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The evolution of single-particle strengths as the neutron-to-proton asymmetry changes informs us of the
importance of short- and long-range correlations in nuclei and has therefore been extensively studied for the
last two decades. Surprisingly, the strong asymmetry dependence of these strengths and their extreme
values for highly asymmetric nuclei inferred from knockout reaction measurements on a target nucleus are
not consistent with what is extracted from electron-induced, transfer, and quasi-free reaction data,
constituting a two-decade old puzzle. This work presents the first consistent analysis of one-nucleon
transfer and one-nucleon knockout data, in which theoretical uncertainties associated with the nucleon-
nucleus effective interactions considered in the reaction models are quantified using a Bayesian analysis.
Our results demonstrate that, taking into account these uncertainties, the spectroscopic strengths of loosely
bound nucleons extracted from both probes agree with each other and, although there are still discrepancies
for deeply bound nucleons, the slope of the asymmetry dependence of the single-particle strengths inferred
from transfer and knockout reactions are consistent within 1σ. Both probes are consistent with a small
asymmetry dependence of these strengths. The uncertainties obtained in this work represent a lower bound
and are already significantly larger than the original estimates.
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Introduction.—Systematic studies of nuclei along iso-
topic chains have revealed unexpected trends that challenge
our understanding of nuclear structure [1–3]. While energy
spectra hold an important component of this complex
many-body puzzle, reaction studies since the 1950s have
been extracting information on the composition of the
nuclear wave function itself, and in particular the distri-
bution of strength across various nuclear orbitals. This is
expressed in terms of a spectroscopic factor (SF), propor-
tional to the probability that the system will be found in a
particular configuration. These SFs are reduced compared
to the independent particle model (IPM), due to long-range
correlations (LRC), associated mainly with pairing and
deformation effects, and short-range correlations (SRC).
The evolution of this shell structure away from stability
therefore provides unique insights on correlations in nuclei
and on the fundamental nuclear force [2,4]. Moreover,
because SRCs influence the equation of state [5], are
connected with the quark momentum distributions in
nucleons bound inside nuclei [6], and affect lepton-nucleus
interactions [7], an accurate understanding of SRCs will
impact astrophysics, particle physics and neutrino physics.
The importance of these correlations in nuclei is quanti-

fied by comparing SFs extracted from experimental
nucleon-removal data and theoretical predictions [4]. For
two decades, nuclear physicists have grappled with the
asymmetry dependence of the ratio R between the SF

extracted from experiment and that predicted by the nuclear
shell model. The now famous asymmetry plot showing R
as a function of the difference between neutron and proton
separations energies (ΔS) has caused significant debate [4].
The asymmetry dependence of R found in the analysis of
one-nucleon knockout reactions on a 9Be or 12C targets—
often referred simply as knockout reactions—[8–10] is not
consistent with that found using other probes, namely, for
electron-induced [11], quasi-free [12], and transfer reac-
tions [13–15] (see the recent review Ref. [4] for a full
status). For the last two decades, many studies have
attempted to understand the source of this inconsistency.
Our work adds to these studies, although it brings a novel
perspective.
SFs are model dependent [16,17]; their extraction from

experimental data require both a reaction model and a
structure model. The analysis of knockout reactions makes
use of the eikonal reaction theory as well as large-scale
shell-model calculations. To understand the asymmetry
dependence of R associated with knockout observables,
the validity of the shell-model SFs and the eikonal model
have been thoroughly analyzed, e.g., Refs. [18–23] discuss
the importance of SRCs and LRCs for structure predictions
and Refs. [24–30] address the validity of the eikonal
approximation. Similarly, many studies tested the validity
of the theories used in the transfer analyses [31–34],
including benchmarks of the reaction models.
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Given that SFs are not observables, a degree of caution
needs to be taken in interpreting the results. When using
different probes, it is essential to make the same assump-
tions so the conclusions are both comparable and reliable.
Equally necessary is a good understanding of the theoreti-
cal uncertainties without which any disagreement between
results is rendered meaningless. One earlier study did
attempt to quantify the uncertainties associated with the
reaction theory used in the transfer [31], however, those
estimates were obtained without a rigorous statistical
analysis.
Although in the majority of cases, the RðΔSÞ plots

contain only statistical errors from the experimental data,
we understand there are significant uncertainties attributed
to the reaction models themselves. Most noteworthy are the
uncertainties associated with the phenomenological fits
of the effective interactions used, the so-called optical
potentials [35]. Bayesian analyses of elastic scattering has
led to the understanding that uncertainties associated
with the optical potentials are larger than previously
estimated [36–39]. This work offers the first consistent
analysis of knockout and transfer reaction data on three
different Ar isotopes using Bayesian statistics to quantify
the theoretical uncertainties associated with the nucleon-
nucleus optical potentials.
Methodology.—We first reanalyze transfer data for the

34;36;46Arðp; dÞ33;35;45Arðg:s:Þ reactions at 33A MeV [40],
using the Adiabatic Wave Approximation (ADWA) [41],
and take as input the nucleon-AAr and nucleon-A−1Ar
interactions at the beam energy and at half the deuteron
energy for the incoming and outgoing channels, respec-
tively. The nucleon-Ar optical potential parameters are
directly sampled [42] from the recent global parametriza-
tion KDUQ [43] from which we compute the credible
intervals for the transfer angular distributions using the
code NLAT [44].
We reanalyze 32Arþ 9Be→ 31Arðg:s:ÞþX at 65.1A MeV

[45] and 34;46Ar þ 9Be → 33;45Arðg:s:Þ þ X at 70A MeV
[46,47], using the eikonal method [30,48–50], and we
quantify the uncertainties arising from the n-9Be target
interaction only. Because KDUQ is not appropriate for light
targets, we follow the work done in Ref. [39], and instead
we generate mock elastic angular distributions with a
realistic potential [51]. We assign to these mock data an
error of 10%, which is common for elastic-scattering
experiments with stable beams. Parameter posterior dis-
tributions are obtained from the Bayesian analysis of the
n-9Be target elastic scattering and are propagated to obtain
credible intervals for the knockout momentum distribu-
tions. For the core-9Be interaction, we use the optical limit
with the parameters of Ref. [52] and the density of 9Be
approximated by two-parameter Fermi distributions [53].
We do not include the uncertainties associated with the
core-9Be interaction as there are no elastic-scattering data
on these systems or realistic potential to generate mock data

and it has been shown that the uncertainties arising from
this interaction are less significant [39]. In both the transfer
and knockout calculations, we do not include the spin-orbit
force for convenience, since we expect it to have a
negligible effect.
Critical to both reaction calculations are the structure

input: the exact same description is used for the single-
particle structure of the isotopes involved. We use a Wood-
Saxon potential with a radius of RR ¼ r0ðA − 1Þ1=3 fm
with r0 ¼ 1.25 fm and diffuseness of aR ¼ 0.65 fm [54]
and we fit its depth to the neutron separation energy. Details
concerning the relevant single-particle states used in the
transfer and knockout calculations are given in Table I.
Results.—The transfer angular distributions are shown in

Fig. 1: the normalized 68% (dark shaded blue) and 95%
(light shaded blue) credible intervals are compared to the
data reported in Ref. [40]. The shape of the predicted transfer
angular distributions are in good agreement with experiment,
corroborating the assumptions made in ADWA.
The results for parallel-momentum distributions follow-

ing knockout are shown in Fig. 2: the normalized 68%
(dark shaded salmon) and 95% (light shaded salmon)
credible intervals are compared to the data reported in
Refs. [45–47]. In general, the experimental distributions are
well reproduced by the eikonal model, except for the 46Ar
case, which exhibits a highly asymmetric distribution. As
discussed in Ref. [47], this low-momentum tail is likely due
to additional, dissipative mechanisms acting in the final
state of the reaction products, which are not included in the
eikonal approximation. We will discuss how this impacts
the extracted SF later.
The parallel-momentum distributions are numerically

integrated to obtain the total knockout cross sections shown
in Table II: the experimental total cross sections (σexp, 2nd
column) are listed along with the theoretical ones, namely,
the diffractive-breakup contributions (σdif , 4th column), the
stripping contributions [55] (σstr, 5th column) and the total
predicted single-particle cross sections (σsp ¼ σdif þ σstr, 3rd
column). It is clear that the errors on the theoretical total
knockout cross section are also mostly defined by the
uncertainties in the stripping component. This feature is
expected for the removal of well-bound neutrons (all cases

TABLE I. Properties of the single-particle wave function for
32;34;36;46Ar: the neutron separation energy (Sn), the spin and
parity of the nucleus (Jπ), of the A − 1 core [(A − 1) Jπ] and the
number of nodes n, the partial wave l and the spin j of the core-
neutron single-particle wave function.

Sn [MeV] Jπ (A − 1) Jπ nlj

32Ar 21.60 0þ 5=2þ 0d5=2
34Ar 17.07 0þ 1=2þ 1s1=2
36Ar 15.26 0þ 3=2þ 0d3=2
46Ar 8.07 0þ 7=2− 0f7=2
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considered in this work have neutron separation energies
Sn > 8 MeV) which makes the reaction process more
sensitive to the details of the optical potentials [39].
We now consider the extraction of the SFs. For transfer,

we follow a similar procedure as in Ref. [31]: we extract the
SF by adjusting the angular distributions to the data points
around the peak. The corresponding SFs and their

uncertainties are displayed in the 2nd column of
Table III, along with the 1σ (2σ) errors. Our SFtran are
consistent with those extracted in Ref. [31] (3rd column)
although they exhibit larger errors. The relative uncertainty
in SFtran increases with the binding energy of the projectile,
similarly to what was observed in knockout observables
[39]. For knockout, we sample both the total cross-section
posterior distribution predicted by theory and the corre-
sponding experimental total cross sections, assuming a
normal distribution. We then extract the distribution of the
SFs by taking the ratio of the experimental samples with the
theoretical ones. The corresponding SFko, shown in the 4th
column of Table III, are consistent with the ones extracted
in the original analyses (5th column) [45–47]. However, the
original uncertainties for SFko are much smaller than those
we obtained here, just as was found in the transfer case.
Note that the SFs extracted from knockout data on 46Ar
(34Ar) are consistent with the ones extracted from the
transfer data within 1σ (2σ).
To obtain the ratio R, we use previously published

large-scale shell model calculations [56] : SFSM ¼ 4.39 for
32Ar [45], and SFSM ¼ 1.39, 2.22, 5.51 for 34;36;46Ar [40].
No uncertainties have been estimated for these predictions.

FIG. 2. Parallel-momentum distributions of the remaining
(a) 31Ar, (b) 33Ar, and (c) 45Ar after the one-neutron knockout
of 32Ar, 34Ar, and 46Ar off a 9Be target at 65.1A, 70A, and
70A MeV, respectively. The theoretical distributions were folded
with the experimental resolution, and their center has been
adjusted so that the average distribution reproduces the high-
momentum tail of the data. The data and the experimental
resolution profile were taken from Refs. [45–47].

FIG. 1. Angular distributions for (a) 34Arðp; dÞ33Arðg:s:Þ,
(b) 36Arðp; dÞ35Arðg:s:Þ, and (c) 46Arðp; dÞ45Arðg:s:Þ at
33A MeV. All theoretical distributions have been scaled to
reproduce the data from Ref. [40]. The scaling factors are the
extracted SFs and their uncertainties result from both theoretical
and experimental errors. These values are listed in Table III.

TABLE II. The knockout experimental (σexp) and theoretical
single-particle cross section (σsp) along with their diffractive-
breakup (σdif ) and stripping contributions (σstr). The numbers are

organized as XþYðY 0Þ
−ZðZ0Þ , where X denotes the average value, Y and Z

(Y 0 and Z0) correspond, respectively, to the 1σ (2σ) uncertainties
obtained by propagating the uncertainties due to the neutron-9Be
target interaction.

σexp [mb] σsp [mb] σdif [mb] σstr [mb]

32Ar 10.4þ1.3
−1.3 8.9þ1.6ð9.1Þ

−3.4ð4.6Þ 2.7þ0.4ð2.0Þ
−1.0ð1.1Þ 6.3þ1.2ð9.5Þ

−3.8ð4.4Þ
34Ar 4.7þ0.9

−0.9 12.8þ2.4ð7.4Þ
−3.6ð5.6Þ 4.2þ0.5ð2.0Þ

−1.3ð1.6Þ 8.6þ1.6ð7.6Þ
−4.5ð5.6Þ

46Ar 61þ9
−9 13.4þ1.8ð7.9Þ

−4.2ð6.2Þ 4.2þ0.5ð2.1Þ
−1.3ð1.6Þ 9.2þ1.7ð8.3Þ

−4.4ð6.1Þ

TABLE III. SFs extracted from transfer [40] and knockout data
[45–47] compared with previous analyses (3rd and 5th columns).
The numbers are organized as XþYðY 0Þ

−ZðZ0Þ , where X denotes the
average value, Y and Z (Y 0 and Z0) correspond, respectively, to the
1σ (2σ) uncertainties obtained from the experimental errors and
by propagating the uncertainties due to the nucleon-nucleus
interactions.

SFtran Ref. [31] SFko Ref.

32Ar 1.3þ0.4ð0.9Þ
−0.5ð0.8Þ 1.1þ0.1

−0.1 [45]
34Ar 0.91þ0.16ð0.42Þ

−0.25ð0.47Þ 0.92þ0.12
−0.12 0.39þ0.08ð0.23Þ

−0.16ð0.25Þ 0.36þ0.07
−0.07 [46]

36Ar 2.1þ0.2ð0.8Þ
−0.4ð1.3Þ 2.21þ0.49

−0.49
46Ar 4.7þ0.5ð2.4Þ

−1.2ð2.5Þ 4.93þ0.69
−0.69 4.9þ1.3ð2.8Þ

−1.5ð2.8Þ 4.9þ0.7
−0.7 [47]

PHYSICAL REVIEW LETTERS 131, 212503 (2023)

212503-3



As noted in earlier analyses [8–10], the shell-model SFs are
significantly larger than the SFs extracted from the knock-
out of deeply bound nuclei, e.g., 32;34Ar, but are in agree-
ment with those extracted from transfer. The fact that for
some reactions, we have SFtran > SFSM and SFko > SFSM,
highlights again that SFs are model construct. In theoretical
structure calculations, SFs are normalized to ensure the
nucleon number conservation. However, when extracted
from experimental data, SFs do not ensure the nucleon
number conservation as the theoretical model used to
analyze the data inconsistently treats structure and reaction
properties.
Figure 3 contains the asymmetry dependence ofR using

transfer (blue bars) and knockout (red bars) data. The thick
bars represented 1σ and the thin bars represent 2σ, both
obtained from the credible intervals on the SFs reported in
Table III. We must point out that the results forR obtained
for the three discrete values of ΔS are not necessarily
consistent with a linear dependence, either for transfer or
for knockout. Nevertheless, for the sake of comparison with
previous studies, we fit R to RðΔSÞ ¼ aΔSþ b, for each
reaction case, transfer or knockout, taking into account the
1σ uncertainty (blue and salmon shaded bands). The slope
obtained for transfer (a ¼ −0.0036� 0.0090) is consistent
with the slope obtained for knockout (a ¼ −0.0175�
0.0091), within uncertainties, even though there are sig-
nificant differences in the values of the intercept
[Rð0Þ ¼ 0.79� 0.09 for transfer and Rð0Þ ¼ 0.55�
0.14 for knockout]. Our extracted slope for knockout is
consistent with that extracted previously (a ¼ −0.016
[10]), however, now we include the 1σ uncertainty coming

from both the optical potentials in the theoretical analysis
and the experimental errors.
Discussion.—An optical model dependence on the over-

all normalization of the extracted SFs might be expected,
but we have verified that the slope obtained is not
dependent on the choice of the optical potential. When
repeating the knockout analysis using KDUQ, the same
parametrization used in the transfer analysis, we obtained a
slope of −0.0135� 0.0124 (shown in the Supplemental
Material [58], which includes Ref. [59]). In addition to
transfer and knockout, ðp; pnÞ and ðp; 2pÞ reactions have
also been studied in this context [12]. Although to make a
meaningful comparison, similar uncertainty analysis for
those reaction channels needs to be done, our results do not
seem inconsistent with Ref. [12].
As pointed out in Ref. [12], the asymmetry dependence

extracted can change slightly when using shell-model
predictions with different residual interactions and/or
model spaces, or even when using different model assump-
tions for the geometry of the single-particle wave function.
Yet, there will be no significant change on the relative
uncertainties due to the optical potentials. To remove any
possible dependence on the shell model and to facilitate a
future comparison with results obtained from ðe; e0pÞ
measurements, we also provide the asymmetry plot when
R is extracted using the IPM occupation numbers in
Supplemental Material [58] (the ratio R deduced from
the ðe; e0pÞ data [11] relies on the IPM). The results for R
using IPM do not seem inconsistent with those of Ref. [11],
however a study of the uncertainty in that reaction probe
remains to be completed.
One must keep in mind that the uncertainties here

presented are only a lower bound. First, we did not include
the parametric uncertainties associated with the description
of the single-particle state [38] even though we did use the
exact same model in both analyses. For this reason, we
expect these uncertainties to have no impact on our con-
clusions. Moreover, we did not quantify the uncertainties
associated with the core-target potentials, used to compute
knockout cross sections. More intricate is the quantification
of model uncertainties. The reaction models used to interpret
the measurements have approximations and therefore a
complete analysis should include the errors associated with
them. Although the inclusion of model uncertainties is
beyond the scope of this work, there are plans to tackle
this problem in the near future and it is important to identify
the theory approximation in the models that are likely to be
more relevant. Next, we briefly discuss this aspect.
In transfer reactions, ADWA has been benchmarked

against Faddeev calculations, solving the three-body prob-
lem exactly [31]: at Ep ¼ 33 MeV the differences are only
significant for the 36Ar case but a more rigorous quantifi-
cation is desirable. In knockout, the measured momentum
distributions exhibit an asymmetry for 46Ar that the model
does not predict. The interpretation of the knockout data

FIG. 3. Ratio of the SF extracted from data and the shell-model
SF (including the center-of-mass correction) as a function of the
asymmetry of the nucleus ΔS ¼ Sn − Sp. The blue error bars
correspond to the SFs extracted from transfer data [40] and the
red ones to the SFs extracted from knockout data [45–47]. Each
error bar shows the 1σ and 2σ uncertainties. The shaded areas
correspond to the 1σ uncertainties of a linear fit of the transfer
(blue) and knockout (red) error bars.
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relies on the eikonal model, which contains two approx-
imations: the adiabatic approximation and a core-spectator
approximation. The adiabatic approximation violates energy
conservation and is the cause for the symmetric parallel-
momentum distributions [as seen in Fig. 2(c)]. Improved
models which do conserve energy are able to describe the
distributions (e.g., Ref. [24]). It has been shown that the
integrated cross sections produced in such models agree
with those from the eikonal model, proving that this aspect
does not have a strong impact on the extracted SFs [26]. The
second approximation, the core-spectator approximation,
assumes that the core degrees of freedom are “frozen”
during the collision process. However, dissipative mecha-
nisms associated with the removal of the nucleon tend to
decrease the predicted cross sections [25], an effect that is
more important the more bound the system is. We expect
that the extracted SFs obtained from knockout data when
including these dissipative effects would be larger for nuclei
with large ΔS, which could explain part of the apparent
discrepancies between transfer and knockout predictions in
Fig. 3. Unfortunately, accounting for these dissipative
effects is not trivial and requires updated reaction frame-
works. Initial studies in the reaction theory community are
moving in this direction [60,61] but more work is needed,
including the coupling of the new frameworks with a
Bayesian analysis.
Conclusions.—In summary, we reanalyze a set of transfer

and knockout data using a Bayesian framework to quantify
the theoretical uncertainties due to the optical potentials,
known to be one of the leading sources of uncertainties in
reaction models. In the past, optical potentials uncertainties
were estimated naïvely by comparing the results with two
arbitrary parametrizations [31]. This work demonstrates that
those original estimates produce uncertainties that are
significantly underestimated. Most importantly, our results
show that, when the optical potential uncertainties are
included in a robust statistical approach, transfer and
knockout reactions lead to a consistent picture for the
removal of a loosely bound nucleon and both probes are
consistent with a small asymmetry dependence of SFs. This
work also shows that there is still some tension between the
strengths extracted from transfer and knockout data on
deeply bound nuclei as they only agree within 2σ. These
tensions come likely from model uncertainties that have not
been quantified in this analysis, and will be the focus of
future works. Even though theoretical uncertainties need to
be quantified in the analysis of ðp; 2pÞ, ðp; pnÞ, and
ðe; e0pÞ data to make a meaningful comparison between
these probes and the present work, the slopes that we extract
here do not seem inconsistent with previous analyses of
those data [11,12].
Finally, it is also clear that to infer accurate and precise

information from reaction data, optical potentials need to be
better constrained. Of particular relevance are their imagi-
nary strengths simulating the loss of flux from the elastic

channel due to open reaction channels and their isospin
dependence, which drives the extrapolation of these inter-
actions to unstable nuclei. To improve these phenomeno-
logical interactions, one can enforce the dispersion
conditions, relating the real and imaginary parts of the
interaction in the appropriate manner [62], and consider
other type of reaction data, e.g., charge-exchange, to
constrain their isospin dependence. These dispersive poten-
tials provide a consistent framework to describe the
structure and reaction properties. The extension of the
Bayesian framework in this direction is being pursued.
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