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We identify emergent hydrodynamics governing charge transport in Brownian random time evolution
with various symmetries, constraints, and ranges of interactions. This is accomplished via a mapping
between the averaged dynamics and the low-energy spectrum of a Lindblad operator, which acts as an
effective Hamiltonian in a doubled Hilbert space. By explicitly constructing dispersive excited states of this
effective Hamiltonian using a single-mode approximation, we provide a comprehensive understanding of
diffusive, subdiffusive, and superdiffusive relaxation in many-body systems with conserved multipole
moments and variable interaction ranges. Our approach further allows us to identify exotic Krylov-space-
resolved diffusive relaxation despite the presence of dipole conservation, which we verify numerically.
Therefore, we provide a general and versatile framework to qualitatively understand the dynamics of
conserved operators under random unitary time evolution.
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Introduction.—Recent years have seen a surge of interest
in the nonequilibrium dynamics of quantum many-body
systems, driven by rapid advancements in quantum sim-
ulation capabilities across diverse physical platforms. In
particular, significant attention has been devoted to under-
standing the thermalization process of interacting many-
body systems [1–7]. A vital theoretical tool that provides
key insights into the dynamics of thermalizing quantum
systems is the study of random unitary time evolution.
While retaining analytical tractability, such methods can
successfully capture universal properties of nonintegrable
many-body dynamics such as transport, operator spreading,
or entanglement growth [8–16]. In particular, the applica-
tion of methods based on random unitary evolution has
highlighted the importance of symmetries and constraints
in many-body dynamics, unveiling a rich phenomenology
of emergent hydrodynamics at late times. Recent results
range from transport in long-range interacting systems
[17–20] to anomalously slow subdiffusion [21–32] or even
localization due to Hilbert space fragmentation in models
with kinetic constraints [33–44].
In this Letter, we introduce a simple, yet powerful

method to understand the qualitative behavior of late-time
hydrodynamics based on Brownian Hamiltonian evolution,
which can be modeled by Markovian dynamics and thus
captured by a Lindblad equation [45–50]. Our approach
successfully reproduces results reported in previous liter-
ature and allows us to uncover novel, unconventional
hydrodynamic relaxation in constrained many-body sys-
tems. The key technical step relates dynamical properties

such as the autocorrelation of conserved operators to the
low-energy spectrum of an emergent effective Hamiltonian
in a doubled Hilbert space [51,52]. The low-energy
excitation spectrum of the latter thus dictates the longtime
dynamics of such correlations. Accordingly, this mapping
allows us to utilize well-established techniques in con-
densed matter physics, such as the single-mode approxi-
mation, to analyze our problem. Here, we apply this
method to various scenarios: We show that systems

FIG. 1. Brownian circuit and effective Hamiltonian. Mapping
(a) random operator dynamics to (b) imaginary-time evolution by
an effective Hamiltonian L in a doubled Hilbert space. On the
left, an operator ρ is evolved by a local Hamiltonian Ht ≡P

i hidBi;t with Brownian random variable dB. Overlapping
blocks for forward (backward) evolution [dark (light)] share
the same Brownian variable, but all other Brownian variables are
independently drawn from Gaussian distributions. On the right,
we average over random variables while taking time steps to zero;
this produces imaginary-time Schrödinger evolution by a Lind-
bladian operator.
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conserving U(1) global charge as well as higher multipole
moments exhibit diverse hydrodynamic relaxation depend-
ing on their symmetries and ranges of interactions. Then,
we extend our approach to understand Krylov-subspace-
resolved hydrodynamics, where we uncover general con-
ditions under which relaxation is diffusive despite the
presence of dipole conservation. We verify this diffusive
relaxation numerically in lattice models in both one and
two spatial dimensions.
Brownian circuits.—We consider time evolution by a

time-dependent Hamiltonian Ht ≡P
i hi dBi;t, defined via

interaction terms hi with hx;λ ¼ hxþ1;λ and Brownian
random variables dBt;i at each time slice ½t; tþ δÞ. Here,
the label i ¼ ðx; λÞ encodes both the spatial support and
operator type of hi. The random variables have vanishing
mean E½dB� ¼ 0 and finite variance E½dB2� ¼ 1=δ.
Under this time evolution, a density matrix ρðtÞ evolves

as ρðtþ δÞ≡ e−iHtδρðtÞeiHtδ. Averaging the infinitesimal
time evolution over the random variables, the leading order
operator evolution becomes (Ref. [53], Sec. B)

E½∂tρ� ¼ −
1

2

X
i

ðh2i ρ − 2hiρhi þ ρh2i Þ ¼ L½ρ�; ð1Þ

where L is a superoperator called the Lindblandian.
We now construct an alternative description of the

operator dynamics Eq. (1) by employing the Choi isomor-
phism, a mapping from an operator acting on the Hilbert
space H to a state defined on the doubled Hilbert space
Hu ⊗ Hl, where subscripts u, l are introduced to distin-
guish two copies ofH. For a given operatorO, the mapping
reads O ↦ kO⟫≡P

i jii ⊗ ðOjiiÞ, where the summation
is over all basis states of the original Hilbert space
(Ref. [53], Sec. A). Under this mapping, the Lindbladian
superoperator L maps to a linear operator ĤL acting on the
doubled Hilbert space:

ĤL ¼ 1

2

X
i

jhTi ⊗ I − I ⊗ hij2 ≕
1

2

X
x;λ

O†
x;λOx;λ; ð2Þ

where j � � � j2 should be understood as ð� � �Þ†ð� � �Þ, and
Ox;λ ¼ ðhTx;λ ⊗ I − I ⊗ hx;λÞ. The average dynamics in
Eq. (1) can then be recast into an imaginary time evolution
generated by the effective Hamiltonian ĤL:

∂tkO⟫ ¼ −ĤLkO⟫ ⇒ kOðtÞ⟫ ¼ e−tĤLkO0⟫: ð3Þ
The dual forms of evolution can be seen diagramati-

cally in Fig. 1. We are interested in the dynamics of a
local operator O under Brownian evolution, which we
characterize by the averaged autocorrelation function
EhOyð0ÞOxðtÞiρ [54] with respect to the maximally mixed
state ρ ¼ ð1=DÞI, where D is the dimension of the many-
body Hilbert space.
Note that Eq. (2) inherits translation invariance from the

interaction terms, hx;λ ¼ hxþ1;λ. Therefore, we can label

the eigenstates of ĤL by their momentum; let kk; ν⟫ be the
eigenstates of ĤL with energy Ek;ν, carrying momentum k
and an additional label ν. Inserting a completeness relation,
we obtain

EhOyð0ÞOxðtÞiρ ¼
1

D
⟪Oyð0Þke−tĤLkOxð0Þ⟫

¼ 1

D

X
k;ν

e−tEk;νeik·ðy−xÞj⟪k; νkOx⟫j2: ð4Þ

Consider a d-dimensional system. Assuming a gapless
dispersion minνfEk;νg ∼ kn at low momentum k → 0, as
well as a finite overlap j⟪k; νkOx⟫j2 of the operator of
interest kOx⟫ with these gapless modes [55], the autocor-
relation at x ¼ y decays algebraically as

EhOxðtÞOxð0Þiρ ∼
t→∞

Z
k
e−tk

n
ddk ∼ t−d=n; ð5Þ

implying that the dynamical exponent z ¼ n. Therefore, the
study of late-time operator dynamics in the Brownian
evolution reduces to the identification of gapless dispersing

states in the effective Hamiltonian cHL.
Charge conservation.—We now assume that each hi in

the original Hamiltonian exhibits a U(1) charge conserva-
tion symmetry. In the doubled Hilbert space, the symmetry
is doubled as well, and the effective Hamiltonian ĤL in
Eq. (2) must be symmetric under G ¼ Uð1Þu × Uð1Þl. We
denote by Gdiag and Goff the diagonal and off-diagonal
subgroups of G, generated by gdiag=off ¼ Q̂u ⊗ I ∓ I ⊗ Q̂l,
where Q̂ is the total charge operator (Ref. [53], Sec. A).
First, we examine the ground states of ĤL, which is

positive semidefinite. The Choi state of the identity
operator kI⟫ satisfies ĤLkI⟫ ¼ 0 and is thus a ground
state of ĤL. Because of U(1) symmetry, I decomposes into
the summation over projectors onto different charge sec-
tors: I ¼ P

m Pm, where Pm is the projector onto a U(1)
sector of charge m. For a system with N ¼ Ld sites and
local Hilbert space dimension M, m∈ f0; 1;…;MLdg. We
denote km⟫ as the Choi state of Pm. As such, km⟫ is also a
ground state of ĤL with vanishing Gdiag charge and a Goff

charge of 2m. Note that ⟪mkm⟫ ¼ dim½Hm�, the dimen-
sionality of the charge-m sector. Moving forward, we
renormalize km⟫ to ⟪mkm⟫ ¼ 1.
The degenerate ground state manifold with different Goff

charges implies spontaneous symmetry breaking of Goff .
This can be shown explicitly by constructing a ground state
kθ⟫≡P

m fðmÞeimθkm⟫ such that under the rotation by
Goff generator, eiαgoffkθ⟫ ¼ kθ þ α⟫ ≠ kθ⟫. The low-

energy excitations of cHL must be given by the Nambu-
Goldstone modes for the broken continuous symmetry. A
standard approach for constructing Goldstone modes is to
apply Goff density modulations with momentum k on the
ground state km⟫. The variational ansatz for such a state is
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defined as

kmk⟫≡ 1ffiffiffiffiffiffiffi
N k

p ρ̂kkm⟫; ρ̂k ≡
X
x

eik·x

Ld=2 ðρ̂x;u þ ρ̂x;lÞ;

ð6Þ
where ρ̂x;u=l measures U(1) charge in the layer u or l at

position x, and N k ≡ ⟪mkρ̂†kρ̂kkm⟫ is a static structural
factor with ρ̂†k ¼ ρ̂−k. It is straightforward to show that
kmk⟫ carries a well-defined momentum k and thus
⟪mkkmk0⟫ ¼ δk;k0 (Ref. [53], Sec. E). We remark that
since ðρ̂x;u þ ρ̂x;lÞ measures a local Goff charge, the con-
structed mode corresponds to the density fluctuations of the
Goff charge.
What is the energy of this variational state? With

orthogonality between kmk⟫ for different momenta, the
variational expected energy provides an upper bound for
the low-energy dispersion of Eq. (2):

⟪mkkĤLkmk⟫¼
1
N k

X
x;λ

⟪mk½Ox;λ; ρ̂k�†½Ox;λ; ρ̂k�km⟫; ð7Þ

where we usedOx;λkm⟫ ¼ 0. By using U(1) symmetry, the
commutator in Eq. (7) can be recast as

½Ox;λ; ρ̂k� ¼ eik·x
X
y∈Sx

X∞
n¼1

�
Ox;λ;

½ik · ðy − xÞ�n
n!

ρ̂y

�
; ð8Þ

where we used ½Ox;λ;
P

y ρ̂y� ¼ 0, and Sx is the local
support of the operator Ox;λ (thus warranting the expansion
of eik·ðy−xÞ for small k). Generally, assuming a finite
expectation value of the local dipole fluctuations
⟪mkj½Ox;λ;

P
y yiρ̂y�j2km⟫, the expansion Eq. (8) does

not vanish at n ¼ 1, giving rise to a leading order con-
tribution proportional to k:

½Ox;λ; ρ̂k� ∝ k ⇒ ⟪mkkĤLkmk⟫ ∝ k2: ð9Þ

Here, we focus on isotropic systems for simplicity; how-
ever, dynamical exponents can be obtained similarly for
nonisotropic systems. Furthermore, N k is a constant,
independent of k (Ref. [53], Sec. E). Therefore, kmk⟫
generically exhibits a quadratic (Ek ∝ k2) dispersion,
regardless of the details of the effective Hamiltonian.
Note the similarity of our approach to the single-mode
approximation in superfluid or quantum Hall states
[56–58], where the Feynman-Bijl ansatz (Ref. [53],
Sec. D) provides variational states that capture the
dispersion of density fluctuation excitations.
Long-range interactions.—We extend our preceding

analysis to charge-conserving systems with long-range
interactions. Specifically, we consider the effects of
long-range terms in our Hamiltonian of the form

hx;x0 ¼ jx − x0j−αðŜþx Ŝ−x0 þ H:c:Þ, where Ŝ�x are raising
and lowering operators for the charge ρ̂x at site x and
Q̂ ¼ P

x ρ̂x is conserved. The effective Hamiltonian reads
ĤL ¼ P

x;x0 O
†
x;x0Ox;x0 and the commutator entering Eq. (7)

becomes

½Ox;x0 ; ρ̂k� ¼ eik·x
ð1 − eik·ðx0−xÞÞ

jx − x0jα ½Õx;x0 ; ρ̂x�; ð10Þ

where Õx;x0 ≔ Ox;x0 jx − x0jα is now distance independent.
Assuming α > d=2 and a finite expectation value for the
square of the commutator on the rhs of Eq. (10), the
variational energy of kmk⟫ is (Ref. [53], Sec. F)

⟪mkkĤLkmk⟫ ∝
k→0

C1ðαÞjkj2α−d þ C2ðαÞk2: ð11Þ

Thus, for α < 1þ d=2, the system relaxes superdiffusively
with z ¼ 2α − d, successfully reproducing previous
works on long-range interacting systems [17,18,59].
Alternatively, for α ≤ d=2 the prefactors C1ðαÞ and
C2ðαÞ exhibit divergences and the associated modes
become gapped (Ref. [53], Sec. F); accordingly, the
operator decays exponentially fast [17], entering an effec-
tively nonlocal “all-to-all” interacting regime.
Dipole conservation.—The method outlined above also

applies to systems with conserved quantities beyond U(1)
charges. Let us focus on one-dimensional models with
charge multipole symmetries, as relevant to fracton
systems [60–68], generated by QðnÞ ≡P

x x
nρ̂x ¼P

x x
nðρ̂x;u þ ρ̂x;lÞ. Concretely, we consider Brownian time

evolution conserving the first two multipole moments
n ¼ 0 and n ¼ 1; i.e., ½hi; Qð0Þ� ¼ ½hi; Qð1Þ� ¼ 0. This
combination of charge and dipole symmetries generally
leads to Hilbert space fragmentation [33,34,69]: For a given
symmetry sector Qð0Þ; Qð1Þ labeled by the different charge
and dipole values, there are numerous distinct Krylov
sectors K connected by the Hamiltonian evolution. Our
goal is to understand the associated Krylov-space-resolved
hydrodynamics in such systems. For this purpose, we
introduce the operator PK projecting onto an individual
Krylov sectorK and its Choi state kK⟫, which we define to
be normalized. In the doubled Hilbert space formalism, we
thus define new excited states, kKk⟫ ¼ ρ̂kkK⟫=ðNK

k Þ1=2,
where ĤLkK⟫ ¼ 0 and NK

k ≡ ⟪Kkρ̂†kρ̂kkK⟫ is the
Krylov-resolved structure factor.
In the presence of both charge and dipole conservation

symmetries, the commutator in Eq. (8) now vanishes at
n ¼ 1, and takes a finite value only at order n ≥ 2.
Accordingly, the excited modes kKk⟫ carry an energy
Ek ¼ ⟪KkkĤLkKk⟫ ∝ ð1=NK

k Þk4. For generic dipole-
conserving systems featuring weak fragmentation, the
largest Krylov sector K0 makes up a finite portion of the
full Hilbert space (up to a prefactor algebraic in system size).
As a consequence, its static structure factor NK0

k → Oð1Þ
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remains finite as k → 0. We thus obtain subdiffusive
relaxation with dynamical exponent z ¼ 4. The generaliza-
tion of this result to systems conserving fQð0Þ;…; QðmÞg
multipoles is straightforward: The commutator in Eq. (8)
now vanishes up to order n ¼ m, giving rise to a dis-
persion proportional to k2ðmþ1Þ and dynamical exponent
z ¼ 2ðmþ 1Þ, in accordance with previous results
[22–25,70,71].
Similar to the charge-conserving case, these results can

be extended to long-range interacting systems in arbitrary
dimensions. For example, consider power-law decaying
dipole hopping terms hx;x0 ∼ ð1=jx − x0jαÞðD†

xDx0 þ H:c:Þ,
where Dx is a local operator lowering the dipole moment.
When α > ðd=2Þ, we determine the dispersion to be Ek ∼
C1ðαÞk2αþ2−d þ C2ðαÞk4 (Ref. [53], Sec. F). Therefore, if
α < 1þ d=2, charge spreads faster than the subdiffusive
transport z ¼ 4 of short-range systems. For α < ðd=2Þ,
dipole hopping becomes highly nonlocal, and charge
transport effectively arises from individual local dipole
creation or annihilation terms, analogous to systems with
conventional charge conservation. In our framework, after
renormalizing the single-mode dispersion to be bounded
(Ref. [53], Sec. F), we obtain Ek ∼ k2. We provide a
summary of the dynamical exponents emerging in multi-
pole-conserving systems with such long-range hopping of
local moments in Fig. 2.
Constrained dynamics.—Returning to short-range mod-

els with dipole conservation, we may ask whether relax-
ation differing from the subdiffusive behavior z ¼ 4 can
emerge in specific Krylov sectors. The presence of the

structure factor in the dispersion of Eq. (7) suggests this
may be the case in Krylov sectors where charge fluctuations
follow a subvolume law with vanishing limk→0NK

k ¼ 0. We
demonstrate this effect in concrete examples below.
Let us first consider a one-dimensional chain with charge

and dipole conservation and introduce bond variables êx
defined via ρ̂x ¼ êx − êx−1; i.e., êx ¼

P
x
i¼0 ρ̂i. For con-

venience, we define the charge density ρ̂x relative to its
average value within K; i.e.,

P
x hρ̂xiK ¼ 0. We note that

the êi can be understood as a local dipole density, withP
x êx ¼ Qð1Þ [27,72,73]. Let us now assume that a sector

K exhibits bounded fluctuations of these bond variables.

Formally, limL→∞hêkê−kiK⟶
k→0

σ21 < ∞, where êk ¼
ð1= ffiffiffiffi

L
p ÞPx e

ikxêx and σ1 corresponds to the average
fluctuation of the local dipole density. Since êx ¼P

x
i¼0 ρ̂i, the finiteness of êx implies area-law fluctuations

of the total charge within any given region. Using that ρ̂k ¼
ð1 − e−ikÞêk for k ≠ 0, the structure factor for small k
becomes

NK
k ¼ hρ̂kρ̂−kiK ¼ k2hêkê−ki → σ21k

2: ð12Þ

Therefore, for Krylov sectors satisfying Eq. (12), the
energy of the excited mode kKk⟫ scales as Ek ∝ k2 and
we expect diffusive relaxation, despite the presence of
dipole conservation. To interpret this result, note that the êx
constitute a conserved local density with an effectively
finite local state space due to their bounded fluctuations. If
êx is bounded, these local dipoles move without additional
kinetic constraints and are thus expected to relax diffu-
sively; see also Ref. [72]. Generalization to systems
conserving fQð0Þ;…; QðmÞg is again straightforward:
Krylov sectors with bounded multipole densities up to
order p ≤ m have N k → σ2pk2p, leading to a dispersion
∝ k2ðm−pþ1Þ in short-range systems.
As a concrete example of Eq. (12), we consider random

Brownian evolution in a S ¼ 1 spin chain with local dipole-
conserving terms hi ¼ Ŝþi ðŜ−iþ1Þ2Ŝþiþ2 þ H:c: Although
these terms induce a strong fragmentation of the Hilbert
space, there exist exponentially large, delocalized Krylov
sectors [33,35]. We label the local charge density by ρ̂x ¼
Szx ∈ f0;�g and consider the Krylov sector containing the
initial state jψ0i ¼ j…00þ 00…i. In terms of the variables
êx introduced above, jψ0i ¼ j…00111…i. corresponds to
a domain wall, and the êx ∈ f0; 1g can be shown to take
values in a bounded range [33], thus satisfying our
condition Eq. (12). Diffusive relaxation of this state has
indeed been found in Ref. [72], and EhSzx¼L=2ðtÞi ∼ t−1=2

can be verified numerically using random classical time
evolution, as illustrated in Sec. G of Ref. [53].
To illustrate the generality of the condition Eq. (12), we

consider systems beyond 1D. In analogy to d ¼ 1, for d>1
we write ρ̂ðxÞ ¼ ∇ · êðxÞ, where êðxÞ ¼ ½ê1ðxÞ;…; êdðxÞ�

FIG. 2. Relaxation dynamics in multipole-conserving systems
with long-range interactions. Systems with ð1=rαÞ power-law
decaying hopping of local multipoles of order m exhibit three
distinct dynamical regimes. When α > ðd=2Þ þ 1 (orange), the
dynamics is (sub)diffusive with dynamical exponent z ¼
2ðmþ 1Þ. For ðd=2Þ þ 1 > α > ðd=2Þ (blue), the dynamics is
faster, with dynamical exponent z ¼ 2ðmþ αÞ − d. When α ≤
ðd=2Þ, the system is effectively nonlocal; thus, relaxation occurs
from individual mth multipole creation or annihilation operators,
which are hoppings of (m − 1)th multipole charges. This results in
(sub)diffusive transport with z ¼ 2ðm − 1Þ þ 2 ¼ 2m.
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is now a d-component vector. We recognize that êðxÞ is not
uniquely determined by the charge configuration ρ̂ðxÞ, and
the relation between these variables takes the form of a U(1)
Gauss law, where the êðxÞ constitute electric field degrees
of freedom. Indeed, area-law charge fluctuations arise in
U(1) gauge theories if fluctuations of the electric fields êðxÞ
are bounded, as

R
V dV ρ̂ðxÞ ¼ R

∂V dA · êðxÞ. Thus, impos-
ing global dipole conservation on U(1) link models [74–76]
with a finite electric field state space gives rise to diffusive
behavior through Eq. (12). To verify this prediction, we
numerically simulate classical, discrete random time evo-
lution in a hard-core dimer model on a square lattice [see
Fig. 3(a)], which can be mapped to a U(1) link model
[77,78]. Under this mapping, a site x without any attached
dimer carries a charge ρ̂ðxÞ ¼ ð−1Þx1þx2 at x ¼ ðx1; x2Þ,
while a site with an attached dimer carries no charge. In the
dynamics carried out numerically (see Sec. G of Ref. [53]
as well as Refs. [21,24,25,70] for related approaches), we
then explicitly incorporate conservation of the dipole
moment associated to ρ̂ðxÞ. Starting from an initial state
with an isolated positive charge in the bulk of the system
ρ̂ðx; t ¼ 0Þ ¼ δx1;0δx2;0 [see Fig. 3(a)], we numerically
find a diffusive broadening of the resulting charge distri-
bution at late times. As the overall charge density in the
system vanishes, and positive and negative charges
occupy different sublattices, we consider the quantity

ρðx1; tÞ≡ ρ̂½ðx1; 0Þ; t� þ ρ̂½ðx1 − 1; 0Þ; t�. We show in
Fig. 3(c) that tρ̄ðx1; tÞ exhibits a scaling collapse when
plotted against x1=

ffiffi
t

p
, in agreement with diffusive relax-

ation in two dimensions.
Conclusion and outlook.—In this Letter, we have estab-

lished a comprehensive understanding of conserved oper-
ator dynamics under Brownian random unitary time
evolution through a duality with the spectral properties of
an associated effective Hamiltonian. Though the U(1)
symmetric Brownian evolution was used for clarity of
presentation, these results generalize for any dynamics
conserving a continuous global symmetry governed by a
Lindblad equation (Ref. [53], Sec. C). As the ground state
manifold always exhibits a spontaneous symmetry breaking
of a continuous symmetry, a single-mode approximation
could be applied to capture the low-energy physics of this
effective Hamiltonian to reproduce a number of dynamical
universality classes for short- and long-range interacting
systems with charge and multipole conservation laws. In
addition, our formalism allowed us to study the Krylov-
space-resolved hydrodynamics of dipole-conserving sys-
tems, establishing diffusive behavior in Krylov spaces with
area-law charge fluctuations, in contrast to more generic
dynamics in the presence of dipole conservation.
We expect that such diffusive relaxation in dipole-

conserving systems is valid beyond the specific examples
studied numerically here and holds whenever the time
evolution proceeds within an effective state space (not
necessarily a Krylov space) that fulfills Eq. (12). In
particular, bounded fluctuations of the variables êx can
arise from energetics, for example, via a term ∼ðêxÞ2 in the
Hamiltonian, as appears naturally in standard electromag-
netism. In this context, the resulting area-law charge
fluctuations can be interpreted as Coulomb repulsion,
which consequently leads to diffusive relaxation in
dipole-conserving systems. Furthermore, bounded charge
fluctuations occur in many other interesting models: It was
shown in Refs. [73,79] that area-law charge fluctuations
can arise in dipole-conserving Bose-Hubbard models in
low-energy Mott states whenever a finite energy gap exists
for charged excitations. It would be interesting to study the
relevance of our results to such systems in the future.
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(a)

(c)

(b)

FIG. 3. Relaxation dynamics in a dipole-conserving dimer
model. (a) We numerically consider a classical, discrete random
time evolution in a dimer model with hard-core constraint, i.e.,
maximally one dimer attached to each site in the square lattice.
This model can be mapped onto a U(1) link model following
Refs. [74–76]. Under this mapping, vacancies, i.e., sites without
attached dimer, carry positive (blue spheres) or negative charge
(orange spheres), depending on their sublattice. We explicitly
incorporate preservation of the hard-core constraint, the total
charge, and the dipole moment associated with these charges in
the time evolution. (b) Decay of the charge density ρ̄ð0; tÞ for an
isolated positive charge initially placed at x ¼ 0 in the bulk of the
system; see (a). The decay is consistent with diffusion in two
dimensions. (c) Scaling collapse of the charge distribution at
different times along ρ̄½x ¼ ðx; 0Þ; t�, indicating Gaussian diffu-
sion. Numerical results were averaged over 3 × 106 runs of the
random time evolution (Ref. [53], Sec. G).
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