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Using holographic duality, we investigate the impact of finite temperature on the instability and splitting
patterns of quadruply quantized vortices, providing the first-ever analysis in this context. Through linear
stability analysis, we reveal the occurrence of two consecutive dynamical transitions. At a specific low
temperature, the dominant unstable mode transitions from the twofold rotational symmetry mode to the
threefold one, followed by a transition from the threefold one to the fourfold one at a higher temperature. As
the temperature is increased, we also observe the fivefold and sixfold rotational symmetry unstable modes
get excited successively. Employing the full nonlinear numerical simulations, we further demonstrate that
these two novel dynamical transitions, along with the temperature-induced instabilities for the fivefold and
sixfold rotational symmetry modes, can be identified by examining the resulting distinct splitting patterns,
which offers a promising route for the experimental verification in the cold atom gases.
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Introduction.—Superfluidity provides a unique manifes-
tation of quantum mechanics at the macroscopic level,
where the quantum many-body system can be described
coherently by a complex valued order parameter. Quantized
vortices, one of the hallmarks of superfluidity, are topo-
logical defects of the order parameter with a quantum
number n multiple of 2π phase winding around the vortex
center in superfluids, playing an important role in inves-
tigating the dynamics and properties of superfluids. It is the
very presence of such topological defects that makes the
quantum turbulence in superfluids exit the hydrodynamic
description, in contrast to the classical turbulence in normal
fluids. When the quantized vortices are far away from one
another compared to the characteristic vortex size, they
could be regarded approximately as point particles modeled
by the Hall-Vinen-Iordanskii equation [1–3]. However,
note that such quantized vortices are the gapped excited
states with the corresponding energy proportional to the
square of the winding number, so compared to the singly
quantized vortex with n ¼ 1, the multiply quantized
vortices with n ≥ 2 are generically unstable and will split
into many singly quantized vortices. Not only does the
splitting dynamics provide an avenue to generate quantum
turbulence on the large scale, but it also offers us an
opportunity as well as a challenge to study the vortex
dynamics in an extreme regime where the whole physical
process occurs on the scale of the size of a vortex core.
Since the creation of multiply quantized vortices achieved

in gaseous cold atoms by topological phase imprinting
[4–6], Laguerre-Gaussian beams [7], and laser beam
spiraling around an obstacle [8], the instability and the
splitting patterns of multiply quantized vortices have been
extensively studied [9–26], where it is found that the vortex
of the winding number n ≥ 2 generically exhibits the
splitting instability of p-fold rotational symmetry with
p ¼ 2;…; 2ðn − 1Þ.
Of particular interest are quadruply quantized (n ¼ 4)

vortices [19–26]. On the one hand, different from doubly
quantized ones, quadruply quantized vortices, as alluded
above, have more than one (p ¼ 2, 3, 4, 5, 6) splitting
channels, which compete with one another and lead to
much richer scenarios. On the other hand, compared to
other multiply quantized vortices with n > 2, the quadruply
quantized vortices can be readily manipulated in gaseous
cold atoms. For zero temperature Bose gases, it is shown
for the quadruply quantized vortices by the Gross-
Pitaevskii equation (GPE) that the corresponding growing
rates for each splitting channel vary with the scattering
length [19,20]. But due to the narrow region of the
scattering length as well as the tiny value of the growing
rate for p ¼ 4, 5, 6 splitting channel, only p ¼ 2, 3 splitting
patterns have been observed experimentally [20–22].
However, there are two obvious deficiencies associated

with the previous theoretical modeling. One is the strong
coupling limit, which corresponds to the infinite scattering
length and cannot be well addressed by GPE. The other is
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the finite temperature effect, which comes from the ambient
surrounding as a thermal bath and can only be incorporated
into GPE by adding some dissipative terms phenomeno-
logically. These two shortcomings can be well overcome by
holographic duality, which is an alternative theoretical
framework to encode the strongly coupled finite temper-
ature quantum many-body systems into the gravitational
systems of black holes with one extra dimension [27–29].
In particular, since its advent [30,31], the holographic
model of superfluids has been applied to a variety of
scenarios related to superfluid dynamics, including the
dynamics associated with the topological defects [32–44],
and quantum turbulence [45–48].
In this Letter, we intend to investigate the impact of finite

temperature on the splitting process of a quadruply quan-
tized vortex by the holographic superfluid model. Among
others, not only do we find that the growing rate gets
enhanced to a maximum for each unstable mode by heating
the superfluid up to some intermediate temperatures below
the critical one, but we also discover there exist two distinct
temperatures for novel dynamical transitions, where the
splitting pattern transits from twofold rotational symmetry
to threefold and from threefold rotational symmetry to
fourfold, respectively.
Holographic superfluid model.—The action of the two

dimensional holographic superfluid model is given by
[30,31]

S ¼
Z
M

ffiffiffiffiffiffi
−g

p
d4x
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�

−
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4
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��
; ð1Þ

where G is the Newton’s gravitational constant, R is the
Ricci scalar, L is the anti–de Sitter (AdS) radius,
DμΨ ¼ ð∇μ − iAμÞΨ, Aμ is a U(1) gauge field, and Ψ is
a complex scalar field with mass m and charge q.
We shall work with the probe approximation, which is

achieved by taking a large q limit. Accordingly, the
backreaction of the matter fields onto the background
geometry is negligible. For our purpose, the background
geometry is fixed as the Schwarzschild-AdS black hole

ds2 ¼ L2

z2

�
−fðzÞdt2 þ 1

fðzÞ dz
2 þ dx2 þ dy2

�
; ð2Þ

where fðzÞ ¼ 1 − ðz=zhÞ3 with zh the black hole horizon
and z ¼ 0 the AdS boundary. The Hawking temperature of
the black hole is

T ¼ 3

4πzh
; ð3Þ

which is also identified as the temperature of the dual
boundary system. The equations of motion for the matter

fields are given by

DμDμΨ −m2Ψ ¼ 0; ∇μFμν ¼ Jν; ð4Þ

with Jν ¼ iðΨ�DνΨ −ΨDν�Ψ�Þ.
Without loss of generality, we set L ¼ 1, zh ¼ 1, and

m2 ¼ −2. By adopting the axial gauge Az ¼ 0, the asymp-
totic behaviors of the matter fields near the boundary are

Ψ≡ zΦ ¼ zðψ− þ ψþzþ � � �Þ;
Aμ ¼ aμ þ bμzþ � � � : ð5Þ

According to the holographic dictionary, ψ− corresponds to
the source and ψþ is the condensate response to the source.
In addition, at ¼ μ corresponds to the chemical potential
with −bt ¼ ρ the particle number density.
For an isotropic uniform static superfluid system, there

exists a critical chemical potential μc ¼ ρc ¼ 4.064, above
which the scalar field with the source ψ− turned off can
have a nontrivial solution besides the trivial one Ψ ¼ 0,
signaling a phase transition from the normal fluid phase to
the superfluid phase. In order to investigate the temperature
effect on the superfluid dynamics, we fix the total particle
number of our boundary system instead of fixing zh ¼ 1,
which can be achieved simply by resorting to the scaling
symmetry of the bulk dynamics

zh → σzh; T →
T
σ
; ðt; x; y; zÞ → σðt; x; y; zÞ;

μ →
μ

σ
; ρ →

ρ

σ2
; ψþ →

ψþ
σ2

: ð6Þ

Accordingly, the above phase transition can be rephrased as
occurring at a certain critical temperature Tc.
The quadruply quantized vortex and its linear

instability.—To obtain the static vortex configuration,
which is axisymmetric, we would like to work with the
polar coordinates. The background metric is rewritten as

ds2 ¼ 1

z2

�
−fðzÞdt2 þ 1

fðzÞ dz
2 þ dr2 þ r2dθ2

�
: ð7Þ

The corresponding ansatz for the nonvanishing matter
fields is given by

Φ¼ ψðz; rÞeinθ; At ¼ Atðz; rÞ; Aθ ¼ Aθðz; rÞ; ð8Þ

where n is the winding number of the quantized vortex.
Substituting the above expressions into Eq. (4), we obtain
the equations of motion for a quantized vortex, which can
be solved numerically by the pseudospectral method.
Please refer to Supplemental Material [49] for numerical
details. As a demonstration, we plot the configuration of
our quadruply quantized vortex at temperature T=Tc ¼
0.636 in the upper panel of Fig. 1.
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Now we are going to investigate the linear instability of
the resulting quadruply quantized vortex by calculating its
quasinormal modes. To proceed, we prefer to go from the
Schwarzschild coordinates to the Eddington-Finkelstein
coordinates, in which the background metric takes the
following form:

ds2 ¼ 1

z2
½−fðzÞdt2 − 2dtdzþ dr2 þ r2dθ2�: ð9Þ

After this coordinate transformation, Az ¼ ½Atðz; rÞ=fðzÞ�.
In order to preserve the axial gauge Az ¼ 0 in the above
new coordinates, we are required to perform the following
gauge transformation:

ψðz; rÞ → eiλðz;rÞψðz; rÞ; Arðz; rÞ ¼ ∂rλðz; rÞ; ð10Þ

with λðz; rÞ ¼ −
R
z
0 ½Atðz; rÞ=fðzÞ�dz.

Since the resulting vortex configuration possesses the
time translation symmetry and rotation symmetry, the linear
perturbations of the matter fields can be constructed as

δΦ ¼ einθ½δψ1ðz; rÞe−iωtþipθ þ δψ�
2ðz; rÞeiω

�t−ipθ�;
δAμ ¼ δAμðz; rÞe−iωtþipθ þ δA�

μðz; rÞeiω�t−ipθ: ð11Þ

Substituting the above expressions into Eq. (4), we
obtain the linear perturbation equations, which together
with a set of boundary conditions at the AdS boundary as
well as the regular boundary conditions at the black hole
horizon can be cast into the matrix form Aðω; pÞδ ¼
Bðω; pÞ for the linear perturbations abbreviated as δ.
The frequency of the quasinormal modes for each azimu-
thal number p can be obtained numerically by solving the
generalized eigenvalue problem. Generically, the quasinor-
mal frequencies are complex. In particular, if there exists a
quasinormal frequency with a positive imaginary part, then
the system is unstable. The larger the positive imaginary
part is, the more unstable the system is. We demonstrate the
low lying spectrum of quasinormal modes for p ¼ 2 in our
quadruply quantized vortex at T=Tc ¼ 0.636 in the bottom
panel of Fig. 1. As one can see, the dominant mode is given
by a quasinormal frequency with a positive imaginary part,
indicating the instability of the corresponding quadruply
quantized vortex for p ¼ 2 channel.
We plot the temperature dependence of the imaginary

part of the dominant mode in Fig. 2 for p ¼ 2, 3, 4, 5, 6
channels. First, the dominant mode for each channel
displays a universal bell curve behavior, namely the
imaginary part rises with the increase of temperature,
peaks at a certain temperature, and then drops universally
to zero as the temperature is cranked up to the critical one.
This may be understood intuitively in the following way.
Actually associated with the temperature, there are two
factors in action. One is the thermal dissipation, and the
other is the vortex size. As the temperature is increased, not
only is the thermal dissipation enhanced [43], but also the
vortex size characterized by the healing length is enlarged.
The enhanced thermal dissipation tends to make the vortex
unstable while the enlarged vortex size serves as an
obstacle against the thermal induced instability. As a result,
the thermal dissipation wins at low temperatures but taken
over by the vortex size at high temperatures. In particular,
near the critical temperature, the vortex size gets divergent,
leading to the vanishing imaginary part over there, con-
sistent with the numerical result presented in Fig. 2.

(a)

(b)

FIG. 1. (a) The configuration of a quadruply quantized
vortex at temperature T=Tc ¼ 0.636. (b) The low lying
spectrum of quasinormal modes (ω) for p ¼ 2 of the vortex
in the upper panel.

FIG. 2. The variation of the imaginary part of the dominant
mode of the quadruply quantized vortex with the temperature for
p ¼ 2, 3, 4, 5, 6.

PHYSICAL REVIEW LETTERS 131, 221602 (2023)

221602-3



Second, although p ¼ 2, 3, 4 channel instability occurs in
the full temperature regime available by our numerics from
T=Tc ¼ 0.265 to T=Tc ¼ 0.989, there exist threshold
temperatures T=Tc ¼ 0.34 and T=Tc ¼ 0.88 for p ¼ 5,
6 channel instability, respectively. But nevertheless, this
finding promises a precious new window to observe p ¼ 5,
6 channel splitting at high temperatures. Third, at
T=Tc ≲ 0.35, the most unstable mode corresponds to the
p ¼ 2 dominant mode, while at T=Tc ≳ 0.55, the most
unstable mode is given by the p ¼ 4 dominant mode. The
p ¼ 3 dominant mode serves as the most unstable mode in
between. This result signals two dynamic transitions from
p ¼ 2 to p ¼ 3 channel splitting at T=Tc ¼ 0.35 and from
p ¼ 3 to p ¼ 4 channel splitting at T=Tc ¼ 0.55, respec-
tively for the splitting of our quadruply quantized vortex. In
what follows, we shall substantiate the above two important
implications by visualizing the real time splitting process of
our quadruply quantized vortex.
Full nonlinear numerical simulations and splitting

patterns of quadruply quantized vortex.—The real time
splitting process of our quadruply quantized vortex can be
implemented by full nonlinear numerical simulations of the
3þ 1 dimensional bulk dynamics. To improve the numeri-
cal accuracy for such simulations, we shall work with the
rectangular coordinates rather than the polar coordinates.
The rectangular Eddington-Finkelstein metric reads

ds2 ¼ 1

z2
½−fðzÞdt2 − 2dtdzþ dx2 þ dy2�; ð12Þ

where the equations of motion for the bulk matter fields can
be written explicitly as the constraint equation

∂zð∂zAt − ∂ · AÞ ¼ iðΦ̄∂zΦ −Φ∂zΦ̄Þ; ð13Þ

and the evolution equations

∂t∂zAt ¼ ∂
2At þ f∂z∂ · A − ∂t∂ · A − 2AtΦ̄Φ

þ ifðΦ̄∂zΦ −Φ∂zΦ̄Þ − iðΦ̄∂tΦ −Φ∂tΦ̄Þ;

∂t∂zΦ ¼ iAt∂zΦþ 1

2
½i∂zAtΦþ f∂2zΦ

þ f0∂zΦþ ð∂ − iAÞ2Φ − zΦ�;

∂t∂zA ¼ 1

2
½∂zð∂At þ f∂zAÞ þ ð∂2A − ∂∂ · AÞ

− iðΦ̄∂Φ −Φ∂Φ̄Þ� − AΦ̄Φ: ð14Þ

With the boundary conditions documented in Supplemental
Material [49], the long time stable numerical simulation can
be achieved by solving At through the constraint equation
and evolving Φ and A via the fourth order Runge-Kutta
method.
We first present the splitting processes of the quadruply

quantized vortex at different temperatures in Fig. 3, where
the initial value is specified as the quadruply quantized

vortex perturbed by random noise, i.e.,

Φ ¼ einθψðz; rÞ
�
1þ

XN
p¼1

½αðpÞe−ipθ þ βðpÞeipθ�
�
; ð15Þ

where αðpÞ and βðpÞ are randomly chosen small constants
between ð−0.002; 0.002Þ, and N is a truncation integer we
choose as 20. Depending on the temperature, the splitting
processes display different splitting patterns of p-fold
rotational symmetry, which is completely consistent with
the previous linear instability analysis. At the low temper-
ature T=Tc ¼ 0.265, the p ¼ 2 splitting pattern dominates.
At the intermediate temperature T=Tc ¼ 0.394, the p ¼ 3
splitting pattern dominates. At the high temperature
T=Tc ¼ 0.931, the p ¼ 4 splitting pattern dominates. To
the best of our knowledge, only p ¼ 2, 3 splitting patterns
have been revealed at near-zero temperature condition so
far [20–22]. Our discovery indicates that p ¼ 4 splitting
pattern promises to be observed in cold atom gases by
tuning up the temperature.
Taking into account that neither p ¼ 5 nor p ¼ 6

channel linear instability is dominant, so in order to see
p ¼ 5, 6 splitting pattern at the full nonlinear level, we had
better give up on the previous random perturbation. Instead,
we prepare the initial quadruply quantized vortex perturbed
under p ¼ 5 and p ¼ 6 type perturbation separately, i.e.,

Φ ¼ einθψðz; rÞð1þ αeipθ þ βe−ipθÞ; ð16Þ
with α and β small constants. The resulting splitting
processes are presented in Fig. 4. As one can see, the
p ¼ 5 splitting pattern displays five n ¼ 1 quantized
vortices rotating around one n ¼ −1 antivortex. On the
other hand, the p ¼ 6 splitting pattern dominates in the
early stage with six vortices surrounding two antivortices.

FIG. 3. Density and phase plots of the condensate for
splitting processes of the quadruply quantized vortex under
random perturbations with distinct splitting patterns at different
temperatures.
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But after the annihilation of the two vortex pairs, the system
ends up with the p ¼ 4 splitting pattern. This is consistent
with the previous linear stability analysis, where the
imaginary part of p ¼ 6 dominant mode, as displayed in
Fig. 2, is much smaller than that of p ¼ 4 dominant mode.
By tuning up the temperature and specifying the perturba-
tion, our simulation provides the first numerical evidence
for p ¼ 5, 6 splitting patterns of the quadruply quantized
vortex, which have never been accomplished before in any
other numerical simulation. In particular, our finding
indicates that it is also feasible to observe p ¼ 5 (even
p ¼ 6) splitting pattern of the quadruply quantized vortex
in cold atom gases if the experimental setup is cautiously
conducted.
Conclusion.—Compared to the conventional theoretical

models, which have significant limitations and shortcom-
ings in addressing the finite temperature effect, holographic
duality provides us with a well-defined description of the
finite temperature superfluid by geometrizing it as a bulk
hairy black hole. Through the lens of holography, we have
investigated the temperature effect on the instability and
splitting patterns of the quadruply quantized vortex by both
linear perturbation analysis and full nonlinear simulations.
As a result, the growing rate for each mode turns out to
be enhanced to a maximal value at a certain temperature
below the critical one. In particular, such an enhance-
ment is appreciable for p ¼ 4 and p ¼ 5 modes, making
the associated splitting patterns also clearly visible in our
numerical simulations. In addition, by heating up our
superfluid, we also reveal two successive dynamical
transitions, one from p ¼ 2 splitting pattern to p ¼ 3

splitting pattern, followed by the other from p ¼ 3

to p ¼ 4.
Note that the finite temperature dynamics of the quan-

tized vortices in superfluids has recently become amenable

to being manipulated in a controllable manner due to the
great experimental advances in cold atom gases [50,51]. In
light of this, our sharp predictions show great promise to be
tested in the real tabletop experiments. In addition, as
demonstrated in Supplemental Material [49], while we
focus on quadruply quantized vortices due to their exper-
imental relevance, our model predicts similar behaviors
more generally for multiply quantized vortices with n > 2.
In particular, increasing the temperature favors decay
channels with higher p-fold rotational symmetry. We
conclude by pointing out that the probe approximation is
reliable in the regime T=Tc > 0.25 we work with. But one
is required to take into account the back-reaction of the
matter fields onto the metric when approaching lower
temperatures.
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