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In nanoscale systems coupled to finite-size reservoirs, the reservoir temperature may fluctuate due to
heat exchange between the system and the reservoirs. To date, a stochastic thermodynamic analysis of heat,
work, and entropy production in such systems is, however, missing. Here we fill this gap by analyzing a
single-level quantum dot tunnel coupled to a finite-size electronic reservoir. The system dynamics is
described by a Markovian master equation, depending on the fluctuating temperature of the reservoir.
Based on a fluctuation theorem, we identify the appropriate entropy production that results in a
thermodynamically consistent statistical description. We illustrate our results by analyzing the work
production for a finite-size reservoir Szilard engine.
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Introduction.—In nanometer scale systems in contact
with an environment, fluctuations of physical quantities are
ubiquitous. The ability to control and measure systems at
such small scales has been a key driving force in the
development of stochastic thermodynamics [1–8], which
provides a theoretical framework for thermodynamics
phenomena based on concepts such as stochastic entropy
[9], as well as detailed [10–16] and integral [17–19]
fluctuation theorems. Stochastic thermodynamics has over
the last two decades successfully been employed to
describe a large number of experiments on small scale
systems, such as implementations of Maxwell’s demon
[20–24] and Szilard’s engine [25,26], verifications of
Landauer’s principle [27–29], tests of fluctuation theorems
[30–33], and determination of system free energies
[31,34–36].
In all these experiments, the environment can to a good

approximation be described as a bath, or reservoir, in
thermal equilibrium. Thus, the reservoir is effectively of
infinite size, such that the exchange of heat with the system
does not affect the reservoir. However, in many nanoscale
experiments, the reservoirs are themselves of finite sizes,
with system back action inducing energy fluctuations
within the reservoir [37–42]. Given a fast relaxation time-
scale, such a reservoir may then be described by a
fluctuating temperature. Such temperature fluctuations
were recently investigated in small metallic islands [43].

Theoretically, the effect of finite-size reservoirs with
time-dependent (but not fluctuating) temperatures on
thermodynamic and transport properties have been inves-
tigated in a number of systems [44–49]. Furthermore,
average values of thermodynamic quantities have been
investigated for finite-size reservoirs that exhibit energy
fluctuations [50]. There is to date, however, no stochastic
thermodynamics analysis of small scale systems coupled to
finite-size reservoirs, fully accounting for the system-
reservoir back action and the resulting, correlated fluctua-
tions of their physical properties. While the formalism
outlined in Ref. [51] could provide the basis of such an
investigation, we focus here on scenarios where the
reservoir may be described by a (fluctuating) temperature
at all times.
In this Letter, we present such a stochastic thermody-

namics analysis, focusing on a basic, experimentally
realizable setup [38,42]—a single level quantum dot with
a time-dependent level energy, tunnel coupled to a finite-
size electronic reservoir that can be described by a
fluctuating temperature. The dynamics of the system and
the reservoir temperature is described by a Markovian
master equation. Based on a fluctuation theorem, relating
the probabilities for forward and backward trajectories for
the system and the reservoir temperature, we identify the
appropriate stochastic entropy production. This allows for a
thermodynamically consistent description given the knowl-
edge of the fluctuating reservoir temperature. This is in
contrast to previous approaches describing finite-size
reservoirs, where effective temperatures are defined based
on averages of reservoir observables [51–53]. To illustrate
the approach, we consider a Szilard engine and show that
the performed work is smaller than the work of an ideal
engine, where the reservoir is of infinite size.
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Entropy production conundrum.—The challenges with a
stochastic thermodynamics description of small systems
coupled to finite-size reservoirs can be compellingly
illustrated by considering the basic setup in Fig. 1(a). A
classical two-state system, with an energy difference ϵ > 0
between the two states 0 and 1, exhibits stochastic state
transfers due to the exchange of a discrete amount of heat
q ¼ �ϵ with a finite-size reservoir. Assuming that the
reservoir temperature T increases monotonically with
increasing reservoir energy, T will fluctuate between T0

and T1 < T0, with superscripts denoting the system state.
Naively employing the known result for infinite-size
reservoirs, namely, that the entropy is given by the heat
transferred divided by the reservoir temperature, one
would assume that a transfer of heat into (out of) the
reservoir leads to a production of entropy Δsin ¼ ϵ=T1

(Δsout ¼ −ϵ=T0) in the reservoir. For two subsequent heat
transfers this leads to a reservoir entropy production

Δsin þ Δsout ¼ ϵð1=T1 − 1=T0Þ > 0: ð1Þ

Since the system is back in the same state after two
transfers, the system does not contribute to the entropy.
The result in Eq. (1) would thus imply that in equilibrium,
stochastic heat fluctuations lead to a nonzero entropy
production, which is physically nonsensical. From this
reasoning, it is clear that entropy production in a reservoir
with a temperature changing as a result of heat transfers
between system and reservoir requires further understand-
ing. To provide this, in the following we present a fully
stochastic approach to the thermodynamics of an exper-
imentally realistic implementation of the setup in Fig. 1(a).

System and master equation.—We consider a single level
quantum dot with a time-dependent level energy ϵt, coupled
to a finite-size electron reservoir via a tunnel barrier,
characterized by a tunnel rate Γ, see Fig. 1(b). An electron
tunneling from the dot to the reservoir (from the reservoir to
the dot) at time t adds (removes) energy ϵt to (from) the
reservoir. The stochastic nature of the tunneling process
induces, in this way, fluctuations in time of the reservoir
energy E. The electronic thermalization in the reservoir
is considered to be so fast that, at all times, the electrons
are effectively in a quasiequilibrium state, described by a
Fermi distribution

fðϵ; EÞ ¼ 1

1þ eϵ=kBTðEÞ
: ð2Þ

The temperature TðEÞ is related to E via the heat capacity
CðTÞ ¼ C0T as

TðEÞ ¼
ffiffiffiffiffiffi
2E
C0

r
; ð3Þ

where C0 ¼ π2k2Bν0=3, ν0 being the density of states and kB
is the Boltzmann constant. As E fluctuates in time, TðEÞ is
a fluctuating temperature.
We describe the system’s time evolution with the

phenomenological, energy resolved master equation,

d
dt

�
p0ðEÞ

p1ðE − ϵtÞ

�
¼ W

�
p0ðEÞ

p1ðE − ϵtÞ

�
;

W ¼
�−Γinðϵt; EÞ Γoutðϵt; E − ϵtÞ

Γinðϵt; EÞ −Γoutðϵt; E − ϵtÞ

�
; ð4Þ

where pnðEÞ≡ pðn; E; tÞ is the probability that there are
n ¼ 0, 1 electrons on the dot and that the reservoir energy is
E at time t. The probabilities satisfy the normalization
condition

R
dE½p0ðEÞ þ p1ðEÞ� ¼ 1, and the tunneling

rates are given by [54,55]

Γinðϵ;EÞ ¼ Γfðϵ;EÞ; Γoutðϵ;EÞ ¼ Γ½1− fðϵ;EÞ�; ð5Þ
see the Supplemental Material [56] for a motivation of
these rates, as well as a discussion on charging effects and
chemical potential fluctuations.
For a level energy that is constant in time, ϵt ¼ ϵ, given a

well-defined initial total energy for the system and reser-
voir (denoted by E), the reservoir energy can only take on
the values E and E − ϵ, for zero and one electron on the dot,
respectively. This implies that the temperature fluctuates
between TðEÞ and TðE − ϵÞ, and the stationary solution to
Eq. (4) is given by pnðEÞ ¼ δðE − E þ nϵÞps

nðϵjEÞ with

ps
1ðϵjEÞ ¼ 1 − ps

0ðϵjEÞ ¼
fðϵ; EÞ

1 − fðϵ; E − ϵÞ þ fðϵ; EÞ ; ð6Þ

which reduces to fðϵ; EÞ only when TðE − ϵÞ ≃ TðEÞ.
Fluctuation theorem and entropic temperature.—For a

stochastic thermodynamic description, we consider nðtÞ

FIG. 1. (a) Sketch of a two-level system with an energy gap ϵ,
coupled to a finite-size reservoir, the temperature of which being
TðtÞ≡ T½EðtÞ�. The system and reservoir exchange discrete
amounts of heat q ¼ �ϵ in a stochastic way. (b) Representation
of the coupling between the dot system and the finite-size
fermionic reservoir, where Γ is the tunneling strength. (c) Plot
of the temperature TðtÞ and the entropic temperature TeðtÞ in
orange for a linearly decreasing level energy ϵt. (d) Reservoir
energy as a function of time. When an electron tunnels at time τj,
the reservoir energy changes by ϵτj.
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and EðtÞ as the stochastic system state and reservoir energy,
respectively. A trajectory γ ¼ fnðtÞ; EðtÞj0 ≤ t ≤ τg may
then be defined during a protocol, where the level energy
may depend on time ϵt, as illustrated in Fig. 1(d). We
denote the starting point of γ as ðn0; E0Þ≡ ½nð0Þ; Eð0Þ� and
its endpoint as ðnτ; EτÞ≡ ½nðτÞ; EðτÞ�. Note that EðtÞ and
nðtÞ undergo abrupt changes at times τj, whenever an
electron tunnels.
A fluctuation theorem relates the probability density

PðγÞ for the trajectory to occur to the probability density
P̃ðγ̃Þ for the time-reversed trajectory γ̃ to occur under
the time reversed protocol (where the level energy is
changed as ϵτ−t)

PðγÞ
P̃ðγ̃Þ ¼ exp

�
σðγÞ
kB

�
; ð7Þ

where σðγÞ is the total, stochastic entropy production
along γ. We can write

σðγÞ ¼ ΔsðγÞ þ ΔsrðγÞ; ð8Þ

where Δs, the change in system entropy, is given by

ΔsðγÞ≡ kB½lnpðn0; E0; 0Þ − lnpðnτ; Eτ; τÞ�; ð9Þ

where pðn0; E0; 0Þ, pðnτ; Eτ; τÞ are the probabilities for the
initial and final system states and reservoir energies. The
term Δsr, describing the stochastic entropy production
associated to the reservoir, can be written as a stochastic
integral along the trajectory γ (see the Supplemental
Material [56])

ΔsrðγÞ≡ −
Z
γ

dqðtÞ
TeðtÞ

; ð10Þ

where dqðtÞ ¼ ϵtdnðtÞ and we introduced the entropic
temperature as

TeðtÞ≡ Teðϵt; EðtÞÞ ¼
ϵt
kB

�
ln
Γoutðϵt; EðtÞ − ϵtÞ

Γinðϵt; EðtÞÞ
�
−1
; ð11Þ

where EðtÞ ¼ EðtÞ þ ϵtnðtÞ denotes the total energy. Note
that the entropic temperature is a stochastic variable taking
on different values along different trajectories, just like nðtÞ
and EðtÞ.
The entropic temperature in Eq. (10) determines how the

reservoir stochastic entropy changes along a given trajec-
tory. In Fig. 1(c), we illustrate its behaviour in comparison
to the actual temperature, TðtÞ≡ T½EðtÞ� which is obtained
from the stochastic energy EðtÞ via Eq. (3). We note that the
entropic temperature is a continuous function with kinks
when quanta of energy are exchanged via the tunneling
process. This is due to the fact that the change in total
energy is determined by the work performed on the system,

which exhibits kinks because work is only performed when
the dot is occupied (see below).
The entropic temperature becomes particularly simple

for a constant level energy ϵt ¼ ϵ (again, assuming a fixed
total energy)

Teðϵ; EÞ ¼
ϵ

kB

�
ln
ps
0ðϵjEÞ

ps
1ðϵjEÞ

�
−1
; ð12Þ

where the entropic temperature is no longer a stochastic
quantity. Furthermore, the stationary solution in Eq. (6) can
be written as

ps
1ðϵjEÞ ¼

1

1þ eϵ=kBTeðϵ;EÞ : ð13Þ

The steady-state occupation of the dot is thus given by the
Fermi-Dirac distribution if the entropic temperature is used.
These observations further illustrate that it is the entropic
temperature that determines the thermodynamics of the dot
coupled to a finite-size reservoir.
Stochastic thermodynamics.—The stochastic internal

energy of the system along the trajectory γ can be de-
fined as

uðtÞ≡ nðtÞϵt: ð14Þ

The average internal energy is obtained by averaging this
expression over the distribution for trajectories PðγÞ,

UðtÞ ¼ hnðtÞiϵt ¼ p1ðtÞϵt; ð15Þ

where pnðtÞ ¼
R
dEpðn; E; tÞ. According to the first law of

thermodynamics, the system’s internal energy changes can
be divided into work and heat. Using Eq. (14), we identify
heat and work as

duðtÞ ¼ ϵtdnðtÞ þ nðtÞϵ̇tdt ¼ dqðtÞ þ dwðtÞ; ð16Þ

where the dot denotes a derivative with respect to t. In this
way, the stochastic heat and work along the trajectory are
given by

q≡
Z
γ
ϵtdnðtÞ; w≡

Z
τ

0

dt nðtÞϵ̇t: ð17Þ

Similarly to Eq. (15), we can write the first law in terms of
the average heat, Q≡ hqi, and average work, W ≡ hwi,

ΔU ≡UðτÞ −Uð0Þ ¼ W þQ; ð18Þ

where

Q ¼
Z

τ

0

dtṗ1ðtÞϵt; W ¼
Z

τ

0

dtp1ðtÞϵ̇t: ð19Þ

Moreover, we can obtain the average entropy production
by averaging the stochastic entropy production in Eq. (8)
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Σ≡ hσðγÞi ¼ ΔS −
�Z

γ

dqðtÞ
TeðtÞ

�
; ð20Þ

where ΔS≡ hΔsðγÞi. Using Eq. (7), the non-negativity of
the Kullback-Leibler divergence [57] implies that

Σ ¼ kB

�
ln
PðγÞ
P̃ðγ̃Þ

�
≥ 0: ð21Þ

Hence, Eq. (21) can be seen as a second law of thermo-
dynamics for the dot system coupled to the finite-size
reservoir. Note that, by considering the entropy production
in Eq. (20) for a time-independent level energy ϵt ¼ ϵ,
it follows that Σ ¼ 0 in equilibrium, as expected.
Remarkably, we show in the Supplemental Material [56]
that not only the average entropy production but also the
stochastic entropy production in Eq. (8) is zero in equi-
librium as well as in the quasi-static limit, where the system
always approximately remains in equilibrium.
We note that Eqs. (20) and (21) look just like Clausius’s

second law [58], but with stochastic quantities and with
temperature being replaced by the entropic temperature.
The reason that the entropic and not the actual temperature
enters the entropy production is because energy exchange
happens in quanta. Indeed, we find that for ϵt ≪ EðtÞ

TeðtÞ ≈
ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ
C0

r
−

ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ
C0

r
ϵt

4EðtÞ : ð22Þ

Thus, when the quantization of energy becomes negligible
[and EðtÞ ≈ EðtÞ], the entropic temperature reduces to the
actual reservoir temperature TeðtÞ ≈ TðtÞ. In turn, a sizable
ϵt leads to the disparity between the entropic temperature
and the actual temperature. Our equations may thus be
understood as a generalization of Clausius’s second law
that takes into account energy quantization in the exchange
of heat.
In the Supplemental Material [56], we consider previ-

ously derived expressions for entropy production [52,59]
which are expected to be positive in our scenario.
Work extraction.—To illustrate our approach, we first

consider a basic protocol for work extraction. Starting at
t ¼ 0 with an empty dot at energy ϵ0, we move the dot
level down in energy with constant speed ν to zero, as
ϵt ¼ ϵ0ð1 − νtÞ. By simulating a large number of trajecto-
ries, we obtain the statistical properties of the thermody-
namic quantities. In Fig. 2(a), the average extracted work
−W, as well as the work extracted along individual
trajectories, are shown as functions of time for different
speeds. We see that −W, as well as the number of work
extraction intervals, decrease for increasing ν.
The corresponding full probability distribution of

extracted work is shown in Fig. 2(b). For the fast drive,
a sizable fraction of trajectories display no electron tunnel-
ing and, hence, no work is extracted. For the slow drive the

distribution becomes Gaussian shaped. Comparing to the
work distribution of an infinite-size reservoir, the finite-size
effects are most clearly visible for a slow drive, where they
lead to a shift of the distribution towards smaller work
values. Thus, the largest difference between the average
work extracted with a finite and infinite-size reservoir
seems to occur in the quasistatic regime.
In Fig. 2(c), the distributions of the entropic temperature

Te at the end of the protocol for the same parameters as in
Fig. 2(b) are shown. Compared to the distribution for large
speed, the small speed distribution is narrowed and shifted
to lower temperatures. In Fig. 2(d) it is shown how the
distribution of total entropy production is narrowed and
shifted towards zero when the drive speed is decreased.
To highlight the effect of a finite-size reservoir on

information to work conversion, we analyze a Szilard
engine, following closely the quantum dot protocol in
Ref. [26]. Initially, the dot level energy is put to zero, giving
a dot occupation probability 1=2, and the reservoir energy is
fixed to E0. The occupation is then measured, with two
possible outcomes: (i) If the dot is empty, the level energy is
instantaneously increased to ϵi and thereafter quasistati-
cally taken back to zero. (ii) If the dot is instead occupied
by an electron, the level energy is instantaneously
decreased to −ϵi, and thereafter quasistatically increased
back to zero. We note that the process is not completely

(a) (b)

(d)(c)

FIG. 2. Stochastic thermodynamic quantities. (a) The average
extracted work −W (solid lines) and the extracted work along a
typical trajectory (dashed lines) as a function of time t. (b) The
probability distribution of work extracted during the protocol.
Solid (dashed) lines are for a finite (infinite) size reservoir. (c) The
probability distribution of the entropic temperature Te at the end
of the protocol. (d) The probability distributions of the total
entropy productions Σ during the protocol. In all panels the heat
capacity CðTÞ ¼ 4kB and the dot level energy is driven as ϵt ¼
ϵ0ð1 − νtÞ with ϵ0=kBT ¼ 1.5 and 106 trajectories have been
generated. Initially, at t ¼ 0, the dot is empty and the reservoir
energy distribution is Gaussian, with average 2kBT and width
0.1kBT. The drive speeds are ν ¼ Γ=100 (blue lines) and Γ=10
(red lines).
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cyclic, since the initial reservoir energy is well defined,
while the final energy is a stochastic quantity. The average
extracted work −W as a function of ϵ0, for different heat
capacities, is shown in Fig. 3. We see that decreasing the
size of the reservoir leads to a monotonically decreasing
−W. This is in line with previous results showing that
Landauer’s upper bound on work extraction cannot be
achieved with finite-size reservoirs [60].
Conclusion.—We provided a consistent thermodynamic

description for a two-level system, namely, a quantum dot,
coupled to a finite-size reservoir. In our approach, the
reservoir entropy along a given trajectory is determined by
the entropic temperature, which therefore dictates the
thermodynamics of the system and finite-size reservoir.
Notably, we found that the entropic temperature is required
to describe the thermodynamics of the system and reservoir
as long as energy exchange occurs in quanta. When energy
quantization is negligible, the entropic temperature reduces
to the actual temperature, and therefore a connection with
Clausius’s second law is established. We complete our
analysis by defining work and heat, and by showing that
the stochastic entropy production vanishes for each tra-
jectory in the quasistatic limit. Our results are illustra-
ted by a protocol for work extraction and for the Szilard
engine.
Our results show how to describe the thermodynamics of

a finite-size reservoir that can be described by a fluctuating
temperature. While we focus on an electronic two-level
system, our results can easily be generalized to other
scenarios, e.g., a superconducting qubit coupled to an
electro-magnetic environment [40,41] or an electron spin
coupled to nuclear spins [39]. Of particular interest are
systems, or reservoirs, which exhibit quantum coherence,

such as double quantum dots [61] or squeezed bosonic
reservoirs [62]. Furthermore, our approach can be adapted
to include multiple reservoirs, allowing for transport
scenarios.
Finally, we note that a microscopic derivation of our

master equation in Eq. (4) would provide quantitative
insight into the limitation of our approach and is left for
future work. A starting point for such a derivation could be
provided by the extended microcanonical master equation
[50,63–67].
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