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Squeezing is essential to many quantum technologies and our understanding of quantum physics. Here,
we show a novel type of steady-state squeezing that can be generated in the closed and open quantum Rabi
as well as Dicke model. To this end, we eliminate the spin dynamics which effectively leads to an abstract
harmonic oscillator whose eigenstates are squeezed with respect to the noninteracting harmonic oscillator.
By driving the system, we generate squeezing which has the unique property of time-independent
uncertainties and squeezed dynamics. Such squeezing might find applications in continuous backaction
evading measurements and should already be observable in optomechanical systems and Coulomb crystals.
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Introduction.—Squeezing [1,2] relies on redistributing
quantum uncertainties between two noncommuting observ-
ables. The primary example is the squeezing of light [3],
where the uncertainties are redistributed between the
strength of electric and magnetic fields with respect to a
coherent state where the uncertainties are equal. Squeezing
is a precious quantum resource, as it is rather robust
to decoherence and dissipation. For this reason, it finds
applications in many quantum technologies with the most
prominent ones being high-precision measurements [4–15]
and entanglement-based quantum key distribution [16–19].
On the other hand, squeezing is a form of quantum
correlation important in the context of quantum phase
transitions [20] and is used to study the fundamental
aspects of quantum physics [21].
The quantum Rabi model [22,23] is a paradigmatic

model in physics that describes a quantized harmonic
oscillator coupled to a two-level system, and its
Hamiltonian reads (ℏ ¼ 1)

Ĥ ¼ ωâ†âþ Ω
2
σ̂z þ

g
2
ðâþ â†Þσ̂x; ð1Þ

where â and â† are the annihilation and creation operators
for a harmonic oscillator with frequency ω. The Pauli
matrices σ̂z and σ̂x describe the two-level system (here,
interchangeably referred to as spin) with frequency Ω,
and g is the interaction strength between the two sub-
systems. The interaction term can be rewritten with the help
of spin raising and lowering operators, σ̂x ¼ ðσ̂þ þ σ̂−Þ,
into two terms

ðâþ â†Þσ̂x ¼ ðâσ̂− þ â†σ̂þÞ þ ðâσ̂þ þ â†σ̂−Þ: ð2Þ

The first one is typically referred to as the counter-rotating
term and the second one is the rotating term. Neglecting
the fast oscillating counter-rotating term leads to the

Jaynes-Cummings model [24,25] which is the backbone
of modern quantum optics. This (rotating wave) approxi-
mation is valid for g ≪ ω;Ω and jΩ − ωj ≪ jΩþ ωj,
however, it is not able to capture every aspect of the rich
and intriguing physics close to the critical point of the
quantum Rabi model (g ∼ gc ≡

ffiffiffiffiffiffiffi
ωΩ

p
) [20] (for a detailed

analysis of the critical behavior under the rotating wave
approximation see Ref. [26]).
In order to see why the vicinity of the critical point is

interesting, we eliminate the dynamics of the spin using the
Schrieffer-Wolff transformation [27]. Under the assumption
of 1 − g2=g2c ≫ ðω=ΩÞ2=3 [28], this leads to

Ĥa ¼ ωâ†â −
g2

4Ω
ðâþ â†Þ2; ð3Þ

which is a squeezing Hamiltonian with eigenstates

jψni ¼ exp
�
1

2
ðξ�â2 − ξâ†2Þ

�
jni; ð4Þ

where ξ ¼ 1
4
lnf1 − g2=g2cg is the squeezing parameter and

jni are the Fock states. Note that the above Hamiltonian can
be diagonalized by introducing an operator ĉ ¼ coshðξÞâþ
sinhðξÞâ† which characterizes the eigenmode of a strongly
interacting system with frequency ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2=g2c

p
[29]. In

other words, the spin can be thought of as a mediator of
interactions between harmonic oscillator excitations in the
limit of ω ≪ Ω.
To interpret this squeezing, we introduce the operators

x̂ ¼ ðâþ â†Þ= ffiffiffiffiffiffi
2ω

p
and p̂ ¼ ffiffiffiffi

ω
p ðâ − â†Þ= ffiffiffiffiffiffi

−2
p

such that

Ĥa ¼
p̂2

2
þ ω2

2

�
1 −

g2

g2c

�
x̂2: ð5Þ
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This Hamiltonian describes an abstract harmonic oscil-
lator with a modified frequency ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2=g2c

p
and a unit

mass. Approaching the critical point amounts amounts to
opening the abstract harmonic oscillator which leads to
squeezing with respect to the noninteracting harmonic
oscillator [30] ωâ†â (the ground state of a given harmonic
oscillator is a squeezed ground state of a harmonic
oscillator with a different frequency). This means that,
if the measurement is performed in the basis of the
noninteracting harmonic oscillator described by x̂ and p̂,
increasing the coupling will lead to redistribution of
uncertainties between x̂ and p̂. Therefore, the lower
the effective frequency, the larger the spread Δx̂. In
particular, for g ¼ gc the spread Δx̂ is infinite and Δp̂
becomes 0 as the Hamiltonian describes an abstract free
particle whose eigenstates are that of the abstract
momentum.
In this Letter, we present how a driven (and dissipative)

quantum Rabi model close to the critical point can
generate (steady-state) squeezing of the harmonic oscil-
lator excitations and its dynamics. Such squeezing has
the unique property of time-independent uncertainties
which might be crucial for several quantum technologies.
We start with the closed quantum Rabi model, sub-
sequently, we consider an open and driven system, and
finally, we show how increasing the number of spins
(Dicke model) leads to enhanced squeezing. We conclude

by identifying potential applications of the presented
squeezing mechanism and discussing possible platforms
for the implementation of the protocol.
Kicked quantum Rabi model.—In order to excite the

harmonic oscillator, we include a drive term to the quantum
Rabi Hamiltonian (1)

Ĥd ¼ ηðâeiωdt þ â†e−iωdtÞ; ð6Þ

where η is the strength of the drive and ωd is its frequency.
Although such a driving term is characteristic of laser-
pumped cavities [31], it can also describe driving of other
harmonic oscillators. In an isolated system, the drive will
excite the system indefinitely, therefore, we assume a
strong short pulse (kick) in this case. Such a drive acts
as a displacement operator D̂ðαÞ ¼ expðâαþ â†α�Þ which
displaces an initial vacuum state by α, creating a coherent
state jαi. If the coupling strength g is equal to 0, the
coherent state will rotate around the origin of the phase
space with frequency ω at a fixed radius jαj. Adiabatically
increasing the coupling strength toward the critical point
will then change the frequency of the abstract harmonic
oscillator, leading to the change of the orbit from circular to
elliptical and will redistribute the uncertainties between the
quadrature operators X̂ ¼ ðâþ â†Þ=2 and P̂ ¼ ðâ − â†Þ=2i
(see Fig. 1). The final state can be easily found by
constructing a coherent state out of squeezed Fock states

FIG. 1. Time evolution of the squeezed state for the kicked quantum Rabi model. The top panel shows the Husimi Q function at
various times including the phase-space trajectory. The bottom left panel depicts the mean values hX̂i and hP̂i (subscript a indicates the
approximated abstract oscillator Hamiltonian) and the bottom right panel the squeezing of X̂ and P̂. The orbit (white line) is equally
squeezed as the time-independent squeezed uncertainties. The dynamics described by the full quantum Rabi model (dashed lines) and
the effective (solid lines) Hamiltonian agree very well, the visible wiggles for the squeezing appear because the simulation parameters
are on the verge of the approximation breakdown. The parameters are Ω=ω ¼ 105, g=gc ¼ 0.9, and α ¼ 3.
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of the harmonic mode â. The time evolution of such a
squeezed coherent state then becomes

jψðtÞi ¼ e
−jαj2
2

X∞
n¼0

e
−inω

ffiffiffiffiffiffiffi
1−g2

g2c

q
t αnffiffiffiffiffi

n!
p e

1
2
ðξ�â2−ξâ†2Þjni: ð7Þ

The equation of the new (squeezed) phase-space orbit
can be found by calculating the average value of X̂ and P̂

hX̂i ¼ α cos

 
ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

g2

g2c

s
t

!
expð−ξÞ;

hP̂i ¼ −α sin

 
ω

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

g2

g2c

s
t

!
expðξÞ: ð8Þ

The uncertainties in X̂ and P̂ can be calculated in the
same way

Δ2X̂ ¼ 1

4
expð−2ξÞ;

Δ2P̂ ¼ 1

4
expð2ξÞ; ð9Þ

and turn out to be squeezed and time independent. In
contrast, creating squeezing in other ways, for example
with a position measurement, squeezes the state but not
the harmonic oscillator. Therefore, the squeezing expe-
riences additional rotation which leads, for instance, to
measurement backaction [32–35] and consequently to the
standard quantum limit of measurement precision [36].
In our approach, we adiabatically squeeze the abstract
harmonic oscillator by changing its frequency which also
squeezes the state. As a result, the state does not
experience any rotations around its own axis at the
expense of exhibiting equally squeezed orbit and uncer-
tainties [see Fig. 1, Eqs. (8) and (9)].
In practice, obtaining large and detectable squeezing of a

macroscopic coherent state (jαj ≫ 1) might be difficult
with a single two-level system, as it would require an
extremely large ratio Ω=ω to prevent the spin from getting
excited (the effective Hamiltonian will no longer be valid).
One way to artificially increase the atomic frequency in the
quantum Rabi model is by enlarging the number of spins
(Dicke model) which can be naively understood as chang-
ing the frequency from Ω to NΩ [37], with N being the
number of two-level systems (see Fig. 3). In the limiting
case N → ∞, the large spin can be replaced by another
harmonic oscillator by means of the Holstein-Primakoff
transformation [38].
Driven-dissipative quantum Rabi model.—In an open

quantum system, the dissipation will eventually bring the
state of the system to the ground state. In order to prevent
this, we continuously drive the system. Since the effective

Hamiltonian is quadratic, the system is described by a
Gaussian state, and we expect that the dynamics of the full
quantum Rabi Hamiltonian is also well approximated by
Gaussian physics. Therefore, we use a second-order mean-
field description [39], which leads to a closed set of
equations [40]. The effect of harmonic oscillator dissipation
with rate κ is taken into account by means of the Lindblad
master equation

L½ρ̂� ¼ −i½Ĥ þ Ĥd; ρ̂� þ κ

�
ĉ ρ̂ ĉ† −

1

2
fĉ†ĉ; ρ̂g

�
: ð10Þ

Note that, once the coupling is strong, the jump operators
have to be redefined [41–44]. The role of the jump
operators for a dissipative process is to bring the (undriven)
system to a unique ground state. For strongly interacting
systems, the ground state has much more energy than the
ground state of a noninteracting system. In other words,
the ground state of strongly interacting systems is a highly
excited state of a noninteracting system. Therefore, naively
using the jump operators for the noninteracting systems
would lead to unphysical behavior as, for instance,
extracting energy from the ground state [29]. A similar
argument holds for the driving term. Once the coupling is
strong, we are no longer driving the bare mode described by
â but a new (dressed) mode described by ĉ.
After adiabatic elimination of the spin dynamics (equiv-

alent to the Schrieffer-Wolff transformation for the closed
system), we can find the effective Hamiltonian

Ĥe ¼ ωâ†â −
g2

4Ω
ðâþ â†Þ2 þ ηðĉeiωdt þ ĉ†e−iωdtÞ; ð11Þ

which describes the abstract harmonic oscillator with an
additional modified drive term. Figure 2 depicts the time
evolution of the squeezing for the driven dissipative case.
At the top and lower left panel, we see that the intro-
duction of drive and dissipation does not qualitatively
change the results. In the driven-dissipative case, the
amplitude of the phase space oscillations is related to
2η=κ. The lower right panel shows the almost time-
independent squeezing after some settling time. The time
evolution described by the adiabatically eliminated
Hamiltonian (solid lines) agrees very well with that of
the full quantum Rabi Hamiltonian (dashed lines) includ-
ing the spin degree of freedom. For non-negligible spin
excitation, this approximation breaks down, furthermore,
the uncertainties also become strongly time dependent.
This can be suppressed by increasing the number of
spins N. In Fig. 3, we show the time dependence of the
squeezing (left) and spin excitation (right) for different N.
For a sufficiently large number of spins, the uncertainties
become time independent. Including weak dissipation of
the spin can also suppress the excitation and lead to time-
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independent uncertainties. However, strong damping can
prevent the system from generating squeezing [29].
Wewould like to point out that the direction of squeezing

depends on the type of coupling gðâeiθ þ â†e−iθÞσ̂x, and it
is related to θ (this also holds for the closed system). For
instance, choosing θ to be π=2 would result in a harmonic
oscillator where the X̂ quadrature is squeezed and not
antisqueezed, as in this Letter. In principle, by adjusting θ,
one could obtain squeezing in an arbitrary quadrature
direction. This, in turn, suggests that it should be possible
to observe motion of a harmonic oscillator where, at the
point of maximal displacement, the oscillator has the
maximal momentum, for example, by tilting the axis

by π=4. Such behavior is unfathomable for a classical
harmonic oscillator.
Squeezing detection.—So far, the description was gen-

eral, and we did not specify the harmonic oscillator and the
underlying physical system. In this section, we discuss
whether it is possible to observe steady-state squeezing and
how to do it. In the case of a mechanical oscillator whose
internal degree of freedom is coupled to the center-of-mass
motion (phonon mode), the squeezing could simply be
observed by measuring the position or momentum of the
center of mass. In this case, the squeezing manifests itself
in decreased or increased uncertainty of position and
momentum. Such squeezing should already be realizable

FIG. 3. Steady state squeezing for large number of spins. The left panel shows the squeezing of X̂ (solid lines) and P̂ (dashed lines) and
the right side shows the excitation of one spin. For large number of spinsN, the excitation per spin hσ̂zi is decreased and the uncertainties
reach a steady state (cyan curve). The parameters are Ω=ω ¼ 2 × 103, g=gc ¼ 0.9, ωd=ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2=g2c

p
, η=ω ¼ 4, and κ=ω ¼ 1.

FIG. 2. Time evolution of the squeezed state for the driven-dissipative quantum Rabi model. The top panel shows the Husimi Q
function at various times including the phase-space trajectory. The bottom left panel depicts the mean values hX̂i and hP̂i (subscript e
indicates the adiabatically eliminated abstract oscillator Hamiltonian) and the bottom right panel the squeezing of X̂ and P̂. The
uncertainties reach a steady state (no need for the adiabatic time evolution) with only minor time dependence. The dynamics described
by the full quantum Rabi model (dashed lines) and the effective (solid lines) Hamiltonian agree very well. The parameters are
Ω=ω ¼ 2 × 103, g=gc ¼ 0.8, ωd=ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2=g2c

p
, η=ω ¼ 1, and κ=ω ¼ 1.
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in optomechanical systems [45,46] and ions interacting
with a common phonon mode [47,48] by weakly driving
the ground state close to the critical point. The crucial
element that allows us to observe squeezing in these
systems is the well-defined observables x̂ and p̂ for the
uncoupled mechanical oscillator.
For the electromagnetic resonators, the measurement of

squeezing is different. In this case, the squeezing manifests
itself in a changed resonance frequency of the resonator.
This means that the definition of x̂ and p̂ depends on the
frequency of the resonator. Therefore, it is impossible to
perform a measurement in the basis of the noninteracting
harmonic oscillator [29]. The cavity in which atoms are
strongly coupled to a single mode of radiation cannot
generate squeezed light simply by driving it close to the
critical point of the phase transition. From another per-
spective, light-matter interactions change the index of
refraction and, hence, the resonance frequency which
can be understood as squeezing of the electromagnetic
field by changing its frequency.
Conclusions.—We have presented unique steady-state

squeezing in the closed and open quantum Rabi model. In
both cases, we obtain steady-state squeezing with time-
independent variances and a squeezed trajectory in the
phase-space picture defined by the noninteracting harmonic
oscillator. Such squeezing can find applications in many
quantum technologies, in particular, in quantum back-
action-free continuous measurements [36,49,50] and
driven-dissipative [51,52] critical [53–64] metrology. In
order to understand squeezing, we introduced an effective
Hamiltonian describing an abstract harmonic oscillator
which we obtain by eliminating the dynamics of the
two-level system. A promising extension of this proposal
is the possibility of directly driving the spin and sub-
sequently eliminating its dynamics in the dispersive regime
to see steady-state squeezing.
Since a quantum harmonic oscillator coupled to a

two-level (or multiple-level) system can be used to describe
many systems, the proposed method could be tested
in a variety of physical platforms including mechanical
resonators [45,46,65–67], spin-orbit coupled quantum
gases [28,68], ions coupled to phonons [69], Coulomb
crystals [47,48], and even electrons trapped on a surface of
liquid helium [70]. We predict, that the most promising
system for the implementation of the described steady-state
squeezing would be linear optomechanical systems in the
far red-detuned and ultrastrong coupling regimes [71].
Also, systems composed of N trapped ions interacting
with a single phononic mode (realizing the Dicke model)
might be a perfect platform to create steady-state squeezing
as it should be relatively easy to enter the regime where the
effective Hamiltonian is valid.
In principle, it should also be possible to observe steady-

state squeezing on the other side of the critical point g > gc,
where the system can be described by a slightly modified

effective Hamiltonian (3) (see Ref. [20] for details). From a
practical point of view, however, the generation of such
squeezing would require an extremely large detuning
Ω ≫ ω and would generate a macroscopic number of
excitations. Also, beyond the critical point, the ground
state is double degenerate, and we expect that this degen-
eracy further hinders the possibility of observing the
steady-state squeezing with constant variances.

We would like to acknowledge Gerhard Kirchmair and
Nico Baßler for discussions. Simulations were performed
using the open-source frameworks QuantumOptics.jl [72] and
QuantumCumulants.jl [39]. This work was supported by the
Lise-Meitner Fellowship, Grant No. M3304-N of the
Austrian Science Fund (FWF).

*karol.gietka@uibk.ac.at
[1] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of

Markovian and Non-Markovian Quantum Stochastic Meth-
ods with Applications to Quantum Optics (Springer Science
& Business Media, New York, 2004).

[2] S. Zubairy, Quantum squeezing, J. Opt. B 7, 156 (2005).
[3] D. F. Walls, Squeezed states of light, Nature (London) 306,

141 (1983).
[4] P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta,

Squeezed-light–enhanced polarization interferometer, Phys.
Rev. Lett. 59, 2153 (1987).

[5] M. Xiao, L.-A. Wu, and H. J. Kimble, Precision measure-
ment beyond the shot-noise limit, Phys. Rev. Lett. 59, 278
(1987).

[6] E. S. Polzik, J. Carri, and H. J. Kimble, Spectroscopy with
squeezed light, Phys. Rev. Lett. 68, 3020 (1992).

[7] LIGO Scientific Collaboration, A gravitational wave
observatory operating beyond the quantum shot-noise limit,
Nat. Phys. 7, 962 (2011).

[8] H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J.
Slutsky, and H. Vahlbruch, First long-term application of
squeezed states of light in a gravitational-wave observatory,
Phys. Rev. Lett. 110, 181101 (2013).

[9] R. Schnabel, Squeezed states of light and their applications
in laser interferometers, Phys. Rep. 684, 1 (2017).

[10] LIGO Scientific Collaboration, Quantum-enhanced Ad-
vanced LIGO detectors in the era of gravitational-wave
astronomy, Phys. Rev. Lett. 123, 231107 (2019).

[11] Virgo Collaboration, Increasing the astrophysical reach of
the Advanced VIRGO detector via the application of
squeezed vacuum states of light, Phys. Rev. Lett. 123,
231108 (2019).

[12] LIGO Scientific Collaboration and Virgo Collaboration,
Gwtc-2: Compact binary coalescences observed by LIGO
and VIRGO during the first half of the third observing run,
Phys. Rev. X 11, 021053 (2021).

[13] J. Qin, Y.-H. Deng, H.-S. Zhong, L.-C. Peng, H. Su, Y.-H.
Luo, J.-M. Xu, D. Wu, S.-Q. Gong, H.-L. Liu, H. Wang,
M.-C. Chen, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan,
Unconditional and robust quantum metrological advantage
beyond NOON states, Phys. Rev. Lett. 130, 070801 (2023).

PHYSICAL REVIEW LETTERS 131, 223604 (2023)

223604-5

https://doi.org/10.1088/1464-4266/7/5/B01
https://doi.org/10.1038/306141a0
https://doi.org/10.1038/306141a0
https://doi.org/10.1103/PhysRevLett.59.2153
https://doi.org/10.1103/PhysRevLett.59.2153
https://doi.org/10.1103/PhysRevLett.59.278
https://doi.org/10.1103/PhysRevLett.59.278
https://doi.org/10.1103/PhysRevLett.68.3020
https://doi.org/10.1038/nphys2083
https://doi.org/10.1103/PhysRevLett.110.181101
https://doi.org/10.1016/j.physrep.2017.04.001
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1103/PhysRevLett.123.231108
https://doi.org/10.1103/PhysRevLett.123.231108
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevLett.130.070801


[14] E. Pedrozo-Peñafiel, S. Colombo, C. Shu, A. F. Adiyatullin,
Z. Li, E.Mendez, B. Braverman, A. Kawasaki, D. Akamatsu,
Y. Xiao, and V. Vuletić, Entanglement on an optical atomic-
clock transition, Nature (London) 588, 414 (2020).

[15] S. Colombo, E. Pedrozo-Peñafiel, A. F. Adiyatullin, Z. Li,
E. Mendez, C. Shu, and V. Vuletić, Time-reversal-based
quantum metrology with many-body entangled states, Nat.
Phys. 18, 925 (2022).

[16] T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C.
Pacher, R. F. Werner, and R. Schnabel, Implementation of
continuous-variable quantum key distribution with compos-
able and one-sided-device-independent security against
coherent attacks, Nat. Commun. 6, 8795 (2015).

[17] P. Wang, X. Wang, and Y. Li, Continuous-variable meas-
urement-device-independent quantum key distribution us-
ing modulated squeezed states and optical amplifiers,
Phys. Rev. A 99, 042309 (2019).

[18] I. Derkach, V. C. Usenko, and R. Filip, Squeezing-enhanced
quantum key distribution over atmospheric channels,
New J. Phys. 22, 053006 (2020).

[19] N. Hosseinidehaj, M. S. Winnel, and T. C. Ralph, Simple
and loss-tolerant free-space quantum key distribution using
a squeezed laser, Phys. Rev. A 105, 032602 (2022).

[20] M.-J. Hwang, R. Puebla, and M. B. Plenio, Quantum
phase transition and universal dynamics in the Rabi model,
Phys. Rev. Lett. 115, 180404 (2015).

[21] O. Thearle, J. Janousek, S. Armstrong, S. Hosseini, M.
Schünemann (Mraz), S. Assad, T. Symul, M. R. James, E.
Huntington, T. C. Ralph, and P. K. Lam, Violation of
Bell’s inequality using continuous variable measurements,
Phys. Rev. Lett. 120, 040406 (2018).

[22] D. Braak, Q.-H. Chen, M. T. Batchelor, and E. Solano,
Semi-classical and quantum Rabi models: In celebration of
80 years, J. Phys. A 49, 300301 (2016).

[23] Q. Xie, H. Zhong, M. T. Batchelor, and C. Lee, The
quantum Rabi model: Solution and dynamics, J. Phys. A
50, 113001 (2017).

[24] B. W. Shore and P. L. Knight, The Jaynes-Cummings
model, J. Mod. Opt. 40, 1195 (1993).

[25] J. Larson and T. Mavrogordatos, The Jaynes–Cummings
Model and Its Descendants (IOP Publishing, Bristol, 2021),
pp. 2053–2563, 10.1088/978-0-7503-3447-1.

[26] M.-J. Hwang and M. B. Plenio, Quantum phase transition in
the finite Jaynes-Cummings lattice systems, Phys. Rev. Lett.
117, 123602 (2016).

[27] S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer–Wolff
transformation for quantum many-body systems, Ann.
Phys. (N.Y.) 326, 2793 (2011).

[28] K. Gietka, Harnessing center-of-mass excitations in quan-
tum metrology, Phys. Rev. Res. 4, 043074 (2022).

[29] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.223604 for effec-
tive model derivation, the correct jump operators, and a
summary of the effect of spin dissipation.

[30] K. Gietka, Squeezing by critical speeding up: Applica-
tions in quantum metrology, Phys. Rev. A 105, 042620
(2022).

[31] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold
atoms in cavity-generated dynamical optical potentials,
Rev. Mod. Phys. 85, 553 (2013).

[32] K. Bencheikh, J. A. Levenson, P. Grangier, and O. Lopez,
Quantum nondemolition demonstration via repeated back-
action evading measurements, Phys. Rev. Lett. 75, 3422
(1995).

[33] C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen,
A. A. Clerk, M. J. Woolley, and M. A. Sillanpää, Quantum
backaction evading measurement of collective mechanical
modes, Phys. Rev. Lett. 117, 140401 (2016).

[34] M. Brunelli, D. Malz, and A. Nunnenkamp, Conditional
dynamics of optomechanical two-tone backaction-evading
measurements, Phys. Rev. Lett. 123, 093602 (2019).
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