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Describing the evolution of quantum systems by means of non-Hermitian generators opens a new avenue
to explore the dynamical properties naturally emerging in such a picture, e.g. operation at the so-called
exceptional points, preservation of parity-time symmetry, or capitalizing on the singular behavior of the
dynamics. In this Letter, we focus on the possibility of achieving unbounded sensitivity when using the
system to sense linear perturbations away from a singular point. By combining multiparameter estimation
theory of Gaussian quantum systems with the one of singular-matrix perturbations, we introduce the
necessary tools to study the ultimate limits on the precision attained by such singularity-tuned sensors. We
identify under what conditions and at what rate can the resulting sensitivity indeed diverge, in order to show
that nuisance parameters should be generally included in the analysis, as their presence may alter the
scaling of the error with the estimated parameter.

DOI: 10.1103/PhysRevLett.131.220801

Introduction.—Quantum entanglement boosts dramati-
cally performance in sensing [1,2], allowing quantum
sensors to breach classical limits imposed by the indepen-
dent identically distributed statistics [3]. The corresponding
enhancement, however, turns out to be very fragile [4–6],
making methods of quantum control [7–9] and error
correction [10–12] essential, if the robustness against
decoherence and imperfections is to be maintained. As
the impact of noise becomes inevitable with sensor com-
plexity, a change of paradigm is necessary. One way is to
adopt a non-Hermitian dynamical description and engineer
the noise instead, in order to make the evolution extremely
sensitive to external perturbations. For example, consider-
ing deviations from exceptional points (EPs) in the space of
parameters characterizing the system [13]—special degen-
eracies at which n (complex) eigenvalues coalesce along
with their eigenmodes [14–16]—a linear perturbation ϵ
away from the EP leads to an nth-root splitting ∼

ffiffiffi
ϵn

p
of the

eigenmode frequencies [17]. Hence, a splitting measure-
ment may yield infinitely steep signals of unbounded
sensitivity as ϵ → 0, as demonstrated with optical reso-
nators [18,19] in the regime in which the measurement-
induced noise can be ignored. Otherwise, the effect is
washed out by the quantum noise [20–22]—in a similar
way as it prohibits noiseless amplification of optical
signals [23,24].
Alternative schemes involving linearly coupled systems

were proposed (cf. [25]) that surpass the impact of quantum
noise by resorting to perturbations of the effective non-
Hermitian generator, H, in the Langevin formalism [26]—
with the operation around an EP being no longer essential
[27]. For example, by considering the internal interaction to

be nonreciprocal and perturbing the coupling strength, the
sensitivity—the signal-to-noise ratio (SNR)—was shown
to improve by a constant factor [29]. Moreover, it was
shown that by engineering H to be singular [30] and
sensing perturbations of the internal frequency probed on
resonance, the SNR may diverge boundlessly as ϵ−2 with
ϵ → 0 [31]. Despite the similarity to the EP-induced effect,
this is a consequence of probing the sensor close to a
dynamical phase transition useful for sensing [32–39].
Although linearity of dynamics may be questioned at a
critical point [17,20], it is valid at different probe powers
[40] for sensors we consider [40–44].
Here, we demonstrate how to correctly assess

singularity-tuned sensors [31], opening doors for other
criticality-enhanced schemes [32–39]. We investigate sin-
gularity-induced SNR-divergence in a linear system exhib-
iting parity-time (PT) symmetry [45]: two coupled bosonic
cavities experiencing loss and gain [40–44]; see Fig. 1. Its
non-Hermitian dynamics allows EP- [17], nonreciprocity-
[29], and singularity-based [31] sensing. We employ multi-
parameter estimation theory of multimode Gaussian states
[46] to determine sensitivity limits. By performing singular
perturbations [47–50] of the corresponding response func-
tion, we show that the critical behavior of the SNR at the
singularity depends not only on the perturbation form but
also on nuisance parameters unknown prior to estima-
tion [51,52].
Non-Hermitian sensor model.—Sensors [40–44] can be

described by the model depicted in Fig. 1, in which two
cavities containing modes â1 and â2 at frequencies ω1 and
ω2, respectively, are linearly coupled with strength g, so
that the Hamiltonian reads

PHYSICAL REVIEW LETTERS 131, 220801 (2023)

0031-9007=23=131(22)=220801(7) 220801-1 © 2023 American Physical Society

https://orcid.org/0000-0001-7552-7200
https://orcid.org/0000-0003-1069-7924
https://orcid.org/0000-0001-8211-0016
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.220801&domain=pdf&date_stamp=2023-11-29
https://doi.org/10.1103/PhysRevLett.131.220801
https://doi.org/10.1103/PhysRevLett.131.220801
https://doi.org/10.1103/PhysRevLett.131.220801
https://doi.org/10.1103/PhysRevLett.131.220801


ĤS ¼ ω1â
†
1â1 þ ω2â

†
2â2 þ g

�
â†1â2 þ â†2â1

�
: ð1Þ

We consider here degenerate cavities with ω1 ¼ ω2 ≕ω0

[40]. Each mode â1 (â2) is separately coupled to a
scattering channel B̂1 (B̂2) that effectively induces loss
(gain) of strength η1 (η2) on each cavity. The couplings
correspond to effective beam-splitter and nondegenerate
parametric-amplifier [53] interactions, see Fig. 1, with
other nonlinear effects being ignored [54]. In parallel, both
cavities are independently probed via channels Â1 and Â2,
each coupled with strength κ, whose outputs are monitored.
By resorting to input-output formalism [55,56], the sensor
dynamics is described by a linear quantum Langevin
equation [26,57]:

∂tâ ¼ −iðω0IþHÞâþ Âin þ B̂in; ð2Þ

where â ≔ fâ1; â2gT, Âin ≔ f ffiffiffi
κ

p
Â1;in;

ffiffiffi
κ

p
Â2;ingT,

B̂in ≔ f ffiffiffiffiffi
η1

p
B̂1;in;−

ffiffiffiffiffi
η2

p
B̂†
2;ingT, and I is a 2 × 2 identity

matrix. Âl;in, B̂l;in with l ¼ 1, 2 denote the effective input
fields of the optical channels, see Fig. 1, whose output
fields are determined by input-output relations [26] and
read at time t: Âl;outðtÞ ¼ Âl;inðtÞ −

ffiffiffi
κ

p
âlðtÞ [57].

The evolution of the cavity modes in Eq. (2) is described
by the non-Hermitian dynamical generator that reads

H ¼
�−iγ1 g

g þiγ2

�
; ð3Þ

with γ1 ≔ ðη1 þ κÞ=2ðγ2 ≔ ðη2 − κÞ=2Þ being the overall
loss (gain) rate of each cavity. As a result, defining
γ� ≔ ðγ2 � γ1Þ=2, the eigenvalues and eigenmodes of
H read

λ� ¼ iγ−�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2− γ2þ

q
; je�Þ ¼

�
−iγþ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − γ2þ

p
g

�
; ð4Þ

so that the spectrum of H is real if and only if g ≥ γþ
and γ− ¼ 0, in which case H formally exhibits PT
symmetry [45]. The PT condition is conveniently visual-
ized in fγ1; γ2; gg parameter space, see Fig. 2(a), by a
vertical (yellow) triangular plane. Importantly, by main-
taining the PT symmetry the validity of the linear model (2)
can be extended to high probe powers [40]. The sole
condition γ− ¼ 0 we term as the balanced scenario, as the
gain then balances out exactly the loss (γ1 ¼ γ2) [43]. In
what follows, when probing the system at the sensor
frequency ω0, the singularity of the non-Hermitian gen-
erator (3) will play a pivotal role. This corresponds to the
condition detH ¼ 0 or g2 ¼ γ1γ2, represented by the green
surface in Fig. 2(a). Contrarily, H exhibits an EP at g ¼ γþ
when both λ� and je�) coalesce [45]. In Fig. 2(a), we mark
the EP condition when singularity is also fulfilled (dashed
blue line). The constant-γ1 cut in Fig. 2(b) shows singu-
larity and PT-symmetry conditions separate Imλ� into
negative or positive regions, determining stable or unstable
dynamics, respectively. The Imλ� ¼ 0 border defines the
lasing threshold [43] (marked for γ1 ¼ 0.75 by dashed
purple line), which for g > γ1 does not occur at the
singularity [57].
In sensing tasks with linear perturbations, the generator

(3) is modified as follows:

FIG. 2. Space of parameters characterizing the dynamical
generator H in Eq. (3), with g and γ1 (γ2) being the coupling
constant and loss (gain) rates, respectively. (a) The green surface
depicts values where the singularity condition detH ¼ 0 holds,
and the triangular plane represents PT symmetry. Their inter-
section, where g ¼ γ1 ¼ γ2, guarantees the EP condition (dashed
blue line). (b) Cut at γ1 ¼ 0.75 is included to show the separation
between stable and unstable regions of dynamics—with the
lasing threshold (purple dashed line) following the singularity
surface before becoming (at an EP, blue dot) equivalent to the PT
condition for g > γ1. In the multiparameter estimation setting, we
consider nuisance parameters to preserve PT symmetry while
either invalidating (black arrow) or maintaining (red arrows) the
singularity condition.

FIG. 1. Non-Hermitian sensor model consisting of two coupled
cavities bearing modes â1 and â2 with effective loss and gain rates
γ1 ¼ ½ðη1 þ κÞ=2� and γ2 ¼ ½ðη2 − κÞ=2�. The rates are controlled
by “scattering channels” (modes), B̂1 and B̂2, coupled to respective
cavities, whose dynamics is also affected by “probing channels”,
Â1 and Â2, used to continuously monitor each cavity.
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Hθ ≔ H −
X
i

θini ¼ Hθ̄ − θ0n0; ð5Þ

where θ ≔ fθigi denotes a set of (real) parameters to be
sensed, each of which modifies H according to some
(complex) 2 × 2matrix ni. In Eq. (5), we single out the case
in which θ0 denotes the primary parameter to be sensed
around zero, while the rest of the set, θ̄ ≔ fθigi≠0, contains
nuisance parameters, i.e. ones that are of no interest but
nonetheless unknown. This allows us to capture the
following θ0-estimation scenarios: by setting n0 ¼ σz in
Eq. (5), we let θ0 ¼ ðω1 − ω2Þ=2 describe perturbations of
the detuning between the cavity frequencies—as originally
considered in the EP-based sensing schemes [20]; by
choosing n0 ¼ σx, we let θ0 perturb the coupling strength
g—as investigated in Ref. [29] dealing with nonreciprocal
dynamics; when n0 ¼ I [n0 ¼ ð1; 0; 0; 0Þ] θ0 describes
perturbations of the common frequency ω0 (of ω1 for the
first cavity only) [31].
Linear response in the Fourier domain.—We consider

the sensor to be interacting with Gaussian light [58], so it is
sufficient to describe its dynamics using the Gaussian
formalism [59,60], within which evolution of bosonic
modes b̂i is fully characterized after defining the vector
Ŝ ¼ fq̂1; q̂2;…; p̂1; p̂2;…gT of their quadratures, q̂i ¼
b̂i þ b̂†i and p̂i ¼ −iðb̂i − b̂†i Þ, and tracking its mean S ≔
hŜi and covariance V with entries Vjk ≔ 1

2
hfŜj; Ŝkgi−

hŜjihŜki. As we are interested in probing the sensor at a
particular frequency ω, we focus on the evolution in the
Fourier space, in which according to Eq. (2) the dynamics
of measured outputs, ŜA

out containing quadratures of
Âl;out½ω�≔

R
dteiωtÂl;outðtÞ, is given by SA

out¼ðI− κGÞSA
in

and VA
out ¼ ðI − κGÞVA

inðI − κGÞT þ κGΞṼB
inΞTGT. The

covariance of probe outputs VA
out depends also on the

covariance of input scattering modes, i.e. ṼB
in describing

correlations between eight quadratures (l ¼ 1, 2) of
B̂l;in½�ω� [57]. The matrix Ξ is associated with the
coupling of cavities to scattering channels, I denotes a
4 × 4 identity matrix, while the central object is the (linear-)
response function,

G½ω� ¼ J½ðω − ω0ÞI − H�−1; ð6Þ

whose divergent behavior will be responsible for the
unbounded precision when sensing perturbations. By J ¼
ð0;−I; I; 0Þ we denote the symplectic form consistently
with the notation of [57], within which [61]

H≔
�
Re½H� −Im½H�
Im½H� Re½H�

�
¼

0
BBB@

0 g γ1 0

g 0 0 −γ2
−γ1 0 0 g

0 γ2 g 0

1
CCCA ð7Þ

is the phase-space representation of H. Equation (6)
diverges if det ½ðω − ω0ÞI − H� ¼ 0, which can always be
assured by tuning loss and gain, as long as the probing is
performed in resonance (ω ¼ ω0) with the common
internal frequency. Divergence then occurs when detH ¼
j detHj2 ¼ 0, i.e. when the generator H in (3) is, indeed,
singular [62].
Considering now θ-parametrized perturbations specified

in Eq. (5), the response function (6) becomes

Gθ½ω¼ω0� ¼ J
�X

i
θini−H

�
−1

¼ Jðθ0n0−Hθ̄Þ−1; ð8Þ

where ni are the phase-space representations of ni [61].
Analogously to Eq. (5), we highlight the case when θ0 is the
primary parameter and Hθ̄ ≔ H −

P
i≠0 θini. For singular

dynamics with detH ¼ 0, the response function (8)
diverges when all θi ¼ 0, but the form of divergence
depends on fnigi. For example, when estimating θ0 ≈ 0

the singularity may be maintained despite θ̄ ≠ 0, as long as
detHθ̄ ¼ 0 also for θ̄ ≠ 0.
Aiming to study such subtleties and treat θ̄ as nuisance

parameters, we focus on the two-parameter setting,
θ ¼ fθ0; θ1g, in which the primary parameter represents
ω0-frequency perturbations, i.e. n0 ¼ I [31]. In contrast,
we choose the secondary parameter θ1 such that its
variations either invalidate or maintain the singularity
condition but do not break the PT symmetry, so that the
linearity of dynamics is ensured [40]. In Fig. 2(a), we mark
these cases by black and red arrows, respectively, which
correspond to singularity nonpreserving (NS) increase of
the coupling g [29], and singularity preserving (S) pertur-
bations maintaining g ¼ γ1 ¼ γ2 and, hence, the EP con-
dition [63]. The two scenarios yield Eq. (5) of the form
Hθ ¼ HNS=S

θ1
− θ0I, where

HNS
θ1

≔ H̄−θ1σx and HS
θ1
≔ H̄−θ1ðσx− iσzÞ; ð9Þ

and H̄ denotes H with g ¼ γ1 ¼ γ2 ¼ 1 [64].
Multiparameter estimation of Gaussian states.—For a

quantum system prepared in a state ρθ parametrized by
θ ≔ fθigi and a measurement with outcome ξ distrib-
uted according to pðξjθÞ, the classical and quantum
Fisher information matrices (CFIM and QFIM) read,
respectively [51],

Fjk ≔ EpðξjθÞ½∂j lnpðξjθÞ∂k lnpðξjθÞ�; ð10Þ

F jk ≔ Tr

�
ρθ

1

2
fLj; Lkg

�
; ð11Þ

where ∂j ≡ ∂=∂θj is the derivative with respect to any
estimated parameter θj, while by EpðξjθÞ½•� ≔

R
dξpðξjθÞ•

we denote the expected value. In the quantum case (11),
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EpðξjθÞ½•� naturally generalizes to Tr½ρθ•�, while ∂j lnpðξjθÞ
becomes the symmetric logarithmic derivative Lj, defined
as the solution to ∂jρθ ¼ 1

2
fρθ; Ljg [65–67].

For any unbiased estimator θ̃ðξÞ constructed based
on measurement data ξ ¼ fξrgνr¼1 gathered over ν inde-
pendent shots, its (squared-)error matrix Δ2θ̃ ≔
E½ðθ̃ − θÞðθ̃ − θÞT� satisfies the quantum Cramér-Rao
bound [65,66]:

νΔ2θ̃ ≥ F−1 ≥ F−1; ð12Þ

where the first matrix inequality is guaranteed to be
saturable by some θ̃ in the ν → ∞ limit, i.e. for any
W ≥ 0 for which Tr½WΔ2θ̃� is then minimized. In
contrast, although the second inequality applies to any
quantum measurement, as the optimal measurements for
distinct parameters θi may not commute (formally
Tr½ρθ½Lj; Lk�� ≠ 0 [68]), it may not be generally saturable
by any estimator θ̃ given some W ≥ 0. However, it can
differ at most by a factor of 2 from the minimal Tr½WF−1�
attained by the optimal measurements [51].
When estimating a single parameter θi with others

treated as nuisance ones, i.e. Wjk ¼ δijδik, we denote the

lower bounds on the error in Eq. (12) as ΔCθi ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
½F−1�ii

p
and ΔQθi ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F−1�ii

p
, so that any unbiased estimator of θi

satisfies then νΔ2θ̃i ≥ Δ2
Cθi ≥ Δ2

Qθi [69]. This contrasts the
ideal single-parameter scenario with all parameters known
apart from θi, in which case Eq. (12) simplifies to νΔ2θ̃i ≥
δ2Cθi ≥ δ2Qθi with δCθi ≔ 1=

ffiffiffiffiffiffiffiffiffi½F�ii
p

and δQθi ≔ 1=
ffiffiffiffiffiffiffiffiffiffi½F �ii

p
.

Considering any Gaussian measurement of the probe
outputs Âl;out, its outcome x is normally distributed x ∼
expf− 1

2
ðx − x̄ÞC−1ðx − x̄ÞTg [60,71], with both the mean

vector x̄ðθÞ and the covariance matrix CðθÞ depending on
the parameter set θ. The CFIM (10) takes then a special
form [72]:

Fjk ¼
1

2
Tr½C−1ð∂jCÞC−1ð∂kCÞ� þ ð∂jx̄ÞTC−1ð∂kx̄Þ; ð13Þ

so that in case of a heterodyne measurement being
performed one should replace x̄ ¼ SA

out and C ¼ VA
out þ I

in the above [60]. More generally, allowing for arbitrary
quantum measurements performed on a Gaussian state of
mean SðθÞ and covariance VðθÞ, the QFIM (11) reads
F jk ¼ 1

2
Tr½Lj∂kV� þ ð∂jSÞTV−1ð∂kSÞ [46,73–76], with the

matrix Lj possessing a nontrivial form [57]. However, by
generalizing the results of [77] to the multiparameter case,
we show that QFIM can always be approximated for noisy
Gaussian states, e.g. highly thermalized, as [57,76]

F jk ≈
1

2
Tr½V−1ð∂jVÞV−1ð∂kVÞ� þ ð∂jSÞTV−1ð∂kSÞ; ð14Þ

as long as the spectrum of V satisfies λminðVÞ ≫ 1. In our
case, the noisy QFIM (14) is then determined by the
response function (8), with SðθÞ ¼ ðI − κGθÞSA

in and
VðθÞ ¼ ðI − κGθÞVA

inðI − κGθÞT þ κGθΞṼB
inΞTGT

θ .
Single-parameter sensitivities.—When sensing a single

parameter θ0 with others perfectly known, we set θ̄ ¼ 0 in
Eq. (8), so that Hθ̄¼0 ¼ H and only the entry j ¼ k ¼ 0 in
Eq. (14) is relevant. Now, whenever the generator H
is nonsingular, the response function (8) admits a
Neumann series Gθ0 ¼−JH−1½IþP∞

k¼1 θ
k
0ðn0H−1Þk� [78]

with limθ0→0Gθ0 ¼ −JH−1. As a result, Eq. (14) reads
F 00 ≈ CþOðθ0Þ with some θ0-independent finite con-
stant C [57], so the error cannot vanish as θ0 → 0, at which
its minimal value is given by δQθ0 ¼ 1=

ffiffiffiffi
C

p
> 0 [79]. In

contrast, when the generatorH is singular, the Sain-Massey
(SM) expansion [47–50] of the response function (8)
applies, i.e. Gθ0 ¼ Jθ−s0

P
r
k¼0 θ

k
0Xk with each nonzero

coefficient, XkðH;n0Þ, generally depending on H and the
perturbation matrix n0 up to some (possibly infinite) r. The
singularity is characterized by the order s∈Nþ of the pole
in the SM expansion, which for any Gθ0 is found by a
recursive procedure [57]. Equation (14) implies thenF 00 ≈
θ−2s0 ½AþOðθ0Þ� for some θ0-independent A > 0 [57], so
the error δQθ0 ¼ 1=

ffiffiffiffiffiffiffiffiffi
F 00

p
∝ θs0 vanishes as θ0 → 0 at a rate

dictated by s. This proves the singularity of H to be
essential for unbounded sensitivity, while other system
properties, e.g. exhibiting an EP and/or balancing the loss
and gain rates [31], can only play a role in determining the
pole-order s. For the system considered, we evaluate the
SM expansions for the choices of the perturbation matrix n0
listed below Eq. (5) [57]. We observe that only in the case
of two-mode symmetric frequency perturbations, n0 ¼ I
[31], the pole is second order, while in all other cases it is of
order one. We focus on the former in Fig. 3, where we plot
the exact, numerically obtained, estimation error (black
lines)—neither noisy (14) nor θ0 ≈ 0 approximations are
made—that consistently follows a quadratic scaling.
Impact of nuisance parameters.—Dealing with the

multiparameter scenario, in order to expand the response
function (8) around θ0 ¼ 0, it is now Hθ̄ appearing in
Eq. (8) whose singularity must be verified. Still, whenHθ̄ is
nonsingular, Gθ admits again a Neumann series with
limθ0→0Gθ ¼ −JH−1

θ̄
. Hence, F 00 must be bounded as

before, with the estimation error ΔQθ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F−1�00

p
≥

1=F 00 forbidden to vanish as θ0 → 0. When Hθ̄ is singular
instead, it is the SM expansion of Gθ that is valid, with the
expansion coefficients Xk depending now also on nuisance
parameters θ̄. However, the sensitivity scaling in θ0 may not
be associated with the pole order any more, as the error
ΔQθ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½F−1�00

p
involves the inverse of the QFIM and,

hence, is generally affected by correlations between differ-
ent unknown parameters. We show this explicitly by
focusing on the two-parameter estimation scenario with
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the primary θ0 generated by n0 ¼ I, while θ1 acts as
nuisance parameter of either HNS

θ1
or HS

θ1
in Eq. (9)—black

or red arrows in Fig. 2(a).
In case ofHNS

θ1
, the error in estimating θ0 may not vanish

as θ0 → 0 for any θ1 ≠ 0, for which Hθ1 is nonsingular. We
show this explicitly by considering a thermal state with zero
displacement as the probe input, for which ½F−1�00 ¼
1=F 00 ∝ θ21 at θ0 ¼ 0 [57]. At the singular point θ1 ¼ 0,
we also show—by resorting to the SM expansion—that
ΔQθ0 ¼ δQθ0 þOðθ40Þ [57], with the impact of the nui-
sance parameter being then ignorable and single-parameter
results being applicable (δQθ0 ∝ θ20, black lines in Fig. 3).
Turning to HS

θ1
, which importantly leads to Hθ1 being

singular for any θ1, we show that the SM expansion
Gθ0;θ1 ¼ Jθ−20

P
1
k¼0 θ

k
0Xkðθ1Þ exhibits a second-order pole

[57]. Substituting the expansion into Eq. (14), we obtain the
entries of QFIM: F 00 ≈ αθ−40 þ 2βθ−30 þ γθ−20 , F 11 ≈
αθ−20 ; and F 01 ≈ αθ−30 þ βθ−20 , with α, γ > 0 and β∈R
[57]. This implies that the error in estimating the primary
parameter reads

ΔQθ0 ¼
�
F 00 −

F 01F 10

F 11

�
−1
2

≈
�
γ −

β2

α

�−1
2

θ0; ð15Þ

and scales linearly with θ0—the presence of nuisance θ1
precludes the scaling from following the quadratic behavior
dictated by the pole. We show this explicitly in Fig. 3,
where we plot the exact estimation error ΔQθ0 in red (blue)
for HS

θ1
with θ1 ¼ 0 (θ1 ¼ 0.25), as well as ΔCθ0 attained

by heterodyne detection (dashed lines) that also follow the
linear scaling.
Conclusions.—We establish the tools necessary to assess

quantum Gaussian systems in sensing linear perturbations
away from singularities. We investigate the divergence of
sensitivity then exhibited, while clarifying that other
dynamical properties, e.g. operation at an exceptional point,
fulfilment of lasing conditions or nonreciprocity, do not play
a primary role. However, we demonstrate that nuisance
parameters may then strongly affect the performance, i.e.
the rate at which the sensitivity diverges. Such a phenome-
non resembles the setting of quantum superresolution
problems [80], in which the lack of a spatial reference
disallows one resolving infinitesimal separations between
objects [81–85]. We leave open the question of how our
results change, if one accounts for any prior knowledge
about the sensed and/or nuisance parameters [86–88].
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