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Yang and Lee investigated phase transitions in terms of zeros of partition functions, namely, Yang-Lee
zeros [Phys. Rev. 87, 404 (1952); Phys. Rev. 87, 410 (1952)]. We show that the essential singularity in the
superconducting gap is directly related to the number of roots of the partition function of a BCS
superconductor. Those zeros are found to be distributed on a semicircle in the complex plane of the
interaction strength due to the Fermi-surface instability. A renormalization-group analysis shows that the
semicircle theorem holds for a generic quantum many-body system with a marginal coupling, in sharp
contrast with the Lee-Yang circle theorem for the Ising spin system. This indicates that the geometry of
Yang-Lee zeros is directly connected to the Fermi-surface instability. Furthermore, we unveil the
nonunitary criticality in BCS superconductivity that emerges at each individual Yang-Lee zero due to
exceptional points and presents a universality class distinct from that of the conventional Yang-Lee edge
singularity.

DOI: 10.1103/PhysRevLett.131.216001

Introduction.—Yang and Lee developed a general
approach to understanding phase transitions in terms
of zeros, known as Yang-Lee zeros, of the partition
function [1,2]. They investigated the distribution of zeros
of the partition function of a classical Ising model for an
imaginary magnetic field to understand the mathematical
origin of nonanalyticity of the ferromagnetic phase tran-
sition. The thermal phase transition between the para-
magnetic and ferromagnetic phases occurs when the
distribution of zeros touches the real axis in the thermo-
dynamic limit. Yang-Lee zeros are also closely related to
singularities in thermodynamic quantities accompanied by
anomalous scaling [3–8]. This type of singularities in
critical phenomena is collectively referred to as the
Yang-Lee singularity [9].
The distribution of Yang-Lee zeros governs the critical

phenomena in phase transitions [3,10] and is of funda-
mental importance in statistical physics. The universality of
the distribution is encapsulated by the Lee-Yang circle
theorem [1,2], which states that the Yang-Lee zeros of the
ferromagnetic Ising model are distributed on a unit circle in
the complex plane of the fugacity [11–14]. While the Yang-
Lee theory has been applied to a wide range of phase
transitions in classical [15–18] and quantum [19–28]
systems, its application to itinerant electronic systems is
limited [20,21]. Itinerant electrons show various types of
order arising from Fermi-surface instabilities, including the
Bardeen-Cooper-Schrieffer (BCS) superconductivity [29]

as a prime example. Thus, the study of Yang-Lee zeros in
the BCS theory is expected to unveil hitherto unnoticed
universality in superconductivity.
In this Letter, we develop the Yang-Lee theory of BCS

superconductivity to elucidate the nonperturbative nature
of the superconducting phase transition in terms of the
distribution of zeros of the partition function. We show
that the number of roots of the partition function is directly
related to the superconducting gap induced by the Fermi-
surface instability. In particular, we demonstrate that the
Yang-Lee zeros of the partition function are distributed on
a semicircle in the complex plane of the interaction
strength, where the superconducting phase transition
occurs at the edge of the distribution. A previous
study [20] on Fisher zeros in pairing fields focuses on
a finite-temperature phase transition by making the
temperature complex. In contrast, we focus on the zero-
temperature quantum phase transition by making the
interaction strength complex.
Furthermore, we employ a renormalization group (RG)

to investigate the universality of the distribution of Yang-
Lee zeros for a generic quantum many-body system with a
marginal coupling. In particular, we show the semicircle
theorem: Yang-Lee zeros in a quantum many-body system
with a marginally relevant coupling are distributed on a
semicircle in the complex interaction plane, in contrast to a
full circle of the original Lee-Yang circle theorem [1,2].
This general theorem demonstrates that the geometric
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shape of the distribution of Yang-Lee zeros is directly
connected to the existence of the Fermi-surface instability.
Last, we investigate the nonunitary criticality in BCS

superconductivity which originates from the Yang-Lee
singularity. By determining the critical exponents, we show
that the nonunitary singularity belongs to a universality
class distinct from that of the Hermitian superconducting
phase transition. The unconventional quantum critical
phenomena are caused by exceptional points where a
nonanalytic excitation spectrum emerges near the Fermi
surface [30].
Yang-Lee singularity in superconductivity.—We con-

sider a three-dimensional BCS model [30,31]

H ¼
X
kσ

ξkc
†
kσckσ −

U
N

X 0

k;k0
c†k↑c

†
−k↓c−k0↓ck0↑; ð1Þ

where ξk ¼ ϵk − μ is the single-particle energy measured
from the chemical potential μ, σ ¼ ↑;↓ is the spin index,
and U ¼ UR þ iUI is the complex-valued interaction
strength. The creation and annihilation operators of an
electron with momentum k and spin σ are denoted as c†kσ
and ckσ , respectively. The prime in

P0
k indicates that the

sum over k is restricted to jξkj < ωD, where ωD is the
energy cutoff and N is the number of momenta within this
cutoff. Note that the non-Hermitian Hamiltonian (1) is used
to investigate Yang-Lee zeros of closed systems as opposed
to open systems in Ref. [30].
A non-Hermitian generalization of the BCS theory is

made in Ref. [30], where the mean-field BCS Hamiltonian
is given by HMF ¼

P
kσ ξkc

†
kσckσ þ

P0
k½Δ̄0c−k↓ck↑ þ

Δ0c
†
k↑c

†
−k↓� þ ðN=UÞΔ̄0Δ0, with the superconducting

gaps Δ0 ¼ −ðU=NÞP0
kLhc−k↓ck↑iR and Δ̄0 ¼ −ðU=NÞP0

kLhc†k↑c†−k↓iR. Here, LhAiR ≔ LhBCSjAjBCSiR, where
jBCSiR and jBCSiL are the right and left ground states of
the Hamiltonian HMF given by [30]

jBCSiR ¼
Y
k

ðuk þ vkc
†
k↑c

†
−k↓Þj0i; ð2Þ

jBCSiL ¼
Y
k

ðu�k þ v̄�kc
†
k↑c

†
−k↓Þj0i; ð3Þ

where j0i is the vacuum state for electrons, and uk; vk, and
v̄k are complex coefficients subject to the normalization
condition u2k þ vkv̄k ¼ 1. These coefficients can be deter-
mined in a standard manner and given in Supplemental
Material [32]. Since the right and left ground states are
not the same, Δ0 ≠ Δ̄�

0 and v̄k ≠ v�k in general. Here, we
take a gauge such that Δ̄0 ¼ Δ0. The Bogoliubov energy

spectrum Ek is given by [30] Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2k þ Δ2

k

q
, where

Δk ¼ Δ0θðωD − jξkjÞ with θðxÞ being the Heaviside
unit-step function. It is worthwhile to note that Δ0 is

complex in general, so is the energy Ek. In the following,
we assume that the density of states ρ0 in the energy shell is
a constant. The gap Δ0 is then given by

Δ0 ¼
ωD

sinh
�

1
ρ0U

� ; ð4Þ

which exhibits an essential singularity at U ¼ 0.
The partition function is given by

Z ¼
Y
k;σ

Zk ¼
Y
k;σ

ð1þ e−βEkÞ; ð5Þ

whose absolute value is shown in Fig. 1. Here, β is the
inverse temperature. The Yang-Lee zeros of our system are
defined by zeros of the partition function in Eq. (5) where
ReðEkÞ ¼ 0 and ImðβEkÞ ¼ ð2nþ 1Þπ, n∈Z. This con-
dition is satisfied in the thermodynamic limit if ReΔ0 ¼ 0,
which agrees with the condition of phase transitions. It
follows from this condition that the positions of Yang-Lee
zeros satisify

ðρ0πURÞ2 þ ðρ0πUI − 1Þ2 ¼ 1; UR > 0: ð6Þ

Note that these points coincide with the exceptional points
where HMF is not diagonalizable [30]. The Yang-Lee zeros
are distributed on a semicircle in the complex plane of the
interaction strength U depicted as the boundary of the gray
region in Fig. 1. In the yellow region in Fig. 1, the energy
spectrum Ek is gapped and jZj → 1 in the zero-temperature
limit since e−βEk → 0 for all momenta k. Note that the
distribution of the Yang-Lee zeros touches the real axis at
the origin, which is consistent with the fact that the
superconducting phase transition occurs at the origin.
The essential singularity at the superconducting phase

transition is directly linked to the number of roots χ of the

FIG. 1. Absolute value of the partition function Z of the
three-dimensional BCS model as a function of the real and
imaginary parts of the interaction strength U ¼ UR þ iUI in the
zero-temperature limit. The boundary along which the partition
function vanishes is given by Eq. (6). In the gray region inside the
phase boundary, the value of the partition function is not shown
due to the breakdown of the mean-field approximation [30].
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partition function. According to Eq. (5), each factor in
the partition function contributes to one root if and only
if ReðEkÞ ¼ 0 and ImðβEkÞ ¼ ð2nþ 1Þπ for some
n∈Z. Therefore, the number of roots of the partition
function in the complex energy space is given by the
number of integer n satisfying ImðβEkÞ ¼ ð2nþ 1Þπ
for ImðβEkÞ∈ ½0; βImðΔ0Þ� [see Eqs. (12)–(15) in
Supplemental Material [32] ]. From Eq. (4), we have

χ ≃
βImðΔ0Þ

π
¼ βωD

π cosh
�

UR
ρ0jUj2

� ð7Þ

in the zero-temperature limit, where the spin-degeneracy
factor of two is included. Near U ¼ 0, the gap takes the
form of Δ0 ¼ 2ωD exp½−ð1=ρ0UÞ�. Since the phase boun-
dary is tangent to the real axis whereUI ≪ UR, we may put
UI ¼ 0 in Eq. (7) near the origin, obtaining

χ ≃
β

π
Δ0jUI¼0: ð8Þ

Equation (8) relates the number of roots χ of the partition
function to the superconducting gap Δ0 on the real axis.
The condensation energy ΔE ¼ FðΔ0Þ − Fð0Þ [33], where
F is the free energy, can be obtained from the number of
roots χ as [32]

ΔE ≃ −
π2Nρ0

2

�
χ

β

�
2

∝ χ2: ð9Þ

For a general phase transition with spontaneous symmetry
breaking and order parameter Δ0 with the dimension of
energy, we have ΔE ∝ χ2 [34]. The condensation energy is
thus directly related to the number of roots χ.
Semicircle theorem.—Here, we show that the semi-

circular distribution (6) of the Yang-Lee zeros is generic
and universal in quantum many-body systems. We consider
a general canonical RG equation for a marginal complex
interaction:

dV
dt

¼ aV2 þ bV3; ð10Þ

where V ¼ VR þ iVI ∈C is a dimensionless coupling
strength which can be taken as V ¼ ρ0U in the present
case, and dt ¼ −ðdΞ=ΞÞ is the relative width of the high-
energy shell which is to be integrated out in the Wilsonian
RG with Ξ being the energy cutoff. There are two finite
fixed points in Eq. (10). One is V ¼ 0, which is trivial, and
the other is V ¼ −ða=bÞ, which is nontrivial. According to
the stability of the nontrivial fixed point, we can classify the
RG-flow diagrams into two types depending on the sign of
b. The case with b > 0 corresponds to an unstable non-
trivial fixed point in the Hermitian case and does not exhibit
critical phenomena. The other case with b < 0 corresponds

to a stable nontrivial fixed point in the Hermitian case and is
the only one that includes the critical line. The BCS model
belongs to this case. The RG-flow diagrams for these cases
are shown in Supplemental Material [32]. By applying the
Wilsonian RG analysis of the fermionic field theory [35],
the RG equation of the BCS model up to the two-loop order
including the self-energy correction is written as [32]

dV
dt

¼ V2 −
1

2
V3: ð11Þ

From Eq. (11), we find a ¼ 1 and b ¼ −1=2 in the
canonical RG equation (10). A similar RG equation has
been obtained for the non-Hermitian Kondo model [36].
Note that the sign of the parameter a does not influence the
physics of RG flows since we can reverse its sign by the
replacement V → −V. For a system with b < 0, there exists
a critical line which separates the trivial and nontrivial fixed
points. Every point on the critical line flows toward an
infinite fixed point ðVR; VIÞ ¼ ð−a=ð3bÞ;∞Þ. After inte-
grating Eq. (10) and taking the imaginary part, we obtain
the critical line as

bπ
jaj þ

VI

V2
R þ V2

I
¼ b

a
arctan

VI

VR
þ b
a
arctan

�
−

bVI

aþ bVR

�
:

ð12Þ

Near the origin, Eq. (12) can be expanded as

VI

V2
R þ V2

I
þ bπ
jaj ¼ 0: ð13Þ

The critical line specified by Eqs. (12) and (13) is located
in the right-half complex plane VR > 0 for a > 0 and in
the left-half complex plane VR < 0 for a < 0. Note that
the critical line (13) forms a semicircle for all a ≠ 0
and b < 0. For the BCS model, Eq. (13) reduces to
−UI=½ρ0ðU2

R þU2
I Þ� þ ðπ=2Þ ¼ 0, which agrees with the

mean-field phase boundary in Eq. (6) along which the
Yang-Lee zeros are distributed. This RG result confirms
the validity of the mean-field results.
The above analysis of general marginally interacting

systems with a ≠ 0 and b < 0 implies that the criticality
associated with the Yang-Lee zeros, if exists, can only take
place on the semicircle (13) within the perturbative RG
framework. This semicircle distribution of Yang-Lee zeros
is to be compared with the Lee-Yang circle theorem [2]
where the zeros are distributed on a unit circle. The semi-
circle structure arises from the marginal nature of the
coupling strength that induces different RG-flow behaviors
between the left-half plane VR < 0 and the right-half plane
VR > 0. In fact, such a feature lies at the heart of the Fermi-
surface instability in superconductivity.
This semicircle theorem indicates that the nonperturba-

tive properties in the Fermi-surface instability is generally
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linked to the geometric shape of the distribution of Yang-
Lee zeros. This semicircular distribution of Yang-Lee zeros
should appear in diverse systems subject to Fermi-surface
instabilities, such as the charge-density wave (CDW) and
anisotropic Cooper pairing, since they are described by
similar RG equations with marginal couplings [35]. In fact,
systems with the CDW instability can be described by a
mean-field analysis similar to the BCS theory [37–39].
Nonunitary critical phenomena in superconductivity.—

The Yang-Lee zeros in the complex plane are accompanied
by nonunitary critical phenomena in BCS superconductiv-
ity with a complex-valued interaction. Remarkably, the
criticality in the BCS model arises at every point on
the phase boundary rather than at the edges alone as in
the Ising model.
We now examine the critical exponents and the univer-

sality class of the Yang-Lee singularity. The correlation
function

CðxÞ ¼ Lhc†σðxÞcσð0ÞiR
≔ LhBCSjc†σðxÞcσð0ÞjBCSiR ð14Þ

can be calculated from the Fourier transformation

CðxÞ ≃ −
1

N

X
k

0 ξk
2Ek

eik·x: ð15Þ

Here, we restrict the sum over k to the energy shell since we
are concerned with the long-range behavior of the corre-
lation function. We expand ξk near the Fermi surface as
ξk ¼ vFðk − kFÞ, where vF is the Fermi velocity, kF is the
Fermi momentum, and k ¼ jkj. On the phase boundary (6),
the correlation function (15) shows a power-law decay as

lim
x→∞

CðxÞ ≃ AðlÞ
l3=2

þ i
BðlÞ
l3=2

∝ x−3=2; ð16Þ

where x ¼ jxj, l ≔ ðImΔ0=vFÞx is a dimensionless length
scale, and AðlÞ and BðlÞ are real functions that oscillate
with l without decay (see Supplemental Material [32] for
details). The anomalous power of 3

2
arises from the excep-

tional points of the system, and should be compared with
the power of 2 for the normal-metal phase [40]. When the
gap closes at the exceptional points, the dispersion relation
near the Fermi surface is given by

Ek ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fk

2 − ðImΔ0Þ2
q

: ð17Þ

Near the exceptional points kE ≔ ðImΔ0=vFÞ, the
dispersion relation reduces to Ek ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k − kE

p
, in sharp

contrast with the Hermitian counterpart which exhibits a
linear dispersion relation near a gapless point. It is this
square-root excitation spectrum that induces the anomalous
decay of the correlation function near the phase boundary.

From the correlation function (16), we find the anomalous
dimension η ¼ 1=2 from CðxÞ ∝ x−Dþ2−η on the phase
boundary, where D is the dimension of the system [40].
The correlation function decays exponentially near

the phase boundary. If we shift U by an infinitesimal
amount δU along the real axis from the phase boundary, the
correlation function can also be calculated from Eq. (15),
giving

lim
x→∞

CðxÞ ∝ ½AðlÞ þ iBðlÞ�
exp

�
− l

ξ

�
l3=2

; ð18Þ

where the correlation length ξ ∝ ðρ0δUÞ−1 diverges on
the phase boundary, and hence we obtain the critical
exponent ν ¼ 1 from ξ ∝ ðδUÞ−ν [40] (see Supplemental
Material [32] for the derivation). Near the phase boundary,
the dynamical critical exponent z is defined as

ReΔ0 ∝ ξ−z: ð19Þ

From the expression of Δ0 in Eq. (4), we find that
ReΔ0 ∝ ξ−1 ∝ δU. Hence, we have z ¼ 1.
The correlation length in the Hermitian case takes the

form of

ξ ∝ exp

�
1

ρ0δU

�
: ð20Þ

This behavior is distinct from that of the quantum phase
transition in the non-Hermitian case since ξ−1 in Eq. (20)
cannot be expanded as a power series of ρ0δU, indicating
that the exceptional points lead to a distinct universality
class in the non-Hermitian system.
We next consider the pair correlation function

ρ2ðr1σ1; r2σ2; r01σ01; r02σ02Þ
¼ Lhc†σ1ðr1Þc†σ2ðr2Þcσ02ðr02Þcσ01ðr01ÞiR; ð21Þ

where ðr1σ1; r2σ2Þ and ðr01σ01; r02σ02Þ are the positions
and spins of electrons that form Cooper pairs. Setting
r1 ¼ r2 ¼ R and r01 ¼ r02 ¼ 0 and taking the limit jRj → ∞,
we find that ρ2 converges to a nonzero value on the phase
boundary as

lim
R→∞

ρ2ðR↑;R↓; 0↓; 0↑Þ ¼ −
ðImΔ0Þ2

U2
≠ 0: ð22Þ

This nonvanishing pair correlation function is characteristic
of nonunitary critical phenomena, where the correlation
function of the order parameter may diverge at long
distance [3]. We can also use Eq. (22) to define the critical
exponent δ as
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lim
R→∞

ρ2ðR↑;R↓; 0↓; 0↑Þ ∝ jRj−δ: ð23Þ

We have δ ¼ 0 here, which is also unique to the nonunitary
critical phenomena.
The compressibility also shows critical behavior

associated with the Yang-Lee singularity. By analyzing
the compressibility κ ¼ ð∂2F=∂μ2Þ near the phase boun-
dary where F ¼ −ð1=βÞ logZ is the free energy of
Bogoliubov quasiparticles, we have

κ ¼ −N
Z

ωD

−ωD

ρ0dξk
Δ2

0

ðξ2k þ Δ2
0Þ3=2

: ð24Þ

On the phase boundary (6), the compressibility κ diverges.
Therefore, we define another critical exponent ζ near the
phase boundary as

κ ∝ ðδUÞ−ζ; ð25Þ

with ζ ¼ 1=2 in this system. This critical behavior also
arises from the nonanalytic square-root dispersion relation
near the exceptional points. In fact, the critical exponents η
and ζ are equal to each other for a general fractional-power
dispersion relation ðk − kEÞ1=n, which includes the case of
higher-order exceptional points [32].
These power-law behaviors in the nonunitary critical

phenomena constitute a new Yang-Lee universality class
distinct from that of the Yang-Lee edge singularity [3].
From the RG analysis, each point on the phase boundary
(12) except for the origin flows to ðρ0UR; ρ0UIÞ ¼ ð2

3
;∞Þ,

while the origin remains invariant in the RG flow. Hence,
the points on the phase boundary except for the origin
represent a universality class different from that at the
origin.
Conclusion.—We have investigated the Yang-Lee zeros

in BCS superconductivity and found that the Yang-Lee
zeros are distributed on the semicircular phase boundary in
the complex plane of the interaction strength. We find that
the nonperturbative nature of the order parameter and
thermodynamic quantities are directly connected to the
number of roots of the partition function, which allows us
to understand superconducting quantum phase transitions
from the analytic property of the partition function. We
have performed the RG analysis of generic many-body
fermionic systems with marginal interactions and shown
that the semicircle distribution of Yang-Lee zeros is a
universal phenomenon in Fermi systems. We have also
explored the Yang-Lee critical behavior and obtained
critical exponents of the nonunitary criticality.
The Yang-Lee zeros and the corresponding singularity

studied in this Letter are not only an interesting math-
ematical property but can also be tested experimentally. In
fact, the non-Hermitian BCS model can be realized in open
quantum systems [30,41]. The complex-valued interaction
strength describes the effect of two-body loss in ultracold

atoms. For example, inelastic two-body losses can be
induced by utilizing Feshbach resonances [42–44] or
photoassociation [45,46]. Since the dissipation in these
cases only involves atomic loss, the eigenvalue spectrum
and the exceptional points of the Lindblad equation
including the jump terms are the same as those of the
corresponding non-Hermitian Hamiltonian without the
jump terms [47]. Hence, we believe the nonunitary critical
phenomena introduced in this Letter should also be
observed in open quantum systems.
While we have focused on the quantum phase transition,

it is worthwhile to investigate how the Yang-Lee singularity
is connected to a superconducting phase transition at finite
temperature. We also expect that Yang-Lee zeros can
emerge in other non-Hermitian many-body systems such
as a non-Hermitian Bose-Hubbard model [48].
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