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Liquids near the glass transition exhibit dynamical heterogeneity, i.e., local relaxation rates fluctuate
strongly over space and time. Here, we introduce a simple continuum model that allows for quantitative
predictions for the correlators describing these fluctuations. We find remarkable agreement of the model
predictions for the dynamic susceptibility χ4ðtÞ with numerical results for a binary hard-sphere liquid and
for a Kob-Andersen Lennard-Jones mixture. Under this model, the lifetime τex of the heterogeneities has
little effect on the position t ¼ t4 ∼ τα of the peak of χ4ðtÞ, but it controls the decay of χ4ðtÞ after the peak,
and we show how to estimate it from this decay.
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Introduction.—When cooled or compressed fast enough,
most liquids will undergo a glass transition, where the
characteristic timescale for relaxation, the α-relaxation time
τα [1–3], grows smoothly but extremely rapidly. Together
with the increase in relaxation time, dynamical hetero-
geneity emerges: relaxation becomes much slower in some
regions than in others [2,4–6]. In this work we introduce a
phenomenological model for dynamic heterogeneity which
is directly based on this intuitive description and uses a
local relaxation rate γðr⃗; tÞ≡ 1=τr⃗ðtÞ as its basic variable.
The model allows us to write the multipoint correlators
measured in numerical simulations in terms of the two-
point correlator sðq⃗; t; t0Þ of γðr⃗; tÞ, which has a direct
interpretation in terms of the size and lifetime of the
heterogeneous regions. These quantities can provide a
more direct connection between numerical simulation
results and the results of experiments [4,6–8] on dynamical
heterogeneity. More immediately, we show in this work
that (i) numerical simulation data for two glass-forming
systems [9,10] are consistent with predictions from the
model; (ii) the model explains quantitatively and in a
transparent way some of the general features [11] of the
numerical results, and (iii) the model provides a new,
simpler way to extract an estimate of the lifetime of the
heterogeneities from numerical simulation data.
Probing relaxation in numerical simulations requires

detecting changes in individual particle positions or ori-
entations over a certain time interval of length t, i.e.,
measuring a two-time observable CðtÞ [5]. For example, the
overlap CðtÞ ¼ FoðtÞ [9] gives the fraction of “slow
particles,” i.e., those particles that over the interval t have
had displacements shorter than a certain distance a.
Because of dynamic heterogeneity, the fraction of slow
particles varies over space and time. This variation can be
probed by measuring four-point functions such as the
four-point structure factor S4ðq⃗; tÞ [11–13], which is the

Fourier-space correlation function of the local density of
slow particles, or, equivalently, the structure factor of the
slow particles (up to a trivial additive constant). The limit
χ4ðtÞ ¼ limq→0S4ðq⃗; tÞ [9,11,13–15], called the dynamic
susceptibility, captures contributions from dynamic hetero-
geneities of all spatial extents, and has been a central
quantity in numerical studies of dynamical heterogeneity,
where it has been often used to provide an overall measure
of the degree of heterogeneity, or, in other words, of the
intensity of the fluctuations. Although there have been
some efforts to predict or interpret the time dependence of
the four-point dynamic susceptibility χ4ðtÞ, particularly for
times up to the α relaxation time [14], much less is known
about it for times t > τα, and about how the time evolution
of χ4ðtÞ is connected with the time evolution of the
heterogeneous regions.
Observables and data.—For simplicity, we consider only

systems, such as supercooled liquids, where (i) the hetero-
geneity is dynamic, not static, and therefore all thermody-
namic averages are translation invariant, and (ii) the
dynamics is time-translation invariant (TTI), e.g., aging
is not present. We also restrict ourselves to observables
involving only one time interval from time 0 to time t. We
probe the dynamics by using the microscopic overlap
function wnðtÞ ¼ θ½a − jr⃗nðtÞ − r⃗nð0Þj�, where θðxÞ is the
Heaviside step function, r⃗nðtÞ; n ¼ 1;…; N is the position
of the nth particle at time t, and a is a characteristic distance
that is larger than the typical amplitude of vibrational
motion. We introduce the local relaxation function Cr⃗ðtÞ,

Cr⃗ðtÞ≡ρ−1
XN
n¼1

wnðtÞδ½r⃗nð0Þ− r⃗�; with hCr⃗ðtÞi¼CðtÞ;

ð1Þ
where ρ is the average particle density, h� � �i is an average
over thermal fluctuations, and CðtÞ is the global two-point
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correlator, i.e., the average overlap CðtÞ ¼ FoðtÞ≡
N−1PN

n¼1hwnðtÞi [9]. Fluctuations are characterized by
the four-point dynamic structure factor S4ðq⃗; tÞ [11,12],

S4ðq⃗; tÞ≡ ρ2N−1
Z
ddr e−iq⃗·r⃗h½Cr⃗ðtÞ−CðtÞ�½C

0⃗
ðtÞ−CðtÞ�i

ð2Þ

¼ N−1
XN
n;n0¼1

�
wnðtÞwn0 ðtÞeiq⃗·½r⃗nð0Þ−r⃗n0 ð0Þ�

�

− δq⃗;0NC2ðtÞ: ð3Þ
Numerical results [16,17] are discussed for a 3D
hard-sphere binary mixture (HARD) [9], and for a 3D
Kob-Andersen Lennard-Jones binary mixture (KALJ)
[10,18–20].
Continuum model for dynamic heterogeneity.—The

model we introduce focuses on the α-relaxation regime,
i.e., times t during the second step in the two-step relaxation.
It is based on two assumptions, which we discuss below.
Motivation for Assumption 1.—Even though four-point

functions were introduced to describe the collective phe-
nomenon of dynamic heterogeneity, they capture much
more than that. In Ref. [21] it was shown that at very long
times t, the collective contributions to the four-point
function S4ðq⃗; tÞ are negligible compared to the single-
particle, spatially uncorrelated, q⃗-independent contribution
Ssp4 ðq⃗; tÞ ¼ χsp4 ðtÞ ≈ CðtÞ − C2ðtÞ. To reproduce this be-
havior, we introduce the following:
Assumption 1.—The local relaxation function Cr⃗ðtÞ is

the sum of two mutually independent random variables, the
collective part Ccoll

r⃗ ðtÞ, and the single particle part Csp
r⃗ ðtÞ,

Cr⃗ðtÞ ¼ Ccoll
r⃗ ðtÞ þ Csp

r⃗ ðtÞ; with ð4Þ

hCcoll
r⃗ ðtÞi ¼ CðtÞ and hCsp

r⃗ ðtÞi ¼ 0: ð5Þ

We interpret all correlations between different particles as
“collective,” thus the single particle part Csp

r⃗ ðtÞ is spatially
uncorrelated at equal times,

Gsp
4 ðr⃗;tÞ≡ρhCsp

r⃗ ðtÞCsp

0⃗
ðtÞi∝ δðr⃗Þ; and Ssp4 ðq⃗;tÞ¼ χsp4 ðtÞ:

ð6Þ

Motivation for Assumption 2.—Dynamic heterogeneity
has been described as involving relaxation times differing
in different spatial regions [4,6,7], i.e., some regions being
“fast” and others being “slow.” Our model directly trans-
lates this intuitive description into quantitative predictions
by defining a “local clock” ϕr⃗ðtÞ (Fig. 1), which instead of
counting in units of seconds, counts in units of the local
relaxation time τr⃗ðtÞ,

ϕr⃗ðtÞ≡
Z

t
dt0=τr⃗ðt0Þ: ð7Þ

Thus, Δϕr⃗ðtÞ≡ ϕr⃗ðtÞ − ϕr⃗ð0Þ represents the number of
relaxation times elapsed between times 0 and t in the region
around r⃗ (Fig. 1). Naively, one could expect Ccoll

r⃗ ðtÞ to
depend only on Δϕr⃗ðtÞ, i.e., Ccoll

r⃗ ðtÞ ¼ C½Δϕr⃗ðtÞ� [22–24].
Here, CðxÞ does not fluctuate, it is a fixed monotonous
decreasing function, with Cð1Þ ¼ e−1 Cð0Þ, that represents
the shape of the local relaxation function, for example,
CðxÞ ¼ f0 expð−xÞ for simple exponential relaxation. This
ansatz, however, does not reproduce S4ðq⃗; tÞ, because
spatial density fluctuations in the initial state of the system
provide two q⃗-dependent contributions [21] to S4ðq⃗; tÞ.
One is Sst4 ðq⃗; tÞ ¼ C2ðtÞSðq⃗Þ (for q ≠ 0), where Sðq⃗Þ is the
static structure factor; the other, Smc

4 [16] was neglected in
the case of χ4ðtÞ ¼ limq→0S4ðq⃗; tÞ. This motivates multi-
plying C½Δϕr⃗ðtÞ� by the initial local particle density ρðr⃗; 0Þ,
which leads to
Assumption 2.—The collective contribution is

Ccoll
r⃗ ðtÞ ¼ ρ−1ρðr⃗; 0ÞC½ϕr⃗ðtÞ − ϕr⃗ð0Þ�; ð8Þ

where ∂ϕr⃗ðtÞ=∂t≡ 1=τr⃗ðtÞ ¼ γðr⃗; tÞ ð9Þ
is the local relaxation rate. For simplicity, we
assume that ρðr⃗; t1Þ and ϕ

r0
!ðt2Þ are mutually

independent random variables, for arbitrary positions

r⃗, r0
!
, and times t1, t2, and that they are smooth and slowly

varying in space and time.

FIG. 1. Converting the idea of space and time dependent
relaxation times τr⃗ðtÞ into the idea of a “local clock.” For each
region in the system there is an individual local clock ϕr⃗ðtÞ
[Eq. (7)] that counts howmany local relaxation times have elapsed
up to time t. Each tic mark on a horizontal line represents one
relaxation time. For example, of the three highlighted regions,a,b,
and c, region c has relaxed the slowest, with Δϕr⃗cðtÞ ¼ ϕr⃗cðtÞ −
ϕr⃗cð0Þ ¼ 5.0 relaxation times elapsed between time 0 and time t.
Regions a and b have relaxed generally faster, so the correspond-
ing numbers of elapsed relaxation times between times 0 and t are
larger, in this case Δϕr⃗bðtÞ ¼ 6.8 and Δϕr⃗aðtÞ ¼ 11.0.
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Motivation for the definition of τex.—The exchange time
τex has been defined as the characteristic time for a “fast”
region becoming “slow” or vice versa [4,6,7]. This trans-
lates directly into defining it as the characteristic time
for the autocorrelation function of the relaxation rate
γðr⃗; tÞ ¼ 1=τr⃗ðtÞ.
Definition of the exchange time τex.—

τex ≡
R∞
0 tχϕ2 ðtÞdtR∞
0 χϕ2 ðtÞdt

; where χϕ2 ðtÞ≡ lim
q→0

sðq⃗; tÞ; ð10Þ

and sðq⃗; tÞ≡ V−1
Z

ddr e−iq⃗·r⃗hδγðr⃗; tÞδγð0⃗; 0Þi: ð11Þ

Here, χϕ2 ðtÞ and sðq⃗; tÞ are two-point functions of the
fluctuations δγðr⃗; tÞ≡ γðr⃗; tÞ − hγðr⃗; tÞi of the relaxation
rate. The limit q → 0 in Eq. (10) includes fluctuations at
all spatial length scales, as in the definition of χ4ðtÞ
[9,11,13–15].
Results: Prediction for the dynamic susceptibility

χ4ðtÞ.—By Taylor expanding Eq. (8) up to quadratic order
in δγ, Assumptions 1 and 2 lead to

C0ðt=τÞ ≈ τĊðtÞ; where CðτÞ ¼ e−1; and ð12Þ

χ4ðtÞ≡ lim
q→0

S4ðq⃗; tÞ ¼ Ċ2ðtÞχ̃ϕ4 ðtÞ þ χð0Þ4;bðtÞ; with ð13Þ

χð0Þ4;bðtÞ≡ CðtÞ þ ½N−1hðδNÞ2i − 1�C2ðtÞ ð14Þ

representing a background due to single particle and initial
density fluctuations.
Equation (13) is the main result of this work. The factor

Ċ2ðtÞ comes directly from the linear term in the Taylor
expansion, and its presence is unavoidable for any ansatz
that contains a factor like C½ϕr⃗ðtÞ − ϕr⃗ð0Þ� that attempts to
represent the effects of fluctuating local relaxation rates.
The factor χ̃ϕ4 ðtÞ [25] is predicted to be a positive monoto-
nously increasing function of t, which has no special
feature for t ∼ τα (Fig. 2). Initially, χ4ðtÞ grows rapidly
due to the rapid growth of χ̃ϕ4 ðtÞ, but this growth gets cut off
by the sharp decrease of Ċ2ðtÞ near t ∼ τα, corresponding to
the fact that τα is the characteristic time for the decay of
CðtÞ. This leads to χ4ðtÞ having its peak for t ∼ τα [11,14],
even if the exchange time is much longer [26]. Another
way of looking at this is to rewrite Ċ2ðtÞχ̃ϕ4 ðtÞ ¼
½t2Ċ2ðtÞ�½t−2χ̃ϕ4 ðtÞ�, where t−2χ̃ϕ4 ðtÞ is still featureless for
t ∼ τα (Fig. 2), but t2Ċ2ðtÞ has a peak at t ∼ τα, which leads
to the peak in χ4ðtÞ. χ̃ϕ4 ðtÞ controls the height of the peak of
χ4ðtÞ, and provides an overall measure of the heterogeneity,
because it is approximately proportional to the mean
quadratic drift h½Δϕr⃗ðtÞ − hΔϕr⃗ðtÞi�2i ¼ h½R t

0 δγðr⃗; tÞ�2i ¼R
t
0 dt

00 R t
0 dt

0χϕ2 ðt00 − t0Þ of the local clocks,

χ̃ϕ4 ðtÞ≡ ρτ2
Z

t

0

dt00
Z

t

0

dt0χ̃ϕ2 ðt00 − t0Þ; with ð15Þ

χ̃ϕ2 ðtÞ≡ χϕ2 ðtÞ þ lim
q→0

ρ−1f½Scð·Þ − 1�◯sð·; tÞgðq⃗Þ; ð16Þ

where Scðq⃗Þ≡ ½Sðq⃗Þ − ρδq⃗;0⃗� is the connected part of the
static structure factor and f ◯g denotes a convolution. In
fact, in most cases, χ̃ϕ2 ðtÞ ≈ χϕ2 ðtÞ [25].
Results: Upper bound for χ4ðtÞ and frozen heterogeneity

approximation.—Equations (13) and (15) imply there is an
upper bound χ4;fhðtÞ for χ4ðtÞ,

χ4ðtÞ ≤ χ4;fhðtÞ≡ ãϕt2Ċ2ðtÞ þ χð0Þ4;bðtÞ; with ð17Þ

ãϕ ≡ ρτ2χ̃2;M and χ̃2;M ≡ sup
t
χ̃ϕ2 ðtÞ < ∞; ð18Þ

where the parameter ãϕ [25] represents the overall strength
of the heterogeneity.
For times τα ≲ t ≪ τex, most slow (fast) regions will stay

slow (fast), so that each of their local clock drifts
R
t
0 δγðr⃗; tÞ

will grow linearly with time. Thus, for τα ≲ t ≪ τex,
χ̃ϕ4 ðtÞ ∝ hðlocal clock driftÞ2i ∝ t2. (Figure 2 shows that
this regime can be found for HARD but not for KALJ.)

FIG. 2. Numerical results [17] for KALJ (cyan) and HARD
(red). Left panel: χ4ðtÞ for KALJ for T ¼ 0.50 and for HARD at
φ ¼ 0.58, 106Ċ2ðtÞ for KALJ at T ¼ 0.50 and 1010Ċ2ðtÞ for
HARD at φ ¼ 0.58, 10−21χ̃ϕ4 ðtÞ [25] for HARD at φ ¼ 0.58, and
10−17χ̃ϕ4 ðtÞ for KALJ at T ¼ 0.50. χ̃ϕ4 ðtÞ is extracted from the data

by χ̃ϕ4 ðtÞ ¼ ½χ4ðtÞ − χð0Þ4;bðtÞ�Ċ−2ðtÞ. The yellow dashed lines
represent a ∝ t2 time dependence [frozen heterogeneity approxi-
mation for χ̃ϕ4 ðtÞ], and a ∝ t1.7 time dependence. Right panel:
χ4ðtÞ for KALJ at T ¼ 0.50 and for HARD at φ ¼ 0.58, t2Ċ2ðtÞ
for KALJ at T ¼ 0.50 and for HARD at φ ¼ 0.58, 10−10t−2χ̃ϕ4 ðtÞ
for HARD at φ ¼ 0.58 and for KALJ at T ¼ 0.50.
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Equivalently, for 0 < t0 < t ≪ τex, χ̃ϕ2 ðt0Þ ≈ χ̃2;M [25].
Thus, Eq. (17) becomes an approximate equality,
χ4ðtÞ ≈ χ4;fhðtÞ. We refer to this as the frozen heterogeneity
approximation. In this approximation, the time dependence
of the dynamic susceptibility χ4ðtÞ is given by an explicit
expression in terms of independently measured quantities
—CðtÞ and hðδNÞ2i—plus a single numerical constant ãϕ.
By contrast, for t≳ τex the inequality in Eq. (17)

becomes strict. For t ≫ τex, a given region will pass
through periods in which it is slow and periods in which
it is fast, so local drifts will alternate between positive and
negative signs, and χ̃ϕ4 ðtÞ ∝ hðlocal clock driftÞ2i ≪
ðconstÞt2. In particular, if χ̃ϕ2 ðtÞ decays like t−1−δðδ > 0Þ
or faster, then χ̃ϕ4 ðtÞ ∝ t ≪ t2.
Figure 3 shows a comparison of our model’s predictions

for χ4ðtÞ with numerical results [17] for HARD and KALJ.
To explore the effects of the exchange time on the results,
we choose the simple parametrization χ̃ϕ2 ðtÞ ¼ χ̃ϕ2 ð0Þe−t=τ̃ex ,
which by Eq. (15) gives

χ̃ϕ4 ðtÞ ¼ ãϕf2τ̃2ex½expð−t=τ̃exÞ − 1þ t=τ̃ex�g: ð19Þ

There is a narrow band of possible results of the model
between the cases of frozen heterogeneity [τ̃ex ¼ ∞,
χ4ðtÞ ¼ χ4;fhðtÞ] and of τ̃ex ¼ τα. The numerical results
fall within that range for t≳ τα for HARD at φ ¼ 0.55,
0.57 and for t≳ 0.1τα for all other cases [16]. For HARD
they approach the frozen heterogeneity upper bound χ4;fhðtÞ
as the packing fraction increases. For KALJ, they are closer
to the τex ¼ τα results. In fact, remarkable agreement can be

obtained if the form in Eq. (19) is used, with τ̃ex as a fitting
parameter. (For KALJ at T ¼ 0.50, the data are too noisy to
judge on goodness of fit.)
Results: Exchange time τex.—Figure 4 shows initial

estimates of the memory parameter Q≡ τex=τα [7] and
the heterogeneity strength parameter aϕ, obtained under the

assumption that χϕ2 ðtÞ ¼ χϕ2 ð0Þe−t=τex , which corresponds to
χ4ðtÞ ¼ Ċ2ðtÞaϕf2τ2ex½expð−t=τexÞ − 1þ t=τex�g þ χ4;bðtÞ
[16]. For KALJ Q ∼ 2 and it seems not to vary strongly
with τα [26], but for HARD,Q increases from ∼5 to≳30 as
the glass transition is approached. For both models,
aϕ ∼ τpα , with pHARD ≈ 0.64 and pKALJ ≈ 0.70.
Summary.—We have introduced a simple phenomeno-

logical model for dynamic heterogeneity in glass-forming
materials. This model translates into quantitative predic-
tions the intuitive description of dynamic heterogeneities as
local fluctuations in the relaxation rate, and additionally
takes into account contributions due to local particle
density fluctuations and to single-particle, noncollective
behavior.
The model provides expressions for computing four-

point functions—such as Eqs. (13)–(16)—requiring only
one- and two-point quantities—like ρ, Sðq⃗Þ, CðtÞ, and the
relaxation rate two-point correlation function sðq⃗; tÞ—that
are much easier to interpret than four-point functions.
Crucially, Eq. (13) shows that χ4ðtÞ having a peak at
t ∼ τα is due to Ċ2ðtÞ having its characteristic time at t ∼ τα,
even though χ̃ϕ4 ðtÞ is the factor that most directly encodes
the time dependence of relaxation rate fluctuations. This
explains why the lifetime of the dynamic heterogeneities
has a weak effect on the location t ¼ t4 ∼ τα of the peak
of χ4ðtÞ.
Given a single parameter ãϕ encoding the overall

strength of the relaxation rate fluctuations, the model
predicts an upper bound χ4;fhðtÞ for the dynamic suscep-
tibility χ4ðtÞ, corresponding to the limit of frozen

FIG. 3. Comparison of our model’s predictions for χ4ðtÞ,
Eqs. (13)–(15), with numerical simulation results [17] (orange
full lines) for HARD for packing fractions φ ¼ 0.55, 0.57, 0.58
(left side, left to right) and KALJ for temperatures T ¼ 0.60,
0.55, 0.50 (right side, left to right). tscale is 1 for HARD and 0.005
for KALJ. Model predictions are shown for (i) the frozen
heterogeneity approximation χ4ðtÞ ¼ χ4;fhðtÞ (black thin lines);

(ii) χ̃ϕ2 ðtÞ ¼ χ̃ϕ2 ð0Þe−t=τ̃ex with τ̃ex ¼ τα [25] (magenta dashed
lines); and (iii) χ̃ϕ2 ðtÞ ¼ χ̃ϕ2 ð0Þe−t=τ̃ex with τ̃ex chosen by fitting
the data with Eq. (19) (blue dotted lines).

FIG. 4. Ratio Q ¼ τex=τα (triangles) and heterogeneity strength
parameter aϕ (circles), vs rescaled relaxation time τα=τ0 ([10]),
for HARD (blue) at φ ¼ 0.55, 0.56, 0.57, 0.58 and KALJ (red) at
T ¼ 0.70, 0.65, 0.60, 0.55. The dashed lines are power law fits
for aϕ.
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heterogeneity, τ̃ex ¼ ∞. If, additionally, it is assumed that
the two-point susceptibility decays exponentially, χ̃ϕ2 ðtÞ ¼
χ̃ϕ2 ð0Þe−t=τ̃ex , very good agreement is obtained with numeri-
cal data by fitting with the two parameters ãϕ, τ̃ex. The
dependence of χ4ðtÞ on τ̃ex is relatively weak, and all
numerical data fall in the narrow interval between the
τ̃ex ¼ τα prediction and the frozen heterogeneity τ̃ex ¼ ∞,
χ4ðtÞ ¼ χ4;fhðtÞ prediction.
Information about the time evolution of the hetero-

geneities can be found most clearly in the time evolution
of χ4ðtÞ after its peak. Roughly speaking, τex ¼ ∞ makes
the heterogeneities maximally persistent, which maximizes
the strength of the heterogeneity, i.e., χ4ðtÞ ≈ χ4;fhðtÞ, but
the shorter τex is, the faster the heterogeneous relaxation
rates return to the mean, and the more χ4ðtÞ differs from
χ4;fhðtÞ for times t≳ τex. Estimating Q ¼ τex=τα from χ4ðtÞ
shows that QKALJ ∼ 2 independently of τα [26], but QHARD
grows strongly with τα. (We believe this to be the first
measurement of Q or τex for a hard sphere model.) These
results are consistent with the fact that for HARD at higher
packing fraction (but not for KALJ), there is a time regime
τα ≲ t ≪ τex where the frozen heterogeneity approximation
holds, i.e., χ̃ϕ4 ðtÞ ∼ t2 (Fig. 2) and χ4ðtÞ ≈ χ4;fhðtÞ (Fig. 3).
Finally, the model introduces sðq⃗; tÞ, which quantifies

more directly the spatial and temporal correlations of the
local relaxation rate. Results for this quantity, plus dis-
cussions of non-TTI dynamics, more general overlap
functions wnðtÞ, four-point functions with general time
arguments, and connections to experimentally measured
correlators [4,6–8], will be reported elsewhere [27,28].
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