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AlphaFold2 (AF) is a promising tool, but is it accurate enough to predict single mutation effects? Here,
we report that the localized structural deformation between protein pairs differing by only 1–3 mutations—
as measured by the effective strain—is correlated across 3901 experimental and AF-predicted structures.
Furthermore, analysis of ∼11 000 proteins shows that the local structural change correlates with various
phenotypic changes. These findings suggest that AF can predict the range and magnitude of single-
mutation effects on average, and we propose a method to improve precision of AF predictions and to
indicate when predictions are unreliable.
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Alteration of one or few amino acid residues can
affect structure [1–3] and function [4,5] of a protein and,
in extreme cases, be the difference between health and
disease [6,7]. Understanding structural consequences of
point mutations is important for drug design [8,9] and could
also accelerate optimization of enzymatic function via
directed evolution [10,11]. In these and other applications,
theoretical models [12] could be of immense help,
provided they are sufficiently accurate. In this context,
AlphaFold2 [13] has recently made breakthroughs in
predicting global protein structure from sequence with
unprecedented precision. Notwithstanding, it is not yet
known whether AF is sensitive enough to detect small,
local effects of single mutations. Even if AF achieves high
accuracy, the effect of a mutation may be small compared to
the inherent conformational dynamics of the protein—
predicting static structures may not be particularly inform-
ative [14–16]. Furthermore, as accuracy improves, evalu-
ating the quality of predictions becomes increasingly
complicated by the inherent noise in experimental mea-
surements [16–23]. So far, no study has evaluated whether
AF can accurately measure structural changes due to single
mutations, and there are conflicting reports as to whether
AF can predict the effect of a mutation on protein
stability [24–28]. Furthermore, recent evidence suggests
that AF learns the energy functional underlying folding,
raising the question of whether the inferred functional is
sensitive enough to discern the subtle physical changes due
to a single mutation [29]. We aim to resolve this issue by

comparing AF predictions with extensive data on protein
structure and function.
We examine AF predictions in light of structural data

from a curated set of proteins from the protein data bank
(PDB) [30], and phenotype data from high-throughput
experiments [31–33]. We find that AF can detect the effect
of a mutation on structure by identifying local deformations
between protein pairs differing by 1–3 mutations. The
deformation is probed by the effective strain (ES) measure.
We show that ES computed between a pair of PDB
structures is correlated with the ES computed for the
corresponding pair of structures predicted by AF.
Furthermore, analysis of ∼11 000 proteins whose function
was probed in three high-throughput studies shows sig-
nificant correlations between AF-predicted ES and three
categories of phenotype (fluorescence, folding, catalysis)
across three experimental datasets [31–33]. These sets of
correlations suggest that AF can predict the range and
magnitude of single-mutation effects. We provide new
tools [34] for computing deformation in proteins, and a
methodology for increasing the precision of AlphaFold
predictions of mutation effects. Altogether, these results
indicate that AF can be used to predict physicochemical
effects of missense mutations, undamming vast potential in
the field of protein design and evolution.
AF can predict local structural change.—We illustrate

our approach by analyzing wild-type (WT; 6BDD_A) and
single-mutant (6BDE_A, A71G) structures of H-NOX
protein from K. algicida [Fig. 1(d)] [35]. To quantify local
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deformation, we calculate the effective strain (ES) per
residue Si (see Appendix A) for, respectively, experimental
and AF-predicted pairs of structures [Fig. 1(a)]. The ES is
the mean relative change in distance from Cα of residue i to
neighboring Cα positions within a range of 13 Å. ES
provides a robust estimate of the magnitude of local strain,
which accounts also for nonaffine deformation in addition
to affine deformation [36–40]. Like the frame-aligned-
point-error (FAPE) measure used in training AF [13],
ES is invariant to alignment. In H-NOX, we observe that
the Si is highest at, and decays away from the mutated site,
showing a correlation with the distance from the mutated
site [Fig. 1(b)]. We find that Si is correlated across PDB and
AF structures [Figs. 1(c) and 1(e)]. Taken together, these
correlations suggest that Si is a sensitive measure of local
structural change, and that AF is capable of predicting such
structural change upon mutation.
Experimental measurement variability limits evalu-

ation.—Before exploring AF predictions in more detail,
we first examine variation within experimental structures
by comparing repeat measurements of the same protein.

In Fig. 1(f) we show the distribution of Si calculated for all
residues in all pairs (Supplemental Material, Sec. 1A [41])
of protein structures with identical sequences (number
of mutations, M ¼ 0); we excluded pairs where the
crystallographic group differed (Supplemental Material,
Sec. 1B [41]). Protein structures vary considerably between
repeat measurements (average ES is hSii ¼ 0.018, and the
average root mean square deviation is RMSD ¼ 0.24 Å).
In comparison, differences between repeat predictions of
AF are much lower (ΔSi ¼ 0.005, RMSD ¼ 0.11 Å). For
example, the experimental RMSD between WTand mutant
H-NOX is 1.6 Å, while the AF-predicted RMSD is
0.3 Å. We can refine AF predictions further by making
multiple repeat predictions and averaging over the local
neighborhoods [hAFi in Fig. 1(f), Appendix B], which
results in even lower differences (ΔSi ¼ 0.001). We find
that averaging decreases deformation away from mutated
residues, while preserving deformation in mutated areas
(Supplemental Material, Sec. 6 [41]), thus we henceforth
report results for averaged structures, except where noted.

(b) (c)

(f) (i)(g) (h)

(a) (d)

(e)

FIG. 1. (a) Local deformation per residue measured by effective strain, Si, between wild-type (WT) and mutant (A71G) H-NOX
protein, for experimental (orange) and AF-predicted (blue) structures. Dotted line indicates the mutated residue. (b) Si vs distance from
the nearest mutated site, δm. (c) Comparison of Si obtained from experimental and predicted structures. (d) Overlaid WT (gray,
6BDD_A) and mutant (color, 6BDE_A), experimental (orange) and predicted (blue) structures. (e) Wild type protein with residues
colored by Si; location of A71G mutation is shown. (f) Distribution of Si between matched pairs of structures with the same sequence
(M ¼ 0), for PDB, AF, and averaged AF (hAFi) structures. (g) Distribution of correlation between PDB strain fields and equivalent
fields from PDB, AF and DMPfold, shown for different numbers of mutations, M. (h) Residual correlation that is due to mutations,
shown for the full dataset and a nonredundant version (NR); whiskers show bootstrapped 95% confidence intervals. (i) Correlation
between PDB and hAFi strain fields, Sp

i , across all pairs p and residues i that are within a distance δm from a mutated site, shown for the
full dataset and a nonredundant version (NR).
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The variation between experimental measurements might
mask the deformation due to mutation, and therefore limits
our ability to evaluate AF predictions.
Mutation effects are measurable in PDB structures.—To

quantify how well we can measure mutation effects from
PDB structures, we compare deformation between two
matching pairs of PDB structures with identical (M ¼ 0)
and nonidentical (M > 0) sequences (Supplemental
Material, Sec. 5B [41]) of length L (number of residues).
For each pair, we calculate the strain fields, S ¼
ðS1;…; SLÞ, which record ES values for all residues,
and we calculate Pearson’s correlation coefficient r as in
Fig. 1(c). We find that even among protein structures with
identical sequences, strain fields are highly correlated
[Fig. 1(g)]. This occurs because the magnitude of positional
fluctuations depends on local flexibility; more flexible
regions exhibit higher strain in repeat measurements
(Appendix B). Thus, a portion of the S correlation in
Fig. 1(c) is due to effects other than mutation. Despite this,
we find that correlations are much higher when comparing
pairs of structures that differ by one or more mutations
(M > 0), and correlations increase with M [Fig. 1(g)].
Thus, the strength of PDB-PDB deformation correlations is
partly due to differences in local flexibility, and partly also
due to mutations.
Mutation effects are correlated across PDB and AF

structures.—To evaluate the performance of AF in predict-
ing mutation effects, we calculate correlations between
PDB and AF-predicted strain fields, SPDB and SAF, calcu-
lated for all matched pairs of proteins (Supplemental
Material, Sec. 5B [41]). The PDB-hAFi correlations
between pairs of structures with identical sequences
(M ¼ 0) are lower than PDB-PDB correlations [Fig. 1(g)],
as are the correlations for nonidentical sequences (M > 0).
Nonetheless, the correlations are significant and they
increase with M. To put this result in context, the
PDB-AF correlations are considerably higher than corre-
lations obtained by using another algorithm to predict
protein structure (DMPfold2) [60]. To compare the degree
of correlation that is due to mutation effects, we plot
the mean correlation for nonidentical sequences
hCorrðM∈ f1; 2; 3gÞi subtracted from the mean correlation
that can be attributed to fluctuations, hCorrðM ¼ 0Þi.
Figure 1(h) shows that the degree of correlation due to
mutations is as high for AF-PDB comparisons as it is for
PDB-PDB comparisons. Since many protein families are
overrepresented in the PDB, we repeat the analyses on
nonredundant sets of proteins (Supplemental Material,
Sec. 1C [41]), finding that AF-PDB correlations are still
comparable to PDB-PDB correlations [NR in Fig. 1(h)].
AF predicts the range of mutation effects.—Figures 1(g)

and 1(h) show that within matched protein pairs, deforma-
tion is correlated between PDB and AF, although the
magnitude of deformation can differ [Fig. 1(f)]. This
indicates that AF is at least correctly predicting the range

and the relative strength of the effect of a mutation.
On average, AF predicts that mutations can produce
changes in structure up to 16–18 Å (Supplemental
Material, Sec. 7 [41]), whereas the average range in the
PDB data is only 14 Å due to the higher measurement
variance in the PDB. This suggests that AF correctly
predicts the range of a mutation’s effect on structure.
AF predicts the relative magnitude of mutation effects.—

It is essential to be able to predict whether a mutation will
lead to a big or small effect on structure. While the previous
analysis did not show this, we directly address this problem
by examining whether predicted effects correlate with
empirical effects across proteins. To do this, we group
Si values from all matched pairs p by distance from the
nearest mutated residue, δm (in bins of 2 Å), to get sets of
Sp
i for both PDB and hAFi pairs of structures. This

allows us to compare ES magnitudes across proteins, by
calculating the correlation between Sp

i for PDB and hAFi.
At mutated sites, the correlation is quite high, and decreases
away from the mutated site as expected [Fig. 1(i)]; this is
also true for the nonredundant sample. Hence, AF is
capable of distinguishing between mutations that have
relatively large or small effects on structure.
Phenotypic change correlates with AF-predicted ES.—

An orthogonal test of whether AF can predict the effect of a
mutation is to study correlations between the effective
strain (ES), Si, and phenotypic change. This approach
avoids the pitfalls associated with noisy PDB measure-
ments, and allows us to test predictions of structures that
AF was not directly trained on. However, the link between
structure and function is often unknown. The mapping from
genotype to phenotype is complex and involves dimen-
sional reduction [5,61,62]. Therefore, a lack of a correlation
between Si and phenotype is not strong evidence that the
structure is incorrect, as there may be a nontrivial mapping
between structure and function. On the other hand, obser-
vation of correlations between Si and phenotype is
strong evidence that AF can be predictive in estimating
the effect of mutations. We study three datasets from high-
throughput experiments, covering three distinct phenotypes
(Supplemental Material, Sec. 2 [41]): (i) blue and red
fluorescence is measured for 8192 sequences linking
mTagBFP2 (blue) and mKate2 (red) [32]; (ii) green fluo-
rescence is measured for 2312 GFP sequences [31];
(iii) folding (fraction of active enzymes) and catalytic
(kcat) effects of mutations are measured for PafA [33]
(Supplemental Material, Sec. 2C [41]).
We find significant correlations between phenotype and

AF-predicted ES (compared to WT) for all phenotypes
(Fig. 2). It is possible to predict blue, red, and green
fluorescence (Pearson’s r ¼ −0.93, r ¼ −0.76, r ¼ −0.67)
by measuring the ES at residues Y65, A218, and L59,
respectively, Figs. 2(c), 2(e), and 2(f). There are many other
residues at which deformation measured by ES is predictive
of fluorescence [Figs. 2(a) and 2(b)], and these residues are
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found to be closer to residue Y65 [Fig. 2(d), Y65 covalently
binds to a chromophore]; this is despite no mutations to
Y65, which suggests that AF can predict allosteric effects.
We also find weaker, yet significant correlations between
ES and the empirical effects of mutations on folding and
catalytic activity [Figs. 2(g) and 2(h)]. For catalytic activity,
we measure mean deformation at the active site; for the
folding effect, we measure mean ES between the 50
residues that correlate best with the folding effect
(Supplemental Material, Sec. 9 [41]).
In contrast, we do not find consistent correlations with

RMSD, a standard estimate of AF accuracy [13], indicating
that local deformation, as measured by the ES, is more
appropriate for measuring mutational effects (Supplemental
Material, Sec. 10). In some cases, performance is heavily
dependent on which pretrained model (Supplemental
Material, Fig. 4 [41]) is used: surprisingly, we found that
using the highest ranked (by pLDDT; see Supplemental
Material, Secs. 3 and 11 [41]) models resulted in worse
performance for phenotypic change (Supplemental
Material, Fig. 4 [41]), and performance for structural
change was close to average (Supplemental Material,
Sec. 12 [41]). Taken together, these results provide evi-
dence that AF can be used to predict the structural effect of
a single mutation.
ES correlates with phenotypic change for wild-type

proteins.—It is quite unexpected that the ES, Si, should
be a good predictor of phenotypic change, even if AF can
accurately predict structure. We suspect that the correlation
is strong because the structures are always compared to the

wild-type (WT) proteins, where the structure is adapted for
function through evolution—any deviation from this opti-
mal structure is likely to diminish protein function. We find
that high correlations are only found within M ≤ 8 muta-
tions from the WT, and phenotype-ES correlations are
much weaker between non-WT pairs (Supplemental
Material, Sec. 9 [41]). Thus we conclude that Si is a good
predictor of phenotypic change from native protein sequen-
ces. For studying phenotypic change away from optima in
phenotype landscapes, another mapping from structure to
function is needed.
Discussion.—We have shown that AF is capable of

predicting structures with sufficient accuracy and that it
can pick up changes as small as those resulting from a
single missense mutation. Direct validation of predicted
mutational effects on structure is limited by the accuracy of
empirical structures [Fig. 1(f)], and further hindered by the
lack of sequence pairs that are suitable for comparison
(Supplemental Material, Sec. 1 [41]). Likewise, predicting
phenotypic change from structure alone ought to be
challenging, to say the least. Despite these steep hurdles,
we have shown, using effective strain (ES) as a measure of
deformation, that differences between AF-predicted struc-
tures do correlate with both structural (Fig. 1) and pheno-
typic changes (Fig. 2) in empirical data. Examining
individual pairs of PDB structures, mutation effects are
masked by fluctuations, but this inherent noise is filtered by
analyzing the statistics of many pairs, demonstrating that
AF is accurate. The difficulties in assembling sufficient
data for validation highlight that the age of experimental

FIG. 2. (a) Correlation (Pearson’s r) between blue fluorescence (mTagBFP2) and AF-predicted effective strain (ES), Si, between WT
and 8191 variants for all sequence positions i; positions of mutated residues are shown by dotted lines; chromophore site (Y65) is
indicated (red circle). (b) Structure of BFP, with each residue colored according to CorrðSi;Fluor:Þ (A); Y65 atoms are shown as spheres.
(c) Strain at residue Y65 vs fluorescence for mTagBFP2 variants. (d) Fluorescence-strain correlation per residue vs distance from residue
i to Y65; mutated positions are indicated (blue circle). (e)–(h) Correlations between: SA218 and red fluorescence (mKate2); SL59 and
green fluorescence (GFP); catalytic activity and S at the active site (PafA); folding ability (fraction of active enzymes) and average strain,
hSii, of the 50 residues that correlate best with folding ability (PafA).
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protein structure identification is far from over [63], despite
the success of AF and RoseTTAFold [13,64]. Our meth-
odology for evaluating mutation effects using deformation
can be used in future empirical evaluation of mutation
effects.
Advice for using AF to study mutations.—We find higher

correlations between AF and PDB when mutations are in
less flexible regions of proteins, and when mutations have
large effects (Appendix C). One can quickly estimate
flexibility using pLDDT (AF’s confidence in a residue’s
predicted position, or a proxy measure of rigidity;
Supplemental Material, Sec. 11 [41]), but it is more useful
to measure the variance of AF predictions by predicting
multiple structures (Appendix B, Supplemental Material,
Sec. 6 [41]). Depending on the flexibility, and mutation
effect size, one can achieve much more reliable estimates of
mutation effects by averaging across many repeat struc-
tures. We advise against using templates in predictions
(used by default in AF models 1 and 2), since this appears
to offer at best negligible increases in accuracy, and we
found one example where including templates made
the predictions much worse (Supplemental Material,
Sec. 12 [41]). We recommend using effective strain as a
measure of local deformation, rather than using RMSD or
pLDDT. We provide code for calculating deformation,
producing average structures, and calculating repeat-
prediction variance at [34].
AF predicts structure, not folding.—We need to empha-

size that AF is only trained to predict structures of stable
proteins, and we make no claims about whether the proteins
will indeed fold into the predicted structure. Given the
marginal stability of most proteins, mutations may easily
destabilize a protein so that its melting temperature falls
below room temperature. The process of protein folding is
carefully tuned in vivo for folding on the ribosome, and
through interactions with chaperones, and mutations that do
not change structure may retard folding through other
mechanisms [65]. To see whether pLDDT is predictive of
whether a protein will fold or not, we studied a set of 147
WW-domain-like sequences, of which 40 were found to fold
in vitro. Although more sophisticated methods may perform
better, mean pLDDT by itself proved insufficient to sort
folding from nonfolding proteins (Supplemental Material,
Sec. 11B [41]). Now that one question—what structure will
a protein likely fold into?—has been seemingly solved, at
least partially, it is crucial to next answer the question of
whether a protein will spontaneously fold.
Local deformation should be used to measure mutation

effects.—Placing the current results in a broader context,
we note that the evidence in support of AF’s capacity to
predict the effect of a mutation has so far been mixed. Some
studies suggest that AF and RoseTTTaFold can be indi-
rectly used to predict phenotype, but not by comparing
structures [26–28]. Two studies have reported negative
results [24,25], which we attribute primarily to their use of

pLDDT and RMSD—measures much less precise of muta-
tional effects compared to strain (Supplemental Material,
Sec. 10–11 [41]). In one study, the authors found only weak
correlations between pLDDT and fluorescence using the
same GFP dataset used here. Although we do not expect
pLDDT to strongly correlate with fluorescence, we do
find higher correlations than those reported in [24] by
examining allosteric effects (Supplemental Material,
Sec. 11A [41]). In another analysis [25], the authors appear
to assume that structure-disrupting mutations should result
in a large change in predicted structure or pLDDT [25]. We
first note that this paper only studied three proteins, limiting
our ability to draw general conclusions. We also see that the
deformation due to mutations in one of these proteins is
higher than 96% of mutation effects in our PDB sample
(Supplemental Material, Sec. 13 [41]); it is possible that
such large deformation is predictive of destabilization, and
testing this is a promising future direction [66]. Ultimately,
we think the present study has demonstrated that deforma-
tion (measured by ES) is a more robust measure of
structural change upon mutation.
Limitations.—Our structural analysis is limited to show-

ing statistical correlations, and more precise experimental
measurements are needed to validate the prediction accu-
racy of single proteins. Likewise, we are limited to
evaluating structural change in the actual training data,
but a less biased evaluation may become possible as more
mutation effects are empirically determined. Further work
is needed to more extensively examine the effects of MSA
coverage and depth on mutation prediction accuracy. As for
the phenotypic effect, we analyzed two protein folds and
three phenotypes; this analysis ought to be replicated on a
greater variety of proteins and phenotypes.
In summary, we showed here that AF predictions of local

structural change, probed by strain [36–39], can be used to
study missense mutations in proteins. These analyses
suggest that AF can, indeed, be a powerful tool, if used
in the right context and backed up by appropriate analyses.
Using AF, we can bridge the gap between sequence and
function in high-throughput deep-mutational scan experi-
ments, guide directed evolution studies [10], and design
drugs in silico [11]. For example, on a smaller scale, AF can
be used to screen potential mutants, and in costly experi-
ments where the number of mutations is limited, one can
select mutations with strong or weak effects in desired
regions of the protein. Overall, it appears that AF provides a
step change in our ability to study and guide protein
evolution. All AF structures analyzed here are available
at [67]. PDB files were compressed using Foldcomp [68].
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Appendix A: Calculating local deformation.—As a
measure of local deformation, we compute the effective
strain (ES), Si. ES is simply the mean relative change of
the inter-particle distances around a given residue and is
partially correlated with shear strain (Supplemental
Material, Secs. 4 and 5 [41]). To calculate Si per residue
i, we first define a neighborhood Ni that includes the
ni ¼ jNij residues j∈Ni whose Cα positions rj are
within 13 Å of ri, the Cα position of residue i (in both
reference and target structures). We obtain a 3 × ni
neighborhood tensor Di whose ni rows are the distance
vectors, rij ¼ rj − ri. We calculate, respectively, Di and
D0

i for the two structures we are comparing (e.g., WT
and mutant), and rotate D0

i to maximize overlap between
the tensors. The ES is the average over the ni neighbors
of the relative change in the distance vectors,

Si ¼
�jΔrijj

jrijj
�

¼ 1

ni

X
j∈Ni

jrij − r0ijj
jrijj

: ðA1Þ

We have evaluated several other local metrics, similar in
nature to ES, finding that the conclusions are not very
sensitive to the specific choice of metric or neighbor-
hood cutoff (Supplemental Material, Secs. 4 and 5 [41]).
We only include AF-predicted residues in strain calcula-
tions if pLDDT > 70, and treat them as disordered
otherwise.

Appendix B: Averaging local neighborhoods increases
accuracy.—Since AF predictions are stochastic, repeat
predictions vary. We find that deformation between
repeat predictions of the same protein leads to non-
negligible ES [Fig. 1(g)]. The ES is higher in flexible
regions, which is indicated by higher B factor, solvent
accessibility (RSA), and lower pLDDT (Fig. 3). It is
possible to obtain more reliable estimates of mutation
effects by averaging across local neighborhoods, Di, in
repeat predictions (Supplemental Material, Sec. 6 [41]).
Our average structures (hAFi) are typically averaged
over all 5 AF models, with one set of predictions from
DeepMind’s AF implementation, and five sets of
predictions from ColabFold’s AF implementation [69].
Averaging typically increases deformation-phenotype
correlations (Supplemental Material, Sec. 6B [41]). One
exception is the mTagBFP2/mKate2 dataset, where
DeepMind’s implementation of AF produces a better
correlation than the average; we find that this is due to
the ColabFold implementation performing poorly on this
specific protein (Supplemental Material, Sec. 6B [41]).
We see little increase in PDB-AF structure correlations
(Supplemental Material, Sec. 6A [41]), and we attribute
this to limitations of higher repeat-measurement variability
in PDB structures.

Appendix C: When do AF predictions correlate
with PDB data?—Here we assess why AF sometimes
predicts mutation effects similar to those measured in
experimental structures [Fig. 1(g)]. Across all proteins,
AF-PDB correlations are higher for mutant pairs of
proteins in two situations (Fig. 4, Supplemental Material,
Sec. 8 [41]): when flexibility is low (low B factor, low
RSA, high pLDDT, high ES when comparing repeat
predictions hSii); and when mutations have large effects
that are easier to measure (high PDB-PDB correlation,
high deformation at mutated site Sm, BLOSUM score).

FIG. 3. Fluctuations are greater in flexible regions. Deforma-
tion (ES) between experimental hen lysozyme structures
(194L_A and 6RTA_A), Si is correlated (Pearson’s r) with B
factor, relative solvent accessibility (RSA), and pLDDT (left).
Distributions (kernel density estimates) of correlations for all
proteins (right).

FIG. 4. Correlations are higher if mutations have large effects in
rigid regions. (a) Pearson’s correlation between PDB-AF
S-correlation and: mean and mutated residue values of flexibility
(B factor, RSA, pLDDT, hSii); fraction of secondary structure
(α-helix or β-sheet); magnitude of mutation effect (PDB-PDB S
correlation, ES at mutated site in PDB and AF, SPDBm and SAFm ,
BLOSUM score, frequency of mutation in MSA). Results are
shown for the non redundant sample; whiskers show boot-
strapped standard deviations.
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One might expect a negative correlation with the
frequency of mutation in MSA, as more frequent
mutations might have smaller effects; instead, it appears
that wider MSA coverage leads to more evolutionary
information that improves predictions, but this needs to
be tested further. There was no significant effect due to
secondary structure type or MSA size (Supplemental
Material, Fig. 21 [41]).
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