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For any given network of detectors, and for any given integration time, even in the idealized limit of
negligible instrumental noise, the intrinsic time variation of the isotropic component of the stochastic
gravitational wave background (SGWB) induces a limit on how accurately the anisotropies in the SGWB
can be measured. We show here how this sample limit can be calculated and apply this to three separate
configurations of ground-based detectors placed at existing and planned sites. Our results show that in the
idealized, best-case scenario, individual multipoles of the anisotropies at l ≤ 8 can only be measured to
∼10−5–10−4 level over five years of observation as a fraction of the isotropic component. As the sensitivity
improves as the square root of the observation time, this poses a very serious challenge for measuring the
anisotropies of SGWB of cosmological origin, even in the case of idealized detectors with arbitrarily low
instrumental noise.
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Introduction.—The field of gravitational wave (GW)
detection has flourished in recent years following the first
observation of the signal from merging, massive, compact
systems [1].Manymore detections have beenmade since the
sensitivity of the existing LIGO-Virgo-KAGRA network
continues to improve [2]. The sensitivity of existing net-
works is expected to keep improving in the coming
decades, and new ground-based detectors are already being
planned [2,3]. While an increasingly large number of
astrophysical signals arising from compact binary coales-
cence events have been observed, we are still awaiting
the detection of a stochastic gravitational wave back-
ground (SGWB). The latest observations by LIGO-Virgo-
KAGRA [2] place upper limits ΩGW ≲ 5.8 × 10−9 and
ΩGW ≲ 3.4 × 10−9 for, respectively, a scale-invariant and
a stochastic signal from astrophysical sources with a power
law spectral index of 2=3, pivoted at 25 Hz [4,5].
The SGWB is expected to be both of astrophysical

and cosmological origin. The astrophysical component
originates from the superposition of a large number of
unresolved sources, with the dominant contribution (at
frequencies probed by ground-based detectors) from the

coalescence of black holes and neutron star binaries. The
cosmological component is more uncertain, possibly origi-
nating in nonminimal models of inflation, phase transitions,
and topological defects [6–8].
The simplest way to disentangle these two components is

through the frequency dependence of ΩGW, the amplitude
of the isotropic component of the SGWB [8]. Any aniso-
tropy in the SGWBwill also be of interest for the separation
into different components. In particular, any directional
dependence will assist in distinguishing between galactic
and extragalactic components and to search for any
correlation with known tracers of structure [9–16]. Aniso-
tropies in the astrophysical background are expected to be
correlated with the large scale structure, due to both how
the GW originate and on how they propagate through a
perturbed universe [10,17,18]. Cosmological backgrounds,
along with astrophysical ones in the limit of confused,
persistent sources [19], can be modeled as stationary
phenomena. We will focus on this stationary limit in
this work.
This Letter describes the application of a method

developed for studying the signal-to-noise ratio (SNR) of
anisotropies in SGWBs as observed by a network of
detectors [20]. We consider observations by a network
of detectors placed at the location of existing (two LIGOs,
Virgo and KAGRA [21–23]) and proposed [Einstein
Telescope (ET) and Cosmic Explorer (CE) [24,25] ] instru-
ments. Differently from the existing literature, here, for the
first time, we investigate the “noiseless limit” of idealized
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instruments, where the sample variance of the observations
dominates the error. Namely, we study the best-case
scenario in which the noise of the instruments will be
reduced to an arbitrarily low level. We find that, even in this
ideal limit, it is impossible to achieve arbitrary resolution in
the measurement of anisotropies in the background because
of the intrinsic variance of its isotropic component.
For simplicity, we consider an unpolarized and Gaussian

SGWB, whose variance has a factorized dependence on the
frequency f and on the direction of observation n̂

hh�ðf; n̂Þhðf; n̂Þi ¼ 3H2
0

32π3f3
ΩGWðfÞ

X
lm

δGWlm Ylmðn̂Þ; ð1Þ

where H0 is the Hubble constant. Integrating this relation
over the full sky, only the monopole term survives, and,
for δGW00 ¼ ffiffiffiffiffiffi

4π
p

, the parameter ΩGWðfÞ is the fractional
relative energy in GW per log frequency, ΩGW ¼
ðdρGW=d log fÞ=ρc [26], where ρGWðfÞ is the energy
density of the SGWB, and ρc is the critical energy density.
The coefficients δGWlm quantify the relative energy density in
a multipolar expansion (Our definition is in agreement with
that of [8].) relative to that of the monopole. The expansion
is done in analogy to that used in maps of the cosmic
microwave background (CMB) radiation.
We assume that the anisotropy is much weaker than the

monopole, i.e., jδGWlm j ≪ 1, which is reasonable for both the
cosmological and the astrophysical models, and that the ẑ
axis chosen to define the Ylm harmonic functions is aligned
with the Earth rotation axis.
Methodology.—We consider N ground-based GW inter-

ferometers labeled by indices i; j ¼ 1; 2;…; N. An SGWB
results in a time-dependent signal siðtÞ in each of the
instruments that depend on the response, the location, and
the orientation of their arms (see, e.g., [20,27]). The signal
is proportional to the difference in travel time of photons
that propagate through different arms of the detector and
that would travel in an identical amount of time in the
absence of a GW through the detector. The detectors are
also affected by instrumental noise niðtÞ, such that each
instrument measures the data stream

miðtÞ ¼ siðtÞ þ niðtÞ: ð2Þ

Following the formalism of [20,27] we Fourier-
transform the data streams obtained in pairs of detectors
i and j over a time window τ centered at t, and build the
observable Cijðf; tÞ by cross-correlating them,

Cijðf; tÞ≡m⋆
i ðf; tÞmjðf; tÞ; i ≠ j: ð3Þ

The i ≠ j specification indicates that correlations need to be
taken between different (and well-separated) sites so that
the expectation value of the correlation of the noise
between the two sites vanishes. In this way, only a GW

passing through both sites correlates the two measure-
ments, and the expectation value of the cross correlator
between the two data streams, therefore, provides an
unbiased estimator of the signal. Taking advantage of
the Earth rotation, we can compress the Cijðf; tÞ into a
set of functions Cij;mðfÞ obtained through a finite-length,
Fourier transform along the Earth rotation axis in a total
observation time T

Cij;mðfÞ≡ 1

T

Z
T

0

dt e−2πimt=TeCijðf; tÞ; ð4Þ

where Te is the period of rotation of the Earth. The indexm
is an integer, and the coefficients Cij;mðfÞ are the Fourier
coefficients of the series reproducing the time-dependent
function Cijðf; tÞ. We can integrate over frequency by
applying a set of optimal filtersQij;mðfÞ, i.e., functions that
can be chosen to maximize the signal-to-noise ratio (SNR)
of any given estimate. This is the ratio between the
expectation value of the measured Cij and the square root
of its variance. The latter provides, therefore, the forecast
error of the measurement, and the main goal of this Letter is
to single out a contribution to the variance that is present
also in the limit of ideal, noiseless detectors, and that is
related to the intrinsic variance of the dominant isotropic
component of the signal. Namely, we define

Cij;m ≡
Z

∞

−∞
dfCij;mðfÞQij;mðfÞ: ð5Þ

For uncorrelated noise between different detectors, the
expectation value hCiji only contains contributions from the
parametrized signal (1), i.e.,

hCij;mi ∝
Z

∞

−∞
df HðfÞ

X
l

δGWlm γij;lmðfÞQij;mðfÞ; ð6Þ

where γij;lmðfÞ are the response functions that depend on
the geometry of the two detectors i and j, on their distance
vector, and on the multipole considered [20,27].
For definiteness, we assume that the special shape

of the signal is characterized by a constant ΩGWðfÞ ¼ Ω0,
and assume the fiducial value Ω̂0 ¼ 10−9 in our explicit
evaluations. However, due to the factorization (1) and the
assumption of negligible instrumental noise, the accuracy
in reconstructing the relative amplitudes δGWlm is indepen-
dent of the level and functional form of ΩGWðfÞ, as they
cancel in the SNR under the assumption of negligible noise.
Consequently, the result we present below for the assess-
ment of the relative contribution of the anisotropic signal is
independent of the amplitude and frequency shape of the
dominant isotropic contribution. Furthermore, consistent
with our goal of providing the best possible level with
which any given multipole can be reconstructed, we
assume that the signal is dominated by a monopole and
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a single anisotropic multipole, i.e., hh�ðf; n̂Þhðf; n̂Þi ¼
Ω0f−3½1þ δGWlm Ylmðn̂Þ� (This means that we have to be
careful when treating the search of a multipole ðl; mÞ with
m ¼ 0. The analysis can also be done in this case, but the
method is slightly different [28].), as the simultaneous
presence of more non-vanishing anisotropic coefficients
can only worsen our accuracy in measuring each of them.
We consider the log-likelihood function lnLðΩ0; δGWlm Þ ∼
−χ2ðΩ0; δGWlm Þ=2 for the distribution of parameters relative
to fiducial values Ω̂0 and δ̂GWlm with

χ2 ¼
X
m0m00

X
i≠j
k≠l

r⋆ij;m0Σ−2
ij;kl;m0m00rkl;m00 ;

rij;m0 ðΩ0; δGWlm Þ≡ Cij;m0 ðΩ0; δGWlm Þ −
D
Cij;m0 ðΩ̂0; δ̂

GW
lm Þ

E
;

Σ2
ij;kl;m0m00 ¼ hr⋆ij;m0rkl;m00 i; ð7Þ

where we recognize the SNR structure (with the square of
the difference between the actual and expected measure-
ment at the numerator and the variance at the denominator).
The likelihood provides the probability that (due to its
variance) the measurement results in the values Ω0 and
δGWlm , given an injected signal characterized by the “fidu-
cial” values Ω̂0; δ̂

GW
lm . The probability is maximum at the

fiducial values, and it then decreases with a Gaussian
profile determined by the likelihood (7). The assumption of
a Gaussian likelihood is justified by the fact that the
estimators Cij;m are obtained by averaging over a large
number of frequencies and solid angles. Therefore we
can assume that the central limit theorem holds. The
assumption of small anisotropy, jδGWlm j ≪ 1, further sim-
plifies the computation of the covariance term in (7). In a
companion paper [28] we show that, after optimizing the
filters Qij;mðfÞ, the chi-squared in (7) can be written, in
compact form, as

χ2opt ¼ T

��
Ω0

Ω̂0

− 1

�
2

I00 þ
1

4π

����Ω0

Ω̂0

δGWlm − δ̂GWlm

����
2

Ilm

�
; ð8Þ

where the coefficients Ilm are calculated from the integra-
tion over frequency of the response functions of the network
of instruments over the variance term. In the signal-
dominated regime [i.e., when we can neglect the noise
contribution and therefore set ni ¼ 0 in (2)], the variance
term just depends on a combination of the response
functions to the monopole of the various pairs of detectors
in the network. Therefore, in this limit the coefficients I00
and Ilm just depend on the geometry of the network and the
orientation of the arms of the interferometers [28]. This
regime allows us to determine what the ultimate limitations
of a particular configuration of detectors will be in recon-
structing the anisotropies of the SGWB.

We can now ask ourselves the question; what is the
detection threshold for an anisotropy in the signal-
dominated regime? Given the Gaussian assumption for
the likelihood, we can forecast the expected error in a
determination of parameters Ω0 and δGWlm given their
fiducial values Ω̂0, δ̂GWlm . We do so by expanding the
expression (8) to quadratic order in the departure of the
parameters from their fiducial values, namely, by comput-
ing the second derivatives of (8), which form the so-called
Fisher matrix. To estimate the detection threshold, we
choose δ̂GWlm ¼ 0, in which case the Fisher matrix is
diagonal in the two parameters Ω0 and δGWlm :

χ2F ¼ T

��
Ω0

Ω̂0

− 1

�
2

I00 þ
1

4π
jδGWlm j2Ilm

�
: ð9Þ

This sets up a test for the rejection of the null hypothesis
(no anisotropy), as we discuss below.
The calculation of the integral measures Ilm in (9), in a

general case, is complicated by the rotation of the network
with respect to the sky, gaps in the data stream, and
the presence of nonideal noise features. In the signal-
dominated regime, assuming jδGWlm j ≪ 1, and aligning the
coordinate frame (and thus the definition of δGWlm ) with the
Earth rotation, the calculation can be significantly simpli-
fied and carried out analytically [28]. Since we wish to
consider the most idealized case, where we have a single
anisotropic multipole ðl; mÞ on top of a dominant monop-
ole, we have that the only nonvanishing expectation values
of (6) are hCij;0i and hCij;mi. We note that in (9) the off-
diagonal element of the Fisher matrix vanishes. This means
that the observables Cij;m with different values of m are
uncorrelated. This is due to the fact that we have arbitrarily
chosen in (1) to expand the anisotropies along the rotation
axis of the Earth. The most general case, where one wishes
to define the spherical harmonics expanded anisotropies
with another axis, would lead to nondiagonal terms and,
therefore, an even larger sample variance.
Results.—We apply the estimate to three cases. The first

is “LVK,” a network consisting of instruments at the two
LIGO, the Virgo, and the KAGRA sites [21–23]. The
second case, “LVKþ ET” adds a triangularly shaped
detector located at the proposed Sardinia site [24] for
the Einstein Telescope. The third case, “CEþ ET” consists
of Cosmic Explorer and Einstein Telescope baselines only.
We locate CE at the LIGO Hanford site. Consistently with
the above discussion, we assume the signal-dominated
regime across all detectors (namely, that the noise of all
the instruments gives negligible contribution to the var-
iances of the measurements). Throughout, we assume that
data streams are Fourier transformed on a short timescale
τ ¼ 30 sec. This ensures that the sky rotation is negligible
during this time window, given the resolution of
the detectors. We assume a total observation time of
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T ¼ 5 yr. We also assume a constant window in the
frequency domain with f∈ ½1; 1000� Hz. Although the
scenario used here is not band limited by any noise
filtering, this range mimics an optimistic frequency range
of sensitivity for typical ground-based detectors. In prac-
tice, the effective window and bandwidth of the estimate
will be determined by noise weighting. These assumptions,
along with the coordinate alignment and noiseless limit,
mean that our estimates constitute extreme best-case,
sample limited scenarios for each chosen configuration.
In Fig. 1, we show, for each network and for each

multipole l (up to and including l ¼ 8), the estimated
standard deviation σδGWlm ≡ ðTIlm=4πÞ−1=2 as obtained after
marginalizing (namely, after integrating the likelihood)
over Ω0, which provides an indication of the SNR ¼ 1
threshold for detection of the SGWB anisotropy. Given
that, as mentioned above Eq. (9), the fiducial signal in our
analysis is isotropic, the values shown in the figure are the
68% confidence level (C.L.) forecast of what will be
measured by the corresponding network if the SGWB is
indeed isotropic. A measurement above this value will
indicate that the hypothesis of isotropy is rejected at 68%
C.L. Consequently, this value is our estimate of how large
an anisotropy needs to be in order to be detected at this C.L.
It is important to remember that the distribution of error
amplitudes for a given multipole will change depending on
the orientation of the coordinate frame, but the overall
amplitude will be unchanged. In particular, the results show
how the addition of baselines becomes important in the
signal-dominated regime.

In Fig. 2 we show the function χF evaluated around the
fiducial values in Ω̂0 and δ̂

GW
lm ¼ 0 (for one example choice

of l and m). The region within (outside) a given contour
indicates the values for which a measurement is compatible
(incompatible) with the fiducial values at the corresponding
C.L. As discussed below Eq. (6), the result shown is
independent of the fiducial value of Ω0. This result also
shows that the dominant effect, as expected in the absence
of instrumental noise, is the number of baselines in the
network.
The results show that even in the extreme case of a future

ground-based network with negligible noise, the SNR ¼ 1

threshold for the relative anisotropies is ∼10−5–10−4 over a
period of measurement of Oð10Þ yr. This scale is deter-
mined by the effective bandwidth Δf of the overlap
functions, which is of the order of ∼100 Hz, and the total
integration time R, which is of the order of 108 s. This
crude estimate gives σ ∝ ð1= ffiffiffiffiffiffiffiffiffiffi

TΔf
p Þ ∼ 10−5 which repro-

duces well the scale of the sample variance, with an
additional factor of ∼1–10 (varying for the different net-
works considered) arising from the specific values of the
function in the integrand of Eq. (9) [28]. We stress that
improving the 10−5–10−4 threshold by a factor of 10
requires increasing the measurement time by a factor of
100. Large angular scale anisotropies in the primordial
background generated by the GW propagation in the early
universe are expected to be below this level [6,29], with
quadrupole amplitude

ffiffiffiffiffiffi
C2

p
∼ 3 × 10−5 [8]. Grater anisot-

ropies in the cosmological SGWB are possible in specific
contexts, for instance, in the presence of large primordial
non-Gaussianity [30,31] or isocurvature modes [32,33].
Moreover, astrophysical backgrounds can be estimated
to be of the order of 10−2 and are expected to have

FIG. 1. Forecast errors induced by the intrinsic variance of the
dominant isotropic component in the measurement of the
multipolar coefficients δGWlm , for each l ≤ 8. These coefficients,
introduced in Eq. (1), quantify the amplitude of the corresponding
multipole of the SGWB relative to the isotropic component Ω0.
The shaded bands highlight the range of σδGWlm at each l (with m

spanning the range −l to þl). A measured value of δGWlm above
the value in the figure would signify a “detection” of that
anisotropy mode at 68% C.L. Adding ET to the LVK network
reduces sample variance at all multipoles, while CEþ ET has
worse sample variance.

FIG. 2. The χ2F contours in the plane of Ω0 (the overall
amplitude of the GW logarithmic energy density) and δGW11
[one of the dipolar coefficients of the anisotropic expansion of
the SWGB as defined in Eq. (1)]. The 1σ to 3σ contours are
highlighted for both LVK and LVKþ ET networks. The two
parameters are uncorrelated for the choice of frame and variable
definition adopted here.

PHYSICAL REVIEW LETTERS 131, 221403 (2023)

221403-4



background amplitudes within reach of future sensitivity
[10,17,34,35].
Another signal to consider is the kinematic dipole of the

SGWB induced by the proper motion of the Earth with
respect to the background [36]. This signature is analogous
to the dipole observed in the CMB radiation. The statement
that the observed universe is homogeneous and isotropic at
large scales applies only to one specific frame, denoted
as the CMB rest frame. The large dipole in the CMB
indicates [37] that the solar system is moving in this frame,
with proper velocity v=c ∼ 1.2 × 10−3, in the direction of
galactic coordinates (l ¼ 264°, b ¼ 48°). The cosmological
SGWB also has its rest frame, and it is reasonable
to assume that it coincides with that of the CMB (assuming,
for instance, that both signals originate from cosmological
distances where the homogeneous limit applies). Future
SGWB measurements might allow us to test this assump-
tion. The observed CMB kinematic dipole translates to
an expected dipolar SGWB anisotropy with coeffici-
ents δGW1;−1 ¼ −δGW1;1 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið2π=3Þp
β [20]. As proved in [28],

the variance in the measurement of any given δGWl;m is
independent of the sign of m. Therefore, the combined
measurement of the two multipoles allows us to have a final
uncertainty on the kinematic dipole of σβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið3=4πÞp
σδGW

1;1
.

This evaluates to σβ ¼ 3.4 × 10−5 for the LVK network and
σβ ¼ 1.6 × 10−5 with the addition of ET. Therefore, sample
variance is not an obstacle to detecting the kinematic dipole
induced by our peculiar motion under the assumption that
the SGWB rest frame coincides with the CMB one.
Conclusions.—We have studied the impact of the intrin-

sic variance of the monopole on the measurement of the
ansotropies of the SGWB. This term adds up to the
instrumental noise [28]. To assess the relative importance
of the two contributions, let us consider as an example the
specific case of the measurement of a scale-invariant dipole
(l ¼ m ¼ 1). In this case, the sample variance component
amounts to ≃7 × 10−5 of the total variance for the existing
LVK network at design sensitivity. As detectors will
improve, the sample variance will become more important,
contributing with ≃5 × 10−4 of the total uncertainty for the
LVKþ ET network and to ≃0.14 for the ETþ CE net-
work. Similar results are obtained for different multipoles,
as can be deduced from the results shown in Fig. 4 of
Ref. [28]. In providing these values, we have assumed that
Ω0 saturates its current upper bound [2]. The weight of the
intrinsic variance relative to the instrumental noise is
directly proportional to Ω0 [28], and therefore we expect
it to be relevant in future measurements for the level of the
isotropic signal that can be expected for the astrophysical
backgrounds and some cosmological scenarios [6].
The results presented in this Letter focus on the best-case

scenario of detectors with negligible instrumental noise,
showing that, in this idealized limit, several network
configurations of existing and planned interferometers

achieve SNR ¼ 1 at 10−5–10−4 in the amplitudes δGWl;m
(relative to the monopole) of the multiples of the SWGB.
This best-case scenario also assumed that only one multi-
pole of the anisotropy is present, and so it disregards
correlations between different multipoles that are generally
expected to be present. Given the complicated and
noncompact sky response functions of interferometer net-
works, we should expect these correlations to be signifi-
cant. This underscores that our estimates should be
considered the most optimistic lower bounds on the sample
variance of individual anisotropies.
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