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We present an invertible map between correlations in any bipartite Bell scenario and behaviors in a
family of contextuality scenarios. The map takes local, quantum, and no-signaling correlations to
noncontextual, quantum, and contextual behaviors, respectively. Consequently, we find that the member-
ship problem of the set of quantum contextual behaviors is undecidable, the set cannot be fully realized via
finite dimensional quantum systems and is not closed. Finally, we show that neither this set nor its closure is
the limit of a sequence of computable supersets due to the result MIP� ¼ RE.
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Introduction.—Bell nonlocality [1] describes correla-
tions between spacelike separated experiments that are
impossible in any locally realistic theory. Such correlations
are, however, allowed in quantum theory. Beyond their
fundamental relevance these correlations have technologi-
cal applications such as secure random number generation
[2] and cryptography [3].
Generalized contextuality [4] similarly describes correla-

tions that are absent from classical physics but instead of
spacelike separation, these correlations occur in experiments
where there are operationally equivalent experimental pro-
cedures. For example, two preparation procedures of a system
are operationally equivalent if every measurement on the
system leads to the same statistics for both preparation
procedures. Contextual correlations have also found practical
relevance, for example, in state discrimination [5] and dem-
onstrating quantum advantage in communication tasks [6].
One way to enforce an operational equivalence between

preparations is by using the setup of a Bell nonlocality
experiment (known as a Bell scenario), under the
assumption that no signal can travel faster than light. In
a two-party Bell scenario two parties, Alice and Bob, share
a physical system. In some frame of reference, Alice selects
and performs a measurement x from some pre-agreed
options on her subsystem, then Bob measures his sub-
system at a time before any light signal could have arrived.
Under the no-signaling assumption, the statistics Bob

can observe from such a measurement must not depend on
x, otherwise by performing this procedure with many
shared systems simultaneously Bob could infer Alice’s
choice x and a faster-than-light signal could be transmitted
from Alice to Bob. It follows that viewing Alice’s meas-
urement of her subsystem as a preparation procedure for

Bob’s subsystem, the preparation of Bob’s system given by
a choice, x, of Alice must be operationally equivalent to
that given by any other choice, x0, of Alice. In this way, a
Bell scenario is viewed as a remote-preparation and
measurement experiment with preparation equivalences,
and is therefore, an example of a contextuality scenario.
In this Letter we use this intuition to define a mapping

between these scenarios and show that the set of quantum
correlations in a given two-party Bell scenario is isomor-
phic to the union of the sets of quantum correlations in an
indexed [7] family of contextuality scenarios [8] (see
Fig. 1). The quantum Bell correlations we consider are
those given by the tensor product formalism for potentially
infinite dimensional quantum systems, denoted Cqs for
quantum spatial correlations. We further show that this
mapping is also a bijection between the local (no-signaling)
correlations and the noncontextual (contextual) correla-
tions, respectively, in these scenarios.
The map and showing its theory-preserving nature form

our first main contribution. Combining these results with
the remote-preparation perspective shows that if a physical
theory predicts the generalized contextual correlations of
quantum theory, then that theory is exactly limited to
producing the quantum spatial correlations in any two-
party Bell scenario, under the no-signaling assumption.
Thus, we demonstrate a characterization of the set of the
quantum spatial correlations in terms of contextuality.
The connection between two-party Bell scenarios and

(prepare-and-measure) contextuality scenarios is noted in
various works [5,9,10]; see also [11]. In these works, the
relationship is described via examples and the general case is
not addressed, meaning the statement above was not
established.
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Furthermore, it was previously thought that all contex-
tuality scenarios of a certain kind (in which there are no
measurement equivalences and the preparation equivalen-
ces comprise various decompositions of one single hypo-
thetical preparation) could be mapped to Bell scenarios in
this manner [[5], Sec. VII]. However, we find examples of
such scenarios in which this mapping is not possible. Of
course, this does not rule out an isomorphism in this case
but a different map would be required.
In our second main contribution, we use our isomor-

phism to deduce various properties of the quantum set of
contextual correlations, including membership undecid-
ability, the necessity of infinite dimensional quantum
systems in realizing all quantum correlations, and non-
convergence to the quantum set of semidefinite program-
ming (SDP) hierarchies [15,16].
This final result follows from showing that a computable

hierarchy of outer approximations converging to the
quantum set of contextual correlations would give rise to
an algorithm capable of deciding the weak membership
problem for the closure Cqa of Cqs. However, this problem is
known to be undecidable as a consequence of the result
MIP� ¼ RE [17]. This result raises several open questions.
To what superset, Q∞, of quantum correlations do the SDP
hierarchies in Refs. [15,16] converge? What would be the
image of Q∞ in the Bell setting under our mapping?
A natural candidate could be the set of quantum commuting
correlations, which generally maps to a strict superset of the
quantum contextual correlations under our mapping. If this
is the case, does Q∞ have a physical interpretation in the
contextuality setting? Alternatively, the image ofQ∞ might
provide a new outer approximation of the set Cqs.
In the main text we will describe our map for Bell

correlations in which each of Alice’s outcomes occurs with

nonzero probability. This case encapsulates the central
concepts of the map and avoids some technicalities of
the general case. In the Supplemental Material [18] we
provide a complete description of the map that is used to
prove our main results.
Bell scenarios.—A two-party Bell scenario comprises

two spacelike separated experiments. In the first,
a party, call her Alice, selects an input from the set
½X� ≔ f1;…; Xg, for some X∈N and observes an outcome
from a set [A], for some A∈N. In the second, another party,
call him Bob, similarly selects an input from the set [Y], for
some Y ∈N and observes an outcome from a set [B], for
some B∈N. The specific scenario can therefore be iden-
tified by the tuple of four numbers (A, B, X, Y), indicating
the numbers of inputs and outputs for each party. Unless
otherwise stated, variables a, b, x, y take values from the
sets ½A�; ½B�; ½X�; ½Y� throughout.
Given a Bell scenario (A, B, X, Y), a correlation is given

by a vector p∈RABXY, with entries pða; bjx; yÞ that specify
the probability of Alice and Bob observing outcomes a
and b given inputs x and y, respectively. In this Letter, we
will primarily consider the set Cqs of quantum correlations
in a Bell scenario using the tensor product formulation
and allowing for infinite dimensional quantum systems.
A correlation, p, is in the quantum set, Cqs, if

pða; bjx; yÞ ¼ TrðMx
a ⊗ Ny

bρÞ; ð1Þ

for some positive-operator-valued measures (described
in the finite-outcome case by a collection of positive
semidefinite operators summing to the identity operator)
Mx ¼ fMx

aga and Ny ¼ fNy
bgb on a separable Hilbert

spaces HA and HB, respectively, and a density operator

FIG. 1. A schematic representation of the invertible map between correlations in a Bell scenario and behaviors in a family of
contextuality scenarios. Here, L, Cqs, and NS denote the local, quantum spatial, and no-signaling sets of correlations in Bell scenarios,
whileNC,Q, and C denote the noncontextual, quantum, and contextual sets of behaviors in contextuality scenarios (see the main text for
more details).
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(positive semidefinite operator with unit trace) ρ on
HA ⊗ HB.
A strict superset of the quantum set is the so-called

no-signaling set, described by correlations p satisfying the
no-signaling constraints

X
b

pða; bjx; yÞ ¼
X
b

pða; bjx; y0Þ ∀ a; x; y; y0 ð2Þ

X
a

pða; bjx; yÞ ¼
X
a

pða; bjx0; yÞ ∀ b; y; x; x0: ð3Þ

A strict subset of the quantum set (considered “classical” in
Bell scenarios) is the local set. A correlation, p, is local if
there exists a measurable space ðΛ;ΣÞ, a probability
measure μ∶ Σ → ½0; 1�, and local probability distributions
lAðajx; EÞ and lBðbjy; EÞ satisfying

P
a l

Aðajx; EÞ ¼P
b l

Bðbjy; EÞ ¼ 1 for all x, y and nonempty E∈Σ,
such that

pða; bjx; yÞ ¼
Z
Λ
lAðajx; λÞlBðbjy; λÞdμðλÞ: ð4Þ

The relationship between the sets L, Cqs, and NS is
depicted on the left-hand side of Fig. 1.
Contextuality scenarios.—A contextuality scenario is an

experiment capable of revealing the impossibility of mod-
eling a physical system with a noncontextual ontological
model. A key concept in generalized contextuality is
operational equivalence, so we will want operational
equivalence to appear in our experiment. For our purposes
operational equivalence between preparation procedures is
sufficient.
Two preparation procedures, P1 and P2, for a system are

operationally equivalent, denoted P1 ≃ P2, in a theory
when any outcome of any measurement on the system
would occur with the same probability whether the meas-
urement is performed on a system prepared with procedure
P1 or P2.
A prepare-and-measure contextuality scenario is an

experiment consisting of performing one of X preparation
procedures on a system and then one of Y measurement
procedures. Mixtures of the preparation procedures
assigned to each label x∈ ½X�must satisfy some operational
equivalences that are specified by the scenario. These
preparation equivalences are of the form

X
x

αxPx ≃
X
x

βxPx ð5Þ

for αx ≥ 0, βx ≥ 0 such that
P

x αx ¼
P

x βx ¼ 1. For
example, a contextuality scenario could have X ¼ 4 prep-
arations, Pj for j∈ ½4�, that must satisfy 1

2
P1 þ 1

2
P2 ≃

1
2
P3 þ 1

2
P4. A valid realization of this experiment could

be to use a qubit system with P1 and P2 being the

eigenstates the Pauli-Z operator, while P3 and P4 are the
eigenstates of the Pauli-X operator.
Generally, a prepare-and-measure contextuality scenario

is identified by a tuple ðX; Y; B;OEP;OEMÞ indicating that
it concerns X preparations satisfying equivalencesOEP and
Y measurements each with B outcomes satisfying equiv-
alences OEM. Since we only consider preparation equiv-
alences we will omit the final element of the tuple.
We are interested in the achievable correlations within a

given theory in each contextuality scenario. Each correla-
tion is described by a vector q∈RXYB with entries given by
the probability qðbjx; yÞ of seeing outcome b after perform-
ing measurement y on a system prepared with procedure x.
We will call these vectors behaviors to distinguish them
from the correlations in Bell scenarios.
A behavior, q, is in the set of contextual behaviors (i.e.,

behaviors realizable in some contextual theory) if for every
equivalence of the form in Eq. (5) in OEP the behavior
satisfies

X
x

αxqðbjx; yÞ ¼
X
x

βxqðbjx; yÞ ∀ b; y: ð6Þ

The set of contextual behaviors contains both the sets of
quantum and noncontextual behaviors (see below).
A behavior, q, is in the quantum set, Q, of a contextuality
scenario ðX; Y; B;OEPÞ if

qðbjx; yÞ ¼ TrðNy
bρxÞ ð7Þ

for some positive-operator-valued measures Ny ¼ fNy
bgb

on a separable Hilbert spaceH and density operators ρx on
H satisfying

P
x αxρx ¼

P
x βxρx for every equivalence of

the form in Eq. (5) in OEP.
A subset of the quantum set (considered “classical” in

contextuality scenarios) is the noncontextual set of behav-
iors. A behavior, q, is in the noncontextual set if there exists
a measurable space ðΛ;ΣÞ, probability measures μx∶ Σ →
½0; 1� satisfying

P
x αxμxðEÞ ¼

P
x βxμxðEÞ for every

equivalence relation of the form (5) in OEP, and so-called
response functions ξyðbj·Þ for all b and y on Λ, andP

b ξðbjEÞ ¼ 1 for all E∈Σ, such that

qðbjx; yÞ ¼
Z
Λ
ξyðbjλÞdμxðλÞ: ð8Þ

The map.—We now define an invertible map taking any
no-signaling correlation p in a two-party Bell scenario to a
behavior q from one of a family of contextuality scenarios.
We will show that this map defines a bijection between
(i) no-signaling Bell correlations and contextual behaviors,
(ii) quantum Bell correlations and quantum behaviors, and
(iii) local Bell correlations and noncontextual behaviors.
The basic premise is to imagine the Bell experiment

ðA;B; X; YÞ as a prepare-and-measure experiment wherein
if Alice inputs x and observes output a this constitutes a
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preparation procedure Pajx for Bob’s system on which he
will perform a measurement y and then observe an outcome
b. Then, if we impose that Alice cannot signal to Bob, we
know that the average preparation Bob receives when Alice
inputs any xmust be the same as the average preparation he
receives when she inputs any other x0 ∈ ½X�. In other words,
if the correlation observed in the Bell experiment is p then
the preparations

P
a pAðajxÞPajx must be equivalent for

all x, where pAðajxÞ ¼
P

b pða; bjx; yÞ for any y is the
marginal distribution of Alice, which is well-defined due to
no-signaling.
Thus, under the no-signaling assumption, a Bell sce-

nario ðA;B; X; YÞ implements a contextuality scenario
ðAX; Y; B;NSðpAÞÞ, where NSðpAÞ denotes the prepara-
tion equivalences

X
a

pAðaj1ÞPaj1 ≃ � � � ≃
X
a

pAðajXÞPajX ð9Þ

implied by the no-signaling assumption, which we will
encode in the Cartesian product of X vectors in RA, where
the ath element of the xth vector is pAðajxÞ.
Based on this intuition we define our map for

Bell correlations with nonzero marginal distributions for
Alice. A correlation p from a Bell scenario ðA;B; X; YÞ is
mapped to a behavior q in the contextuality scenario
ðAX; Y; B;NSðpAÞÞ, where

qðbj½ajx�; yÞ ¼ pða; bjx; yÞ
pAðajxÞ

: ð10Þ

Explicitly, our map is

Γ∶ ½RABXY;N4� →
h
RAXYB;N3; ðRAÞX

i
;

½p; ðA;B; X; YÞ� ↦ ½q; ðAX; Y; B;NSðpAÞÞ�; ð11Þ

for p in the no-signaling set of ðA; B; X; YÞ such that
pAðajxÞ ≠ 0 where q is defined in Eq. (10).
Notice that the correlations from one Bell scenario are

mapped to behaviors from multiple different contextuality
scenarios. Each of the contextuality scenarios in the image
of a Bell scenario ðA; B; X; YÞ has AX preparations and Y
measurements with B outcomes but the preparation equiv-
alences vary depending on Alice’s marginal distribution in
the argument correlation. This relationship is depicted
in Fig. 1.
We can now define the inverse to our map. Given a

contextuality scenario with preparation equivalences sat-
isfying the following criteria, we can always express the
equivalences as in Eq. (9): (i) comprising a number, X, of
mixtures each of the same number, A, of preparations [since
we are considering the case in which pAðajxÞ ≠ 0 for all a
and x] that are all equivalent to one another, and (ii) where
no preparation appears in more than one mixture.

The domain of our inverse map will be pairs of a
contextuality scenario with such equivalences and a behav-
ior in that scenario. Explicitly, the inverse of our map
is then

Γ−1∶
h
RAXYB;N3; ðRAÞX

i
→ ½RABXY;N4�;

½q; ðAX; Y; B;NSðpAÞÞ� ↦ ½p; ðA;B; X; YÞ�; ð12Þ

for a behaviorq in the contextual setC of ðAX; Y; B;NSðpAÞÞ
and with pða; bjx; yÞ ¼ pAðajxÞqðbj½ajx�; yÞ. Note that the
pAðajxÞ are defined by the coefficients in the preparation
equivalences of the contextuality scenario, but end up being
equal to the marginals of Alice in the Bell scenario resulting
in no conflict of notation.
In Sec. I of the Supplemental Material we extend the map

Γ to all no-signaling correlations in a given two-party Bell
scenario. In this general case, we allow zeroes in the vectors
NSðpAÞ leading to the same contextuality scenario appear-
ing multiple times in the image of the map, but we use the
vectors NSðpAÞ to index the multiple appearances and
allow the map to be invertible. Two Bell correlations that
are mapped to the same behavior in two instances of a
contextuality scenario are equivalent up to relabeling.
Under this extension the contextuality scenarios in the

image of the map no longer are required to have the same
number of preparations in each mixture in the preparation
equivalences. That is, criterion (i) for a contextuality scenario
to be in the domain of Γ−1 simply becomes a number, X, of
mixtures of preparations that are all equivalent to one another.
We prove our main results about the map in the

Supplemental Material. Namely, in Sec. II we prove that
(given a contextuality scenario of the right type) Γ−1 maps
every quantum contextual behavior q to a quantum spatial
correlation p. We do so by observing that the problem is
equivalent to finding a way to steer Bob’s system into the
assemblage given by the quantum states in the realization
of q. The Schrödinger-HJW theorem [27] then provides an
explicit construction for realizing the quantum correla-
tion p. Section III shows that Γ maps quantum spatial
correlations to quantum contextual behaviors. Then
Secs. IV and V treat the cases of local and no-signaling
correlations invertibly mapping to noncontextual and con-
textual behaviors, respectively.
Limitations of the map.—In the literature, it is claimed

that any contextuality scenario with preparation equivalen-
ces given by multiple decompositions of a single hypo-
thetical preparation

PB ≃
XZ
a¼1

pa;1Pa ≃
XZ
a¼1

pa;2Pa ≃… ≃
XZ
a¼1

pa;XPa ð13Þ

is equivalent to a Bell scenario interpreted as a remote
prepare-and-measure experiment [[5], Sec. VII]. In Sec. VI
of the Supplemental Material, we give an example of a
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sequence of preparation equivalences of the form in
Eq. (13) that cannot be reduced to a sequence of equiv-
alences NSðpAÞ [even when allowing for the coefficients
pAðajxÞ to be zero], i.e., in our example a single prepa-
ration appears in multiple different mixtures. One can still
attempt to map such a scenario, H, to a Bell scenario, by
embedding behaviors q from H into those from a larger
scenario H0 (yielding a behavior q0), in which each
appearance of a preparation that appears multiple times
in OEP is treated as a distinct preparation. The resulting
sequence of equivalences OE0

P is of the form NSðpAÞ.
However, we show via an explicit example that this
embedding can map a contextual behavior qc in H to a
noncontextual behavior q0c in H0. Thus, using this embed-
ding to connect H to a Bell scenario leads to a contextual
behavior (qc) being mapped to a local correlation [through
the embedding q0c and then Eq. (12)]. Therefore, the
connection between noncontextuality and locality would
be lost by composing this embedding and our map Γ.
The quantum set in contextuality scenarios.—Using the

connection we have made between the sets of quantum
behaviors in contextuality scenarios and quantum correla-
tions in Bell scenarios, we can transfer various results
about quantum nonlocality to contextuality. Our main
results about the quantum contextual set are given in the
following four corollaries with proofs in Secs. VII–X of the
Supplemental Material.
Corollary 1: The membership problem for the set of

quantumbehaviors in a contextuality scenario is undecidable.
Corollary 2: The set of behaviors deriving from finite-

dimensional quantum systems in contextuality scenarios is
a strict subset of its infinite-dimensional counterpart.
Corollary 3: In general, the set of behaviors in a

contextuality scenario is not closed.
Corollary 4: No hierarchy of SDPs converges to

the quantum contextual set Q or its closure Q for all
contextuality scenarios.
Note that the SDP hierarchy in Corollary 4 could be

replaced by any algorithm capable of verifying that a
behavior is ε away from Q (in l1 distance) for all ε > 0.
Conclusion and outlook.—We constructed an isomor-

phism between the set of quantum spatial correlations and
the set of quantum contextual behaviors from an indexed
family of contextual scenarios. This map allows us to
characterize quantum nonlocality in terms of quantum
contextuality, translate results from Bell nonlocality to
generalized contextuality, and also raises questions about
the limits of SDP hierarchies in contextuality scenarios (see
the Introduction). A natural future research direction would
be to investigate whether other results from Bell non-
locality, such as self-testing [28] and device-independent
quantum key distribution [3], have analogs in contextuality
scenarios that can be found via our construction. Lastly, one
might attempt to generalize our map to multipartite Bell
scenarios. One such natural generalization remains a

bijection between local and noncontextual, and between
no-signaling and contextual sets in multipartite Bell
scenarios. However, whether this map also preserves
quantumness remains unknown, with the existence of
postquantum steering [29] posing an obstacle to general-
izing our argument.
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[16] Anubhav Chaturvedi, Máté Farkas, and Victoria J. Wright,
Characterising and bounding the set of quantum behaviours
in contextuality scenarios, Quantum 5, 484 (2021).

[17] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John
Wright, and Henry Yuen, MIP� ¼ RE, arXiv:2001.04383.

[18] See SupplementalMaterial at http://link.aps.org/supplemental/
10.1103/PhysRevLett.131.220202, which includes refe-
rences [19–26], for technical details of the map and proofs
of our results.

[19] Miguel Navascués, Tom Cooney, David Perez-Garcia, and
N. Villanueva, A physical approach to Tsirelson’s problem,
Found. Phys. 42, 985 (2012).

[20] David Avis and Charles Jordan, mplrs: A scalable parallel
vertex/facet enumeration code, Math. Program. Comput. 10,
267 (2018).

[21] William Slofstra, The set of quantum correlations is not
closed, Forum Math., Pi 7, e1 (2019).

[22] Andrea Coladangelo and Jalex Stark, An inherently infinite-
dimensional quantumcorrelation,Nat.Commun.11, 1 (2020).

[23] Volkher B. Scholz and Reinhard F. Werner, Tsirelson’s
problem, arXiv:0812.4305.

[24] Tobias Fritz, Tsirelson’s problem and Kirchberg’s conjec-
ture, Rev. Math. Phys. 24, 1250012 (2012).

[25] Matthew S. Leifer and Owen J. E. Maroney, Maximally
epistemic interpretations of the quantum state and contex-
tuality, Phys. Rev. Lett. 110, 120401 (2013).

[26] Matthew F. Pusey, Robust preparation noncontextuality in-
equalities in the simplest scenario, Phys. Rev. A 98, 022112
(2018).

[27] K Kirkpatrick, The Schrödinger-HJW theorem, Found.
Phys. Lett. 19, 95 (2006).

[28] Ivan Šupić and Joseph Bowles, Self-testing of quantum
systems: A review, Quantum 4, 337 (2020).

[29] Ana Belén Sainz, Nicolas Brunner, Daniel Cavalcanti, Paul
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Correction: A typographical error in the last sentence of
the fifth paragraph has been fixed.
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