
Further Evidence for Shape Coexistence in 79Znm near Doubly Magic 78Ni

L. Nies ,1,2,† L. Canete,3,4 D. D. Dao ,5 S. Giraud ,6,§ A. Kankainen ,3,‡ D. Lunney ,7 F. Nowacki ,5 B. Bastin ,6

M. Stryjczyk ,3 P. Ascher,8 K. Blaum ,9 R. B. Cakirli ,10 T. Eronen ,3 P. Fischer ,2 M. Flayol ,8 V. Girard Alcindor,6

A. Herlert ,11 A. Jokinen ,3 A. Khanam ,3,12,13 U. Köster ,1,14 D. Lange ,9 I. D. Moore ,3 M. Müller ,9

M. Mougeot ,3,9 D. A. Nesterenko ,3 H. Penttilä ,3 C. Petrone ,15 I. Pohjalainen,3 A. de Roubin ,3,∥ V. Rubchenya,3,*

Ch. Schweiger ,9 L. Schweikhard,2 M. Vilen ,3 and J. Äystö 3

1European Organization for Nuclear Research (CERN), Meyrin, 1211 Geneva, Switzerland
2Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany
3University of Jyvaskyla, Department of Physics, Accelerator laboratory,

P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
4Department of Physics, University of Surrey, Guildford GU2 7X5, United Kingdom
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Isomers close to doubly magic 78
28Ni50 provide essential information on the shell evolution and shape

coexistence near the Z ¼ 28 and N ¼ 50 double shell closure. We report the excitation energy
measurement of the 1=2þ isomer in 79

30Zn49 through independent high-precision mass measurements with
the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass
spectrometer. We unambiguously place the 1=2þ isomer at 942(10) keV, slightly below the 5=2þ state at
983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with discrete
nonorthogonal shell-model calculations which are used here for the first time to interpret shape coexistence,
we find low-lying deformed intruder states, similar to other N ¼ 49 isotones. The 1=2þ isomer is
interpreted as the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed
band in 80Zn, and points to shape coexistence in 79;80Zn similar to the one observed in 78Ni. The results
make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.

DOI: 10.1103/PhysRevLett.131.222503

The atomic nucleus, a conglomerate of protons and
neutrons, is a complex many-body system with unique
features. The nuclear shell model has successfully
described various nuclear properties, including the emer-
gence of shell closures [1] and magic numbers [2].
Similar to the atomic shell, nuclei can be excited,

resulting in a dense level structure. Ground and excited

states can show different shapes resulting from the micro-
scopic wave function [3]. Deformed excited states often
emerge near closed shells, where the excitation of multiple
nucleons across the shell gap can be energetically favor-
able, leading to deformation through the increased number
of particles found in the valence space [4]. While typically
the coexistence of ground states and deformed excited
states at low energies are observed, shape inversion can
appear when the ground state becomes deformed in
coexistence with a spherical excited state [4–6].
Research on shape coexistence close to the doubly

magic nucleus 78
28Ni50 has gained momentum only

recently [7]. Low-lying intruder states, often indicators of
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shape coexistence, have been studied in N ¼ 49 isotones
through transfer-reaction experiments [8–11]. First evidence
supporting shape coexistence was found through laser
spectroscopy of 79

30Zn49 [12] and the discovery of a 0þ2
intruder state in 80

32Ge48 from Ref. [13]. However, the latter
could not be confirmed in subsequent experiments [14,15].
More recently, the doubly magic nature of 78Ni was

supported through the measurement of its Eð2þ1 Þ value [16],
as well as γ-ray spectroscopy [17] and mass spectrometry
of 79

29Cu50 [18], reinforcing the persistence of the Z ¼ 28

gap. The potential appearance of shape coexistence in 78Ni
is furthermore theorized to be a pathway into a new island
of inversion at N ¼ 50 [19].
The isomer in 79

30Zn49, a long-lived nuclear state, provides
a unique opportunity to further study the interplay between
the single-particle and collective degrees of freedom in the
close vicinity of 78Ni. The first spectroscopy of 79Zn from
ðd; pÞ transfer reactions found evidence for the presence of
intruder states and tentatively assigned a spin parity
of 1=2þ to the isomeric state with an excitation energy of
1100(150) keV, as well as a close-lying 5=2þ state with
983(3) keV [20], leaving the exact state ordering uncertain.
The spin parity was confirmed for the 9=2þ ground and the
1=2þ isomeric states through magnetic moment measure-
ments from collinear laser spectroscopy [12,21]. More
significantly, these works found a large isomer shift in
the charge radius and attributed this increase to nuclear
deformation.
Recent studies have shown that shape changes may be

linked to multiple particle-hole excitations of both protons
and neutrons [22–26]. However, a precise and accurate
excitation energy measurement of the 1=2þ isomer to
confirm claims of shape coexistence in 79Zn is missing
from the above-mentioned work. Such measurement will
unambiguously determine the state ordering, validate the
particle-hole excitation character, and benchmark the bind-
ing energy predictions of the employed shell-model inter-
actions near 78Ni.
While the ground-state mass of 79Zn is precisely known

via mass measurements [27–29], the uncertainty on the
excitation energy from the transfer-reaction experiment is
rather large. Given the importance of shape coexistence in
the immediate vicinity of 78Ni, we present two independent
high-precision mass spectrometry experiments of the iso-
mer 79Znm using the JYFLTRAP double Penning trap [30]
at the ion guide isotope separator on-line (IGISOL)
facility [31] in Jyväskylä (Finland), and the multi-reflection
time-of-flight mass spectrometer (MR-TOF MS) of
ISOLTRAP [32] at ISOLDE at CERN [33] (Switzerland).
The experiments were performed at different facilities
and with different techniques to ensure the isomer’s
production and the accuracy of its excitation energy. The
results are interpreted by large-scale shell model calcula-
tions, utilizing the valence space of interactions used in
Refs. [12,18,19,21]. While offering a more detailed and

accurate picture of the nuclear structure in this critical
region, the calculations highlight the relative fragility of the
doubly magic shell strength.
For the Penning-trap measurements, the ions of interest

were produced via proton-induced fission using 35-MeV
protons from the K130 cyclotron impinging onto a
15 mg cm−2 thick natU target at IGISOL. The reaction
products were stopped and thermalized in the helium gas
cell of the fission ion guide [34], leaving a large fraction of
the products singly charged. The ions were extracted from
the chamber with a sextupole ion guide [35] and accel-
erated to 30 keV. A 55° dipole magnet was used to mass
separate the ions based on their mass-to-charge ratio m=q.
The mass-separated beam was then stopped in a radio-
frequency quadrupole cooler and buncher (RFQ-cb) [36]
and released as ion bunches into the double Penning trap
JYFLTRAP [30]. In the first trap, either the ground- or
isomeric-state ions of 79Zn were selected using mass-
selective buffer-gas cooling [37]. The selected ions were
transferred to the second trap, where the high-precision
mass measurements were performed using the time-of-
flight ion cyclotron resonance (TOF-ICR) method [38].
The cyclotron resonance frequency νc ¼ qB=ð2πmÞ of the
1=2þ state in 79Znþ was measured using a 100 ms pulse of
quadrupolar rf excitation. Altogether four TOF-ICR spectra
were measured for the 1=2þ state in 79Znþ. An example of
such a TOF-ICR spectrum is shown in Fig. 1(a).

FIG. 1. (a) A typical TOF-ICR spectrum for the 1=2þ state in
79Znþ. Colored bins indicate the number of detected ions. Darker
shades correspond to more ions and lighter shades to fewer ions.
The solid red line represents the fit to the data points (black) using
the model from Ref. [38]. The cyclotron frequencies are indicated
with a vertical black dashed line for the ground state (not present
in this spectrum) and a vertical blue dash-dotted line for the
isomer. (b) Time-of-flight spectrum for the MR-TOF MS data.
The TOF of the ground state is indicated by a vertical black
dashed line, and the TOF of the isomer by a vertical blue dash-
dotted line. The solid red line represents the fit to the data using
the model from Ref. [39].

PHYSICAL REVIEW LETTERS 131, 222503 (2023)

222503-2



The magnetic field strength B was determined using
84Krþ as a mass reference. The mass of the 1=2þ state in
79Zn was obtained from the measured frequency ratio
r ¼ νc;ref=νc between the 84Krþ reference ions and the
isomeric-state ions of 79Znþ as m ¼ rðmref −meÞ þme,
where mref is the mass of the reference ion and me is the
electron mass. Two sources of systematic uncertainties
were taken into account in the analysis, the fluctuation of
the magnetic field being 8.18 × 10−12 × Δt min−1 [40],
where Δt represents the time between two reference
measurements, and mass-dependent uncertainties being
2.2 × 10−10 × ðm −mrefÞ=u [41].
For the MR-TOF MS measurements, neutron-rich zinc

isotopes were produced at the isotope separation online
facility ISOLDE at CERN [33] by impinging a 1.4-GeV
proton beam onto a solid tungsten block to generate an
intense spallation neutron flux [42]. The zinc isotopes were
then produced through neutron-induced fission processes
in an adjacent thick uranium carbide target. Using the
tungsten converter resulted in reduced production of
isobaric neutron-deficient nuclides. The radioactive fission
products then diffused through the target material into a
cold quartz transfer line [43,44] which further eliminated
contamination of surface-ionized elements, e.g., Ga, Rb,
and Sr [45]. The remaining radioactive species were then
ionized by the resonance ionization laser ion source
(RILIS) [46], using an element-selective three-step ioniza-
tion scheme for zinc. The ion beam was then mass
separated using the general-purpose mass-separator dipole
magnet, removing nonisobaric contamination, before being
sent to the ISOLTRAP mass spectrometer [32].
The quasicontinuous ion beam was cooled and bunched

in a linear RFQ-cb [47] with a storage time of 10 ms before
being captured in the MR-TOF MS [48] using the in-trap
lift method [49]. After trapping times of up to 43 ms, the
ion bunch was ejected onto a single-ion counting detector
using the same in-trap lift.
The excitation energy of the isomeric state

E ¼ ½ðΔt=t0Þ2 þ 2Δt=t0�m0c2 is related to the time-of-
flight difference Δt between the ground state with mass
m0 and the isomeric state, the absolute flight time
of the ground state t0, and the speed of light in vacuum c.
For long flight times, where Δt ≪ t0, this reduces to
E ≈ 2Δt=t0 ×m0c2. Figure 1(b) shows the TOF spectrum

for theMR-TOFMSdata. Zincwas delivered from ISOLDE
as a pure beam, thus only the ground state (black dashed line)
and the isomeric state (blue dash-dotted line) of 79Zn
were present in the spectrum. A mass resolving power
R ¼ t0=2ΔtFWHM ¼ 300 000 was reached, sufficient to
resolve the two states. The asymmetric peak shape was
fitted with a multicomponent exponentially modified
Gaussian (“hyper-EMG”) [39] to extract the absolute
TOF t0 ¼ 4 277 871ð2Þ ns of the ground state and the
TOF difference Δt ¼ 274ð4Þ ns between the two states.
The excitation energy was then calculated using the ground
state mass with MElit ¼ −53 432.1ð18Þ keV, which we
calculated as the weighted mean of the results from
Refs. [27–29]. The excitation energy was measured for
different ion loads to account for ion-ion interactions during
the storage time in the MR-TOF MS [50,51].
The results of the two independent measurements are

summarized in Table I. The extracted excitation energies
of the isomer agree very well, resulting in a weighted
mean of 942(10) keV. The isomer energy is lower than
1100(150) keV as given in the NUBASE 2020 evalua-
tion [52], which is based on the transfer reaction experi-
ment from Ref. [20]. Our value is significantly more precise
and unambiguously sets the isomeric state below the 5=2þ
state located at 983(3) keV. We note that the result agrees
with the value 943(3) keV, obtained from the beta-decay
spectroscopy of 79Cu [53]. Here, we confirm the existence
of the isomer and provide a direct measure of its excitation
energy.
To interpret the present experimental data, shell-model

calculations with the PFSDG-U interaction [16,19] were
performed for 79;80Zn. The valence space is spanned across
the full pf shell for protons and full sdg shell for neutrons,
with 60Ca as an inert core. This interaction has been
successfully used in the 78Ni region to describe, among
others, the two-neutron separation energies S2n along the
zinc isotopic chain [18], as well as the magnetic g factor in
79Zn [21].
The calculated excitation energies for 79Zn (Table II) are

in good agreement with the experimental results with
1=2þ and 5=2þ at 0.83 and 0.94 MeV, respectively.
We find that the two low-lying excited states in 79Zn show
a one-particle-two-hole configuration, consistent with other
N ¼ 49 isotones [8–11]. While the s1=2 and d5=2 orbitals lie

TABLE I. Frequency ratio r or time-of-flight difference Δt, mass-excess values ME, and excitation energy of the isomer E determined
in this Letter. The values for Jπ and T1=2 are from Ref. [12], MElit is deduced from the ground state mass (weighted average of the
measurements from Refs. [27–29]) in combination with the excitation energy reported in [20]. 84Krþ from [54] was used as a reference
for the TOF-ICR measurements, while 79Znþ in its ground state from [27–29] was used for the MR-TOF MS measurements.

Nuclide Jπ T1=2 Method r or Δt ME (keV) MElit (keV) Diff. (keV) E (keV)

79Znm 1=2þ >200 ms
TOF-ICR 0.940 796 186(144) −52 490ð12Þ −52 332ð150Þ −158ð150Þ 942(12)

MR-TOF MS 274.2ð40Þ ns −52 489ð14Þ −157ð150Þ 943(14)
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together at the neutron Fermi surface in the vicinity of 78Ni,
the correlated N ¼ 50 neutron gap SNð81ZnÞ − SNð80ZnÞ,
calculated from the present theoretical values, remains
sizeable at about 4.0 MeV and is in agreement with the
effective single-particle energies of Ref. [6] and with the
experimental value provided in Ref. [54]. These states
usually recover enough correlation energy (total energy
minus themonopole part) to compensate for their energy gap
loss. This is observed in our calculations shown in Table II,
where the total correlation energy is extracted. The excited
1=2þ and 5=2þ states recover correlation energy on the order
of ∼6.5–6.9 MeV compared to the 9=2þ the ground state.
The low excitation energy of these two states can be

understood as the balance between an average of 1.3
neutrons excited across the shell gap with respect to the
ground state (∼5.5 MeV) and the correlation energies
(∼6.5–6.9 MeV) which compensate and result in very
low-lying excitation energies for these one-particle-two-
holes states.
An inspection of the partial occupancies of the first two

excited states (see Table II) reveals strong neutron mixing
for the orbitals above N ¼ 50, as well as different proton
occupancies with respect to the ground state, invalidating
the spherical single particle-hole nature of these states and
rather suggesting a deformed shape. This neutron mixing
and proton reshuffling is visualized in Fig. 2, where the

occupancy differences of the excited states with respect to
their ground states are plotted.
The structure of the excited states can be interpreted

within the discrete nonorthogonal shell-model (DNO-SM)
method, newly developed in Ref. [55] and applied recently
in Refs. [56,57]. This approach expands the shell-model
wave functions in the deformed Hartree-Fock basis rather
than the usual spherical m-scheme basis. This allows the
extraction of the corresponding deformation amplitudes of
a given state in the ðβ; γÞ plane.
Figure 3 (top panel) depicts such expansions for the

ground state and the first two excited states of 79Zn. Two
clear patterns emerge: in the ground state, the main
components of the wave function tend towards the low-
deformation region with a small β value, while for the
excited states, the wave functions are more fragmented and
have, on average, a larger deformation. Also, we find the
clustering of the wave-function components consistent with
the deformation parameters β ≈ 0.15 (ground state) and
β ≈ 0.22 (isomeric state), deduced from the nuclear charge
radius in Ref. [12]. Moreover, the DNO-SM calculations
reveal that both 1=2þ and 5=2þ states belong to the

FIG. 2. Occupancy differences between excited states in
79;80Zn, and 78Ni with their respective ground states. The data
for 78Ni is taken from [19].

FIG. 3. DNO-SM expansions in the ðβ; γÞ plane (using the same
energy scale) for low-lying states in 79Zn (9=2þ1 , 1=2

þ
1 and 5=2þ1

in upper panel) and 80Zn (0þ1 and 0þ2 in lower panel). The radius of
circles represents the normalized probability of finding a defor-
mation point ðβ; γÞ in the corresponding state.

TABLE II. Occupation of orbitals in the full proton pf and neutron sdg valence space for low-lying states in 79;80Zn and 78Ni (the latter
taken from Ref. [19]). Eexp and Etheo (in MeV) are the experimental and theoretical excitation energies. Ecorr and E�

corr (in MeV) are the
total correlation energy and the correlation energy difference of an excited state with respect to its ground state. n�ν and n�π are the total
numbers of protons and neutrons above Z ¼ 28 and N ¼ 50, respectively.

Nuclide Jπ Eexp Etheo Ecorr E�
corr n�ν νg9=2 νd5=2 νs1=2 νg7=2 νd3=2 n�π πf7=2 πf5=2 πp3=2 πp1=2

79Zn 9=2þ 0.0 0.0 −11.72 � � � 0.53 8.47 0.27 0.04 0.18 0.04 2.49 7.51 1.79 0.50 0.20
1=2þ 0.94 0.83 −18.59 −6.87 1.84 7.17 0.81 0.54 0.34 0.15 2.82 7.18 1.45 0.95 0.42
5=2þ 0.98 0.94 −18.23 −6.51 1.82 7.18 1.06 0.31 0.33 0.12 2.79 7.20 1.51 0.87 0.41

80Zn 0þ1 0.0 0.0 −10.80 � � � 0.49 9.50 0.23 0.03 0.19 0.04 2.48 7.52 1.90 0.44 0.14
0þ2 � � � 2.16 −17.12 −6.32 2.74 7.26 1.20 0.71 0.52 0.31 3.08 6.92 1.33 1.28 0.47

78Ni 0þ1 0.0 0.0 −8.00 � � � 0.38 9.62 0.12 0.02 0.20 0.04 0.57 7.44 0.38 0.15 0.04
0þ2 � � � 2.65 −24.09 −16.09 2.70 7.30 1.11 0.81 0.43 0.35 2.35 5.65 0.98 0.94 0.43
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same rotational structure, which is characterized by the
K ¼ 1=2 components of 100% and 96%, respectively (see
K-component extraction in Refs. [55,57]).
To probe further into the deformed character of the

low-lying states in 79Zn, we have complemented the
calculations with the investigation of 80Zn. We find two
low-lying 0þ states: the spherical ground-state and an
excited deformed state of two-particle-two-hole nature at
2.16 MeV (see Table II). Again, a larger correlation energy
(∼6.3 MeV) is observed for the excited 0þ state on the
same order of magnitude as those of the deformed intruder
states in 79Zn, indicating the same deformation nature
of these states. Figure 3 shows the wave function expan-
sions for these two 0þ states (bottom panel). There is a
clear similarity between the spherical ground states for
79Znð9=2þÞ=80Znð0þ1 Þ and the deformed excited states for
79Znð1=2þ; 5=2þÞ=80Znð0þ2 Þ, advocating for the deformed
nature of the observed isomer in 79Zn, as well as its 5=2þ
companion.
Finally, the present shape coexistence discussed for

79;80Zn can be put in perspective with the shape coexistence
recently observed and discussed for 78Ni [16,19]: the
deformed intruder 0þ2 of 78Ni has 2.7 neutron p-h excita-
tions on average, in remarkable agreement with present
values quoted in Table II for 0þ2 of 80Zn. Both 0þ2 states have
∼2.4–3 protons on average in the f5=2; p3=2; p1=2 shells,
leading to close collective structures. Therefore, the shape
coexistence in 78Ni and in the presented 79;80Zn reveal
striking similarities.
To summarize, we have established the level ordering

and determined the excitation energy of the isomer in 79Zn
by means of high-precision mass spectrometry. Two
measurements were performed independently, using differ-
ent production methods and measurement techniques at
different radioactive ion beam facilities. We show unam-
biguously that the 1=2þ isomeric state with 942(10) keV
lies below the 5=2þ state with 983(3) keV. The new
DNO-SM calculations tool provides the theoretical analy-
sis, predicting the occurrence of low-lying deformed
intruder states. The 1=2þ isomer is interpreted as the
bandhead of a low-lying deformed structure of the same
nature as a predicted low-lying deformed band in 80Zn.
These findings provide an additional indication for shape
coexistence in 79;80Zn, similar to the one suggested for 78Ni.
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