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Glitches, spin-up events in neutron stars, are of prime interest, as they reveal properties of nuclear matter
at subnuclear densities. We numerically investigate the glitch mechanism due to vortex unpinning using
analogies between neutron stars and dipolar supersolids. We explore the vortex and crystal dynamics during
a glitch and its dependence on the supersolid quality, providing a tool to study glitches from different radial
depths of a neutron star. Benchmarking our theory against neutron-star observations, our work will open a
new avenue for the quantum simulation of stellar objects from Earth.
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One of the greatest strengths of ultracold gases is their
ability to simulate the behavior of widely disparate systems
[1]. This extraordinary capability enables quantum gases to
serve as powerful solvers for unmasking fundamental open
questions concerning the underlying dynamics of complex
physical systems. The range of fields where quantum gas
simulators have found applications include metallic super-
conductivity and condensed matter systems, as well as
nuclear matter. Among these examples, nuclear matter
under the extreme conditions existing in neutron stars is
the most elusive to direct microscopic observation [2–4].
Neutron stars are the densest stellar objects known today.

They form through the core collapse of massive progenitor
stars in supernovae type-II events, leading to their extreme
densities in which a giant gravitational mass of a few solar
masses is concentrated in just a tiny radius of about 10 km.
Shortly after their birth, neutron stars cool down to temper-
atures of the order of keV. Compared to ultracold gases
(peV), these temperatures are very high, yet much smaller
than the MeV energy scale typical of nuclear matter. For
this reason, neutron stars can be viewed as cold dense
nuclear matter in which quantum effects become very
important. The current most-widely-accredited descriptions
to explain observations in such systems account for
fermionic pairing and correlations in quantum many-body
systems [5,6].
The 1967 discovery of pulsars [7]—highly magnetized

and rapidly rotating neutron stars [8,9]—provided crucial
hints of superfluidity and fermionic pairing in these stellar
objects. Pulsars can be seen as nearly perfect clocks or
regular radio emitters [10–12]. They emit photons in a
narrow angular beam, similar to that from a lighthouse.
This lighthouse effect results from the misalignment

between the rotation and magnetization axes and leads
to a secular loss of rotational energy with a corresponding
slow decrease of the pulsar rotation frequency Ω.
Remarkably, it has been observed that the rotation fre-
quency of the pulsars occasionally shows anomalous jumps
—called “glitches”—in the form of an abrupt speedup of
the pulsar rotation followed by a slow relaxation close to its
original value. It is precisely the observations of such pulsar
glitches that have provided the first evidence of super-
fluidity in neutron-star interiors.
This surprising observation suggests that the interiors of

neutron stars are indeed made up of several components and
that one among them is irrotational or at least weakly
coupled to the rigid rotation of pulsars. Natural candidates
are superfluids and supersolids, respectively. In this sce-
nario, quantized vortices, forming in the superfluid compo-
nent, can stochastically unpin from the rigid crystalline
component and change the star’s angular momentum.
Understanding whether this is a plausible mechanism
requires addressing several key questions, including: how
do superfluid vortices pin and unpin? How do unpinned
vortices percolate through the crystalline structure? What
information can be extracted from the glitch signal shape?
Tackling these questions from first principles is chal-

lenging, as the properties of the inner crust of neutron stars
are model dependent. Moreover, we have only observa-
tional access to the neutron-star atmosphere; thus, the
underlying dynamics are basically a black box. One
possible way to improve our understanding of pulsar
glitches is to reproduce them in a controllable laboratory,
where we have full access to the entire system [13–15].
Thanks to rapid developments in quantum simulation, it

is now possible to employ dipolar quantum gases—where
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supersolidity and rotational physics have recently been
observed in circularly symmetric systems [16–19]—as
analogous microscopic quantum systems. Here, we dem-
onstrate exactly this and predict the existence of glitches in
a rotating ultracold dipolar supersolid. We show how
quantized vortices unpin from the crystalline structure of
the supersolid and escape, transferring angular momentum.
Varying the interactions, we observe that the glitch size
may depend not only on the number of unpinned vortices,
but also on the superfluid fraction and the supersolid
internal dynamics.
We start by outlining some basic properties of neutron

stars, and then we move to show the analogies with dipolar
supersolids. Neutron stars are expected to possess a
complex internal structure with a sequence of layers
[4,20–26], as shown in Fig. 1(a). Beneath a micrometer-
thick atmosphere, the first layer, the so-called outer crust, is
expected to be a crystalline solid of neutron-rich ions and
electrons that behave as a normal component. At its heart,
the core of the neutron star is instead believed to be in a
liquidlike phase with superfluid properties [27–32]. Here,
the density exceeds the nuclear saturation density ρsat,
meaning that the nucleons are so closely packed that they
overlap [33]. Sandwiched between the solid outer crust and
the superfluid core, one finds the inner crust: Here, the
density of neutrons exceeds the neutron drip density ρd so
that it becomes energetically favorable for them to drip out.
The most accredited theories describe this phase in terms of
unbound superfluid neutron pairs with a periodic density
modulation; see Figs. 1(a1) and 1(a2) and Ref. [36]. The
coexistence of solid and superfluid in the inner crust can be
viewed in modern terms as a supersolid phase. This, as we
shall see, is a key ingredient for the widely accepted
physical explanation of glitches, schematically depicted
in Fig. 1(b), associated with a transfer of angular momen-
tum between the inner and the outer crust [12,57–61].
In the low-energy sector, quantum phases with super-

solid properties have recently been observed in various
settings [16,17,62–66]. Particularly relevant for drawing
analogies with neutron stars is the case of circular super-
solids of dipolar atoms [17], on which we specifically
concentrate in this work, as shown in Figs. 1(c) and 1(d).
These systems are obtained by trapping and cooling highly
magnetic atoms, like erbium or dysprosium, into quantum
degenerate states known as dipolar Bose-Einstein conden-
sates (BECs) [67,68]. The dipolar supersolid phase exists
due to the competition of three types of interactions: a
repulsive isotropic contact interaction, a momentum-
dependent long-range and anisotropic dipole-dipole inter-
action, and a repulsive higher-order-density interaction
arising from quantum fluctuations [69]. Supersolids are
characterized by the existence of a superfluid connection
between the crystal sites, controlled, in turn, by the strength
of the short-range interactions, governed by the scattering
length as, which plays the role of the radial depth of the

neutron star. Figure 1(c1) shows a case with weak superfluid
connection, emulating the condition close to the inner-to-
outer crust boundary, whereas Fig. 1(d1) shows one with
stronger superfluid connection, in accordance with the
inner crust-to-core boundary.
The remarkable analogy between a pulsar and a dipolar

supersolid can be also extended to the rotational dynamics.
In both cases, the time evolution of the rotation frequency
Ω can be described as [57]

IsΩ̇ ¼ −Nem − L̇vort − İsΩ; ð1Þ

where Is is the moment of inertia of the solid part. For a
neutron star, changes in Is are not directly observable and
can be challenging to estimate [6,70–72]. In dipolar
supersolids, we have full access to the system; therefore,
changes in the moment of inertia due to internal dynamics

(a)

(c)

(d)

(b)

(a1)

(c1)

(d1)

(a2)

FIG. 1. Comparison between a neutron star and a dipolar
supersolid. (a) Structure of a neutron star, together with the
density distributions of neutrons (cyan) and protons (black)
near the inner-to-outer crust, for baryonic density nb≃
5.77 × 10−3 fm−3 (a1) and the inner crust-to-core interface, for
nb ≃ 2.08 × 10−2 fm−3 (a2) (adapted with permission from Elsev-
ier from [27]). (b) Illustration of a glitch; see the text. (c),(d)
Density distribution of a dipolar quantum gas, with the corre-
sponding density n cut along y ¼ z ¼ 0 at (c) as ¼ 88a0 and
(d) as ¼ 93a0, where a0 is the Bohr radius. In both cases, the
strength of the superfluid connection is quantified by the density
contrast C ¼ ðnmax − nminÞ=ðnmax þ nminÞ.
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can be accurately accounted for. The quantityNem is a spin-
down torque that linearly reduces the total angular momen-
tum of the star: This process occurs spontaneously in a
pulsar due to the emission of electromagnetic radiation,
whereas in a dipolar supersolid it can be controlled by
slowly ramping down the rotation frequency of the trap.
Finally, Lvort is the angular momentum of the super-
fluid part.
Despite its simplicity, Eq. (1) is able to capture very

intriguing dynamics in pulsars. While the crystalline part in
the inner and outer crust rigidly corotates and promptly
responds to the braking torque, the superfluid component in
the inner crust lags behind, storing angular momentum in
the form of quantized vortices. Such vortices are mainly
pinned in the interstitial regions, with a pinning force that
depends on the depth of the superfluid nuclear background
[4,6,27–32,73]. However, during the spin-down of the star,
some vortices can stochastically unpin and escape from the
inner crust, causing a sudden release of angular momen-
tum. This is captured by the Lvort term in Eq. (1), which
adds a positive contribution to Ω̇ whenever a vortex leaves.
A glitch corresponds to a collective unpinning of vortices
[74,75]. The outer crust absorbs the released macroscopic
angular momentum and suddenly spins up in a steplike
fashion, before relaxing and resuming its spin-down
behavior; see Fig. 1(b). The glitches bring a fractional
change of the rotation frequency in the range ΔΩ=Ω ∼
10−12 − 10−3 [76].
The question now is whether we can validate the above

phenomenological description and observe glitches in a
dipolar supersolid. To this end, we numerically study the
spin-down of an ultracold polarized dipolar BEC in the
supersolid state. The atoms with mass m are harmonically

confined in a three-dimensional pancake-shaped trap,
with frequencies ω ¼ ðωr;ωzÞ ¼ 2π × ð50; 130Þ Hz.
They interact via the two-body pseudopotential UðrÞ ¼
ð4πℏ2as=mÞδðrÞ þ ð3ℏ2add=mÞ½ð1 − 3cos2θÞ=jrj3�, with
tunable short-ranged interactions controlled by as, long-
range anisotropic dipole-dipole interactions with effective
range given by the dipolar length add, and θ as the angle
between the polarization axis (z axis) and the vector joining
two particles. We fix our study to 164Dy with add ¼
130.8a0. The evolution of the macroscopic wave function
Ψðr; tÞ is governed by the dissipative extended Gross-
Pitaevskii equation (eGPE) [77–80]

iℏ
∂Ψ
∂t

¼ ð1 − iγÞ�L½Ψ; as; add;ω� − ΩðtÞL̂z

�
Ψ; ð2Þ

where L is the eGPE operator and we include dissipation
through the small parameter γ ¼ 0.05 to tune the coupling
between the system and the rotating trap; see Ref. [36]. The
wave function is normalized to the total atom number
through N ¼ R

d3rjΨj2 ¼ 3 × 105. The operator L̂z ¼
xp̂y − yp̂x corresponds to rotation about the z axis and
can be used to obtain the total angular momentum
Ltot ¼ hL̂zi. The superfluid angular momentum is obtained
from Lvort ¼ Ltot − Ls, with the second term Ls coming
from rigid body rotation of the supersolid [81,82] (see
Ref. [36]). The initial condition is found in imaginary time,
at fixed Ωð0Þ ¼ 0.5ωr, giving a vortex lattice embedded
within the supersolid crystal. It has been shown [81–83]
that rotating supersolids host quantized vortices pinned at
local minima of the supersolid density modulation, as
shown in Fig. 2(a), and at saddle points between each
pair of droplets [36].

(a) (b)
(e1) (e2) (e3)

(f1) (f2) (f3)

(c)

(d)

FIG. 2. Glitches in a dipolar supersolid. (a) Rotating supersolid with Ω ¼ 0.41ωr and as ¼ 91a0. Top: dipolar supersolid showing two
isosurfaces at 15% (opaque) and0.05% (translucent) of themaximumdensity, and vortex lines in black.Middle: columndensities normalized
to the peak density. Bottom: phase profile arg½Ψðx; y; z ¼ 0Þ�. (b) Rotation frequency in time, with torque Nem ¼ 4.3 × 10−35 kgm2=s2.
Arrows indicate glitch positions. (c) Relative change inΩ, computed asΔΩ ¼ ½ΩðtÞ − Ωlin�=Ωlin, whereΩlin is the result of a linear fit of the
curve in (b). (d) Vortex number. The gray shaded area in (b)–(d) highlights the time window in (e) and (f). (e) Column density saturated to
highlight vortex positions and shape,with onevortex escaping (orange circle) and another taking its place (blue circle). (f) Crystal excitations,
showing the column density differences between time steps, nðtÞ − nðt − ΔtÞ, with Δt ¼ 2.4 ms.
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The real-time spin-down of the system is obtained by
simultaneously solving Eqs. (1) and (2). After generating
the initial conditions, we introduce an external torque. This
acts as a brake on the solid component, reducing ΩðtÞ over
time. Our findings are shown in Fig. 2(b), where we
selected an appropriate time interval to show multiple
glitch events. Though at first glance the curve appears
linear, dominated by Nem, there are deviations from this
behavior highlighted by arrows, showing the appearance of
glitches in a dipolar supersolid. Visualizing instead the
relative change of Ω in Fig. 2(c), we see signatures similar
to pulsar glitches, with a rapid increase of Ω, followed by a
slow relaxation back to linear behavior.
Unlike in pulsars, here we have unprecedented access to

the internal dynamics of the dipolar supersolid. Thus, we
can identify each glitch as the moment when superfluid
vortices unpin and reach the trap boundary [Figs. 2(d) and
2(e)], transferring their angular momenta to the solid
component by the feedback mechanism through Eq. (1).
Furthermore, by tracking the unpinning and repinning of
individual vortices, we are able to determine the origin of
the glitch pulse shape. Here, the observed asymmetry is due
to the fact that, when internal vortices are unpinned (glitch
rise time), it takes some time before they repin (glitch fall
time): They slowly move from one pinning site to the other;
see Figs. 2(e1)–2(e3) [36]. Since vortex energy minima are
separated by saddle points, to go from one pinning site to
the other, a vortex must move across one of them [83]. In
doing this, the vortex core is squeezed and then uncom-
pressed, producing an effective friction on the movement of
the vortex. Thus, the long supersolid postglitch timescale is
associated with this slow percolation of vortices across the
crystalline structure [36]. As far as we know, this process
has never been considered in the description of the pulsar
postglitch behavior.
We also have access to crystal dynamics. As a conse-

quence of the vortex activity, the crystalline structure is
deformed and excited. This is visible in the residual matter
density evolution [Figs. 2(f1)–2(f3)], where, during the
glitch, each droplet is slightly deformed and vibrates.
Then, during the postglitch, the droplets slowly relax
toward a more uniform distribution. These excitations
are due to superfluid fluxes inside the droplets and between
neighboring droplets by means of the superfluid bath.
Typically, we find that strong crystal excitations affect
the postglitch signal of Ω, suggesting that we could infer
the crystal properties through analysis of the glitch
pulse shape.
The typical magnitude of a glitch is ΔΩ=Ω ∼ 10−3, a

giant glitch in the context of pulsars. The glitch jumps can
be written as ΔΩ=Ω ≃ −ΔLvort=Lvort, as they are domi-
nated by the dispelling of vortices. One may naively expect
to estimate ΔLvort as the number of vortices that unpin and
reach the boundary multiplied by a quantum of angular
momentum ℏ. Such an estimate is incorrect, because the

angular momentum contribution from a vortex is reduced
by the fraction of nonclassical moment of inertia fNCRI
[36], such that Lvort is at most fNCRIℏNv ≤ ℏNv [82], for
the total number of vortices Nv. Furthermore, in our finite-
size system, the contribution reduces radially from the
rotation axis. The combination of these phenomena is such
that the effective amount of angular momentum lost by the
superfluid component during a glitch is ΔLvort ≃ 10−2ℏ
[36]. This suggests that, in neutron-star glitches, the
number of vortices involved in each glitch might be larger
than the one estimated by assuming that each vortex carries
a quantum of angular momentum.
A reduction of the vortex angular momentum due to the

crystal structure also suggests that glitches in the case of
vanishing superfluidity will have a small amplitude. We
investigate the dependence of the glitch size on the super-
fluidity by varying the scattering length, as presented in
Fig. 3. As the scattering length is decreased, we find that the
glitch amplitude tends to decrease. When the state is in the
independent droplet regime (fNCRI → 0), glitches do not
occur. The internal dynamics, though, still slightly affect
the response of the system to the external torque, as
indicated by the curvature of ΔΩ=Ω. The largest glitches
occur in the states with the biggest superfluid fraction and
the largest pinning force between droplets. These results
suggest that giant glitches in neutron stars occur from deep
within the star, where the superfluid contribution to the
angular momentum is largest. However, the total amplitude

(a)

(b)

FIG. 3. Glitches originating from different radial depths.
(a) Glitches as a function of the scattering length as. Note that
as ¼ 92a0 emulates the conditions close to the inner crust-to-core
boundary and as ¼ 86a0 for those in the outer crust. Inset:
fraction of nonclassical rotational inertia. (b) Relative change in
Ω, decreasing amplitude with scattering length. Some glitches
dispel more than one vortex, increasing the amplitude.
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is also reflective of the number of unpinned vortices. The
large glitch at 6.2 s with as ¼ 92a0 occurs when two
vortices leave together. A possible identifier to discern the
origin of the glitches can arise from the postglitch dynam-
ics, which have the longest decay time at large scattering
lengths.
This work represents a first step in simulating and

understanding the complex dynamics of neutron stars using
rotating quantum gases in the supersolid phase. We show
that these systems exhibit phenomena analogous to neu-
tron-star glitches and are primed to become a powerful tool
for addressing key open questions ranging from the under-
lying mechanism of glitches to the system’s internal
dynamics. In particular, during a supersolid glitch, we
observe rich dynamics: Some vortices unpin and escape
toward the outer crust and, in doing so, trigger an excitation
of the supersolid crystalline structure, as well as core shape
deformation of the remaining migrating vortices. These
dynamics, which cannot be captured in standard glitch
models imposing a fixed lattice structure [70–72], could be
the key for an experimental implementation of the model,
where the dynamical observation of sudden changes in the
droplet positions may be possible by combining optimal
control methods with nondestructive imaging [84–86].
Moreover, we see that reducing the superfluidity of the
supersolid leads to a reduction of the angular momentum
contribution per vortex. This is a feature so far overlooked
in the context of neutron stars and may explain the wide
range of observed glitch amplitudes, where the smallest
glitches are associated with vortex dynamics at the edge of
the star.
Regarding the region of the inner crust close to the core,

its investigation requires testing various lattice sizes and
vortex configurations, allowing us to expand the study to
nuclear vortex pinning expected to occur there [87], akin to
the work in Ref. [88]. Furthermore, one could consider
systems with a radially variable superfluid fraction to
mimic the full structure of the neutron star. Our work
opens the door for a detailed study of the droplet lattice
vibration, in order to ascertain whether it is possible to
extract the elastic properties of the solid from the supersolid
glitch pulse shape. This would be of great astrophysical
interest and would pave the way to extract the elastic
properties of nuclear matter from the observed neutron-star
glitch pulse shape and to test whether a glitch can trigger
superfluid collective excitations [89]. Finally, future work
can investigate the effects of tilting the magnetic field with
respect to the rotation axis [19,90,91], as expected in
pulsars, and include coupling between the supersolid and
the proton type-II superconductor present in the crust,
through an additional Ginzburg-Landau equation [92–94],
introducing a self-consistent feedback mechanism.
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