
relative error. Indeed, the radialmomentumequation provides
the estimate Δrp∼ρuovcro=lg∼ρu2oFr−2≪ρu2o. With these
simplifications, the nondimensional pressure difference
between the jet exit,Z ¼ 0, and a generic downstream station
Z reads Pð0Þ − PðZÞ ¼ We−1ð1 − 1=RjÞ, where We ¼
ρu2oro=ð2σÞ is theWeber number,which is the only parameter
governing the structure of the vortical ideal jet.
Assuming that the outlet velocity profile is fully devel-

oped [19], UðR;0Þ¼2ð1−R2Þ, the stream function at Z ¼ 0

is obtained by radial integration as Ψ ¼ R2ð1 − R2=2Þ,
which can be inverted to yield R2 ¼ 1 − ð1 − 2ΨÞ1=2. It
follows then that U2ðΨ; 0Þ ¼ 4ð1 − 2ΨÞ, whereby Eq. (4)
reduces to the ordinary differential equation [20],

1

R2

�
dΨ
dR

�
2

¼ 4ð1 − 2ΨÞ þ FðZÞ; ð5Þ

for the function ΨðR;Z; Rj;WeÞ, where FðZÞ ¼ Z−
ð1=WeÞ½ð1 − RjÞ=Rj�, and Z, RjðZÞ play the role of
parameters in the slender approximation employed here.
The integration of Eq. (5) by separation of variables yields

Z
1=2

0

dΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1 − 2ΨÞ þ FðZÞp ¼ R2

j

2
; ð6Þ

where application has been made of the symmetry boundary
condition at the axis,ΨðR ¼ 0Þ ¼ 0, and of the conservation
of the flow rate, ΨðR ¼ RjÞ ¼ 1=2. A straightforward inte-
gration of Eq. (6) finally provides the octic,

R8
j − ð2þ Z þWe−1ÞR4

j þWe−1R3
j þ 1 ¼ 0; ð7Þ

FIG. 1. Sample numerical jet with parameter definitions and cylindrical system of coordinates for Re ¼ 400, Fr ¼ We ¼ 10.
Accompanying axial velocity profiles are represented for selected axial locations.
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which, for We ≫ 1, has the explicit solution

RjðZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z=4

p
−

ffiffiffiffiffiffiffiffi
Z=4

pq
; ð8Þ

to be compared with Mariotte’s law (1). The far-field shape
of the jet is found by expanding Eq. (8), to yield Rj ¼
Z−1=4 − Z−5=4=2þOðZ−9=4Þ for Z ≫ 1, while Eq. (1) has
the large-Z expansion Z−1=4 − Z−5=4=4þOðZ−9=4Þ. Thus,
both solutions converge to the same asymptotic free-fall law
Rj → Z−1=4 as Z → ∞. In contrast, the shapes predicted
near the injector are completely different. Indeed, Eq. (8)
provides Rj ¼ 1 − Z1=2=4þ Z=32þOðZ3=2Þ for Z ≪ 1,
while Mariotte’s law (1) yields 1−Z=4þ5Z2=32þOðZ3Þ. It
is thus deduced that the initial contraction of the jet is much
more abrupt for the jet with initial Poiseuille profile than for
the uniform jet, as a consequence of the smaller velocity of
the fluid particles near the free surface.
Effect of surface tension.—Weak surface-tension effects

can be rationalized by means of a perturbation expansion of
Eq. (7) in powers of We−1, to yield RjðZ;WeÞ ¼
½ð1þ Z=4Þ1=2 − ðZ=4Þ1=2�1=2½1þWe−1fðZÞ�. The func-
tion fðZÞ has a maximum value of 0.032, whereby the
relative errors introduced by Eq. (8) compared with Eq. (7)
are smaller than 1% for We≳ 3. Similarly, surface-tension
effects can also be introduced in Mariotte’s solution (1) by

considering the capillary pressure jump in the slender
approximation, to yield U2

j ¼ 1þ Z −We−1ð1 − RjÞ=Rj,
leading to the quartic ð1þZþWe−1ÞR4

j−We−1R3
j−1¼0,

which has a large-We expansion, Rj ¼ ð1þ ZÞ−1=4½1þ
We−1sðZÞ�, where the function sðZÞ has a single maximum
sðZ ¼ 175=81Þ ¼ 27=1024 ≈ 0.0264, so that the relative
error introduced by Eq. (1) is smaller than 1% for We≳ 2.
These conclusions are confirmed by the results of Fig. 2(d),
where full Navier-Stokes simulations are compared with
Eq. (8) for several values of We.
Numerical simulations.—The steady axisymmetric

Navier-Stokes equations were integrated numerically using
COMSOL. Finite elements are employed to discretize the
deformable domain, whose displacement field is computed
by solving a Laplace equation within an arbitrary
Lagrangian-Eulerian framework. Conversely to what has
been presented above, for this section we will take ro as the
characteristic length scale for both axial and radial direc-
tions so that the dimensionless equations of motion read

∇ · v ¼ 0; v · ∇v ¼ −∇P=2þ ∇ · ¯̄τ þ ð2FrÞ−1ez; ð9Þ
where ¯̄τ ¼ ð∇vþ ∇vTÞ=Re is the viscous stress tensor, and
the necessary boundary conditions are Uð−L=ro; RÞ −
2ð1 − R2Þ ¼ Vð−L=ro; RÞ ¼ 0 (Poiseuille flow prescribed

(a)

(c)

(b)

(d)

FIG. 2. (a),(b) Comparison of the jet shapes given byMariotte’s law (1), and the new solution (8), with experimental data forG ≫ 1 and
We ≳ 1 extracted from Duda and Vrentas [12] (DV67), Philippe and Dumargue [16] (PD91), and González-Mendizábal et al. [21]
(GM87). The free surface from a steady numerical simulation of a jet for Re ¼ 400, Fr ¼ We ¼ 10 is also presented for comparison
(DNS). (c) Downstream evolution of the jet velocity at the axis (solid lines) and at the free surface (dashed lines) obtained from numerical
simulations at different values of Re, together with the solution of the ideal vortical flow (4) andMariotte’s free-fall law (1). (d) Influence of
capillarity on the shape of the jet for several We for Re ¼ 400, Fr ¼ 10, showing that surface-tension effects are negligible for We≳ 3.
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at the upstream boundary of an injector of length L),
UðZ; 1Þ ¼ VðZ; 1Þ ¼ 0 (no slip at the injector inner wall)
for Z ≤ 0, VðZ; 0Þ ¼ 0 (radial symmetry), and −ðP=2Þnþ
¯̄τ · n ¼ −ð2WeÞ−1n∇ · n (stress balance) at the free surface
R ¼ RjðZÞ, which needs to be determined as part of the
solution, where n is the outward normal to the interface. To
that end, the vertical displacement of the mesh at the free-
surface boundary is left as a Lagrange multiplier that
enforces the kinematic condition v · n ¼ 0 or, equivalently,
U∂Rj=∂Z ¼ V. A stress-free boundary condition at Z ≫ 1

completes the description of the numerical setup. The
solution is found employing a root-finding algorithm with
a prescribed normalized tolerance not greater than 10−4.
The prescription of Eq. (8) as initial seed for the free-
surface shape was seen to facilitate the convergence greatly.
Several other initial guesses were also employed to assess
numerical independence. An example of the numerical
jet so obtained is presented in Fig. 1 for Re ¼ 400,
Fr ¼ We ¼ 10.
Comparison with experiments.—Because of the funda-

mental and applied interest of free liquid jets, a large
number of experimental studies can be found in the
literature covering many different aspects of the jet struc-
ture, instability, and breakup [1,2]. In particular, several
studies were devoted to the generation of slender gravity-
dominated jets emerging from long injectors fulfilling the
hypotheses behind our analysis. Figures 2(a) and 2(b) show
the free-surface shape extracted from several available
experiments (symbols), a Navier-Stokes simulation at
Re ¼ 400 and Fr ¼ We ¼ 10, together with the classical
free-fall solution given by Eq. (1) and our parameter-free,
leading-order solution (8). In all cases the experimental jet
shapes are much closer to our free-fall law (8) than to
Mariotte’s equation (1), most notably in the region close to
the injector outlet, as illustrated in Fig. 2(b). The slight
deviations from Eq. (8) observed in Fig. 2 can be attributed
to the finite values of G in the experiments, leading to
a non-negligible radial diffusion of momentum across
the jet core (see, e.g., the star symbols extracted from
Ref. [16]). The downstream evolution of the axial velocity
at the jet centerline and at the free surface provided by
the numerical simulation is represented in Fig. 2(c) for
several values of Re, together with the predictions of (4) for
the ideal vortical flow, as well as Torricelli’s free-fall law.
These results clearly show that the Navier-Stokes flow
converges to the ideal flow solution as the Reynolds
number is increased.
Concluding remarks.—Our new analytical solution (8)

for the steady structure of slender laminar liquid jets with
fully developed outlet velocity profiles provides much
better agreement with experiments than the routinely used
Mariotte’s law (1). This comparison unambiguously dem-
onstrates that, while Mariotte’s solution fails to describe
liquid jets with vorticity at large Reynolds numbers, the
new theory predicts a universal shape function that col-
lapses all the experiments onto a single master curve.

The hypotheses behind the theory, namely Fr ≫ 1 and
Re ≫ Fr, clearly need some justification. To that end, it
proves convenient to introduce the Morton number
Mo ¼ gμ4=ρσ3, and the Bond number Bo ¼ ρgr2o=σ as
auxiliary dimensionless parameters, in terms of which Fr ¼
We=Bo and G ¼ Re=Fr ¼ ffiffiffi

2
p

Mo−1=4Bo5=4We−1=2. Large
values of the Froude number require that Bo ≪ We, a
condition that is accomplished for injectors of suffici-
ently small diameter in the jetting regime, which requires
We≳ 1 for Bo ≪ 1 [22,23]. In contrast, the condition
G ≫ 1 depends crucially on the viscosity of the working
liquid. For instance, the value of Mo ≈ 2.5 × 10−11 in
the case of water at room temperature, in which case
G ≈ 631Bo5=4We−1=2, and the validity condition writes
We ≪ 4 × 105Bo5=2, which is accomplished under the
Rayleigh breakup regime for any realistic injector diameter
[24]. Although similar conclusions hold for any low-
viscosity liquid, the validity of our theory breaks down for
liquids of sufficiently large viscosity, for which either full
Navier-Stokes simulations or simplified one-dimensional
descriptions may be used instead [1,2].
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