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We consider the binding energy of a two-body system with a repulsive Coulomb interaction in a finite
periodic volume. We define the finite-volume Coulomb potential as the usual Coulomb potential, except
that the distance is defined as the shortest separation between the two bodies in the periodic volume. We
investigate this problem in one and three-dimensional periodic boxes and derive the asymptotic behavior of
the volume dependence for bound states with zero angular momentum in terms of Whittaker functions.
We benchmark our results against numerical calculations and show how the method can be used to extract
asymptotic normalization coefficients for charged-particle bound states. The results we derive here have
immediate applications for calculations of atomic nuclei in finite periodic volumes for the case where the
leading finite-volume correction is associated with two charged clusters.
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Finite-volume (FV) simulations in cubic boxes with
periodic boundary conditions have emerged as a well
established theoretical technique to study quantum systems.
Pioneered by Lüscher in a series of highly influential papers
[1–3] that showed how real-world properties of a quantum
system are encoded in how its discrete energy levels change
as the volume size is varied, the method has become a
standard approach, for example, in lattice quantum chromo-
dynamics (LQCD) to extract scattering information for
hadronic systems. Over the past decade, driven by progress
in computing that enables simulations of increasingly com-
plex systems, extending the technique in various directions
has become an area of very active research [4–20].
Moreover, few-body approaches formulated in FV can be
used to match and extrapolate LQCD results to an effective
field theory (EFT) description [21–24].
When simulated in FV, bound-state energy levels have an

exponential dependence on the size L of the periodic box
that encodes asymptotic properties of the state’s wave
function in infinite volume [1,25,26]. For a general bound
state of N ≥ 2 particles with lowest breakup into two
clusters with A and N − A particles, respectively, the
volume dependence of the (binding) energy, ΔENðLÞ≡
ENð∞Þ − ENðLÞ, with ENðLÞ ¼ −BNðLÞ denoting the
energy at volume L, has been shown to be [27,28]

ΔENðLÞ ¼ ð−1Þlþ1

ffiffiffi
2

π

r
fðdÞμ−1AjN−AjA∞j2

× κ2−d=2AjN−AL
1−d=2Kd=2−1ðκAjN−ALÞ; ð1Þ

with d the number spatial dimensions, fðdÞ a normaliza-
tion factor, and Kd=2−1 a modified Bessel function.

κAjN−A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μAjN−AðBN − BA − BN−AÞ

q
with the reduced

mass μAjN−A of the two-cluster system and the cluster
binding energies BA and BN−A is the relevant momentum
scale. Moreover, A∞ is the asymptotic normalization
coefficient (ANC) of the cluster wave function, a quantity
that plays an important role for the description of low-
energy capture processes. Equation (1) implies that both
κAjN−A and A∞ can be extracted by fitting the volume
dependence of numerical simulations. This is in principle
an efficient way to compute ANCs from ab initio calcu-
lations at finite volume. Unfortunately, most cases of
astrophysical interest involve two clusters that each have
nonzero electric charge, and the analogous expression for
Eq. (1) for charged clusters had not been derived.
In this Letter, we address this problem and determine the

leading volume dependence for bound states composed
of two charged particles. While there have been studies of
finite-volume electromagnetic corrections using perturba-
tion theory [29–34], we derive the analytic form with fully
nonperturbative Coulomb repulsion. The nonperturbative
nature of the Coulomb interaction becomes important in
medium-mass and heavy nuclei with a significant number
of protons. The work presented here has immediate
applications to finite-volume simulations of bound nuclei
using ab initio Lattice EFT [35–39], and the definition of
the finite-volume Coulomb interaction we use here is the
same as in Lattice EFT. We derive the analog for Eq. (1)
when the relevant continuum threshold corresponds to
two charged clusters. While we focus on the case of two
charged point particles, our results can be regarded as the
leading term for the multipole expansions of the permanent
and/or induced cluster charge densities.
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Derivation.—We consider a two-body system of par-
ticles interacting via a finite-range central potential V plus a
repulsive Coulomb potential VC. For simplicity we assume
that V is local, hrjVjr0i ¼ VðrÞδð3Þðr − r0Þ, but all results
remain valid for a general nonlocal short-range potential.
The interaction range R is the smallest distance for which it
holds that VðrÞ ¼ 0 if r ¼ jrj > R. The Coulomb potential
is given by

VCðrÞ ¼
γ

2μr
; γ ¼ 2μαZ1Z2 > 0; ð2Þ

where μ denotes the reduced mass of the two-body
system, α ≈ 1=137 is the electromagnetic fine-structure
constant, and Z1;2 are the charges of the two particles.
The Hamiltonian of the system is given by H ¼ H0 þ V þ
VC with the kinetic-energy operator H0. If we consider the
system enclosed in a periodic cubic box with edge length L,
the Hamiltonian becomes

HL ¼ H0 þ VfLg þ VC;fLg: ð3Þ

The finite-range potential is easily made periodic by
defining VfLgðxÞ ¼

P
n Vðx − nLÞ. Such a definition

remains valid up to negligible corrections for short-range
potentials that do not have a strict finite range but fall off
faster than any power law. For the Coulomb potential,
however, the long-range tail ∼r−1 complicates matters.
To obtain a well-defined periodic extension of VC, we let
VC;nL be a shifted version of VC, centered at nL and
clipped such that it is nonzero only within the box of edge
length L around its center. With d the dimension of our
space and B ¼ ½−L=2; L=2Þ, we define VC;nL ¼ θBdðr −
nLÞVCðr − nLÞ with θBdðrÞ ¼ 1 for r∈Bd and vanishing
otherwise. Equipped with these clipped and shifted poten-
tials, we can now define

VC;fLgðrÞ ¼
X
n

VC;nLðrÞ: ð4Þ

Effectively, this definition implies that we simply let the
Coulomb tail grow with the box. We note that Lattice
QCDþ QED calculations use a different approach and
define a periodic FV Coulomb potential ULðrÞ by sub-
tracting the “zero mode” in momentum space [30]. In
Supplemental Material [40] we show that thisULðrÞ can be
expanded to have exactly VC;fLgðrÞ as first term, with a
dominant correction contributing an Oð1=LÞ constant shift
to the binding energy.
We assume now that the total potential V þ VC is such

that the system supports an S-wave bound state jψ∞i
with energy −E∞ < 0 ¼ −κ2∞=ð2μÞ in infinite-volume, i.e.,
Hjψ∞i ¼ ðH0 þ VC þ VÞjψ∞i ¼ −E∞jψ∞i, and our goal
is to derive an expression for the finite-volume energy shift
ΔEðLÞ ¼ E∞ − EðLÞ, where EðLÞ denotes the energy of

the state at volume L, i.e., HLjψLi ¼ EðLÞjψLi. In a
simplified setup that considers the Coulomb potential (2)
in one spatial dimension, it is possible to directly use the
boundary condition imposed on the finite-volume wave
function at the edge of the box to obtain the energy shift as

ΔEðLÞ ¼ κ∞A2
∞

μ
eiπη̄

W0
−η̄;1=2ðκLÞ

W0
η̄;1=2ð−κLÞ

þO½e−2κL�; ð5Þ

where A∞ is the ANC of the infinite-volumewave function,
Wη̄;1=2ðzÞ with η̄ ¼ γ=ð2κ∞Þ is a Whittaker function, and
the prime denotes the derivative with respect to the argu-
ment. We point out that phase factor in Eq. (5) is crucial to
ensure that overall ΔEðLÞ is real. A full derivation of this
result is provided in Supplemental Material [40].
For the three-dimensional system, the infinite-volume

bound-state wave function for r ¼ jxj ≥ R is given by
ψ∞ðxÞ ¼ A∞W−η̄;1=2ð2κrÞ=ð

ffiffiffiffiffiffi
4π

p
rÞ. A simple treatment of

the 3D system based on the periodic boundary condition is
not possible because the long-range tail r−1 combined with
the breaking of spherical symmetry by the box-shaped
finite volume renders the setup too complicated. We
therefore use an alternative formalism, starting with an
intermediate Hamiltonian H̃L ¼ H0 þ VC;fLg þ V that
includes the truncated periodic Coulomb potential, but
leaves the short-range potential V as in infinite volume. We
can write H̃L ¼ H þ ϵΔVC for ϵ → 1, with

ΔVC ¼ VC;fLg − VC ¼
X
n∈Z3

ΔVC;ð0;nÞL; ð6Þ

ΔVC;ðn;n0ÞLðxÞ ¼ θB3ðx − n0LÞ
× ½VC;n0LðxÞ − VCðx − nLÞ�: ð7Þ

For the exact ground state jψ̃Li of H̃L we have
H̃Ljψ̃Li ¼ −ẼðLÞjψ̃Li, and we can now treat ΔVC as a
perturbation on top of this state. To that end, we write

ðHþϵΔVCÞ
�
jψ̃ ð0Þ

L iþϵjψ̃ ð1Þ
L iþ���

�

¼ðẼð0Þ þϵΔẼð1Þ þ���Þ
�
jψ̃ ð0Þ

L iþϵjψ̃ ð1Þ
L iþ���

�
; ð8Þ

where to lowest order we have jψ̃ ð0Þi ¼ jψ∞i and Ẽð0Þ ¼
−E∞. The leading volume dependence will be found
below in terms of just jψ̃ ð0Þi, and the main purpose of
the perturbative treatment is that it allows us to derive
explicit bounds for subleading corrections. To conclude the
basic setup, we note that at this stage all L dependence
comes from the definition of ΔVC, and there is no
L-periodic boundary condition imposed on jψ̃Li. We use
jψ̃Li in order to construct an ansatz for the actual ground
state jψLi of HL. In the following, we write equations
explicitly in configuration space and define
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ψ̃L;0ðxÞ ¼
X
n∈Z3

ψ̃Lðx − nLÞ; ð9Þ

i.e., we approximate the exact finite-volume solution by
summing shifted copies of the exact eigenstate of H̃L
introduced above. Using the ansatz ψ̃L;0ðxÞ, we can
follow steps very similar to the derivation for neutral
particles [1,25]. Applying HL to ψ̃L;0ðxÞ, we obtain

HLψ̃L;0ðxÞ
¼ −ẼðLÞψ̃L;0ðxÞ þ

X
n;n0≠n

Vðx − n0LÞψ̃Lðx − nLÞ

≡ −ẼðLÞψ̃L;0ðxÞ þ ζðxÞ; ð10Þ

with ζðxÞ¼P
n

P
n0≠nVðx−n0LÞψ̃Lðx−nLÞ. This func-

tion only involves the short-range interaction V and scales
as ζðxÞ ∼Oðe−κLÞ for large jxj. For the exact finite-volume
solution jψLi, it holds that jψLi ¼ βjψ̃L;0i þ jψ̃ 0

Li, with
jψ̃ 0

Li ¼ Oðe−κLÞ and β chosen so that hψ̃ 0
Ljψ̃L;0i ¼ 0. We

emphasize here that if instead we had used the naive ansatz
ψL;0ðxÞ that replaces ψ̃L with ψ∞ in Eq. (9), as it is
appropriate for neutral particles, we would end up with the
weaker asymptotic scaling Oðe−κL=2Þ for jψ̃Li, which
would lead to unacceptably large subleading corrections.
We now write the overall energy shift at volume L as
ΔEðLÞ ¼ ΔE�ðLÞ þ ΔẼðLÞ, where ΔẼðLÞ ¼ E∞ − ẼðLÞ
and

ΔE�ðLÞ ¼ EðLÞ − ẼðLÞ ¼ hψ̃L;0jζi
hψ̃L;0jψ̃L;0i

þOðe−3κL=2Þ:

ð11Þ

The leading volume dependence stems from ΔE�ðLÞ, for
which with

ζðxÞ ¼
X
jnj¼1

VðxÞψ̃Lðx − nLÞ þOðe−
ffiffi
2

p
κLÞ; ð12Þ

and hψ̃L;0jψ̃L;0i ¼ 1þOðe−κLÞ we obtain

ΔE�ðLÞ ¼
X
jnj¼1

Z
B3

d3x ψ̃LðxÞVðxÞψ̃Lðx − nLÞ ð13Þ

up to terms Oðe−
ffiffi
2

p
κLÞ. This expression can be further

evaluated by considering explicitly n ¼ −ẑ and exploiting
the symmetry of the wave function. As we explain further
in Supplemental Material [40], this ultimately leads to

ΔEðLÞ ¼ −
3A2

∞

μL

h
W−η̄;1

2
ðκLÞ

i
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡ΔE0ðLÞ

þ ΔẼðLÞ þ ΔẼ0ðLÞ

þOðe−
ffiffi
2

p
κLÞ: ð14Þ

Besides higher-order exponential corrections—which
actually involve Whittaker functions but can be expressed
as Oðe−

ffiffi
2

p
κLÞ asymptotically—there are two correction

terms in Eq. (14): ΔẼðLÞ has been defined already in
above Eq. (11), and ΔẼ0ðLÞ is explained further in
Supplemental Material [40]. Our perturbative setup makes
it possible to derive the asymptotic scaling of both these
correction terms, the full details of which are also presented
in Supplemental Material [40]. It turns out that although
their detailed forms are quite different, both terms actually
scale the same asymptotically, namely

ΔẼðLÞ;ΔẼ0ðLÞ ¼ O
�

η̄

ðκLÞ2
�
× ΔE0ðLÞ; ð15Þ

where ΔE0ðLÞ is the leading volume dependence as
defined in Eq. (14).
Numerical examples.—We evaluate the performance of

Eq. (14) with explicit numerical calculations. To that end
we use the “generator code” of Ref. [27], extended to
include the Coulomb interaction, to compute 1D and 3D
bound states in boxes with a range of sizes. To the volume
dependence of these energies we then fit the appropriate
expressions for ΔEðLÞ to extract the infinite-volume bind-
ing momenta and ANCs. We use units that set ℏ ¼ 1 and
express all physical quantities in terms of the particle
mass m, which we also set to unity.
The generator code constructs the finite-volume

Hamiltonian based on a simple lattice discretization (see
Ref. [28] for details). Because VCðrÞ is singular at r ¼ 0,
we regularize it at short distances. While the simplest way
to achieve this is a simple cut (setting VCðrÞ ¼ 0 for r less
than some small range), we instead multiply VCðrÞ by a
Gauss regulator ð1 − e−r

2=R2
CÞ. Such a smooth regulator is

preferable for our lattice setup, which would suffer from
substantial discretization artifacts with a sharp cutoff.
We choose RC < R (the range of the short-range potential
V) so that we can interpret the short-distance Coulomb
regularization as merely a redefinition of V, which we
otherwise choose as attractive local Gaussian potentials,
VðrÞ ¼ V0e−r

2=R2

. We use R ¼ 1 and R2
C ¼ 0.1 in all

calculations and we emphasize that the actual concrete
form of the potential at small r is irrelevant because the
expression for ΔEðLÞ is universal and does not depend on
any particular choice for the short-range interaction.
In Fig. 1 we show our numerical results for 1D and 3D

systems (in the upper and lower panels, respectively). For
each case we use a logarithmic scale for the vertical axis,
and we have scaled ΔEðLÞ with a factor L for the 3D
results to account for the overall factor 1=L in Eq. (14). For
each choice of γ, we adjust the strength of the attractive
Gaussian potential to keep the binding momentum κ∞
roughly constant in infinite volume. The precise values for
V0 that we use for the different cases are given in
Supplemental Material [40]. In the limit γ → 0, our
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expressions for ΔEðLÞ reduce to the known results for
systems with only short-range interaction, and with the axis
scalings chosen in Fig. 1 the data points would follow
straight lines in that case. We can clearly observe how the
actual behavior deviates more and more from the straight-
line behavior with increasing γ, highlighting the importance
of knowing the precise analytical form of the volume
dependence in the presence of Coulomb repulsion. Indeed,
the lines in the figures show the results of fitting Eqs. (5)
and (14) to the numerical data, with excellent agreement. In
Table I we show the values for κ∞ and A∞ that we extract
from the FV fits for the various cases. The uncertainties
quoted were obtained by varying the volume range for the
fits as indicated in the table, and for all cases we have
approximated E∞ from an L ¼ 32 calculation. For com-
parison, the table includes also binding momenta and

ANCs determined with direct continuum calculations
(explained further in Supplemental Material [40]). We find
excellent agreement up to minor deviations, which we
attribute primarily to small discretization errors in the
lattice data. For 1D, we used a lattice spacing alatt ¼ 1=30,
while the 3D calculations were performed with alatt ¼ 1=6.
The finer lattice spacing required for good accuracy in 1D
is an artifact of using the 3D Coulomb potential in a 1D
setup, which causes significant sensitivity to the regulari-
zation of the Coulomb singularity at r ¼ 0. In 3D, the
reduced radial wave function vanishes at r ¼ 0, which
suppresses sensitivity to regularization details. In practical
applications for example to analyzing Lattice EFT data, one
would expect other uncertainties to dominate. Overall, our
numerical calculations confirm conclusively that FV fits
can be used for accurate ANC determinations even in the
presence of strong Coulomb repulsion.
We furthermore consider a three-nucleon system on a

lattice with SU(4)-invariant contact interaction that corre-
sponds to a Pionless EFT description (see Ref. [54] for a
review of nuclear EFTs). For this calculation, which we
describe in more detail in Supplemental Material [40], we
tune a two-body single-lattice-site coupling to produce a
deuteron with binding energy 1 MeV (in infinite volume),
and in addition a three-body single-lattice-site coupling to
reproduce the triton at its physical binding energy. For 3He
we add a repulsive Coulomb interaction between protons
and tune a short-distance parameter associated with a pp
contact interaction to reproduce the 3He binding energy in
infinite volume. In Fig. 2 we show the energy shift for both
the 3H and 3He energies for a range of volumes between 3
and 17 lattice units, with infinite-volume energies approxi-
mated by L∞ ≈ 39.5 fm (20 lattice units). We fit the
numerical results with the analytic expression for the
volume dependence and find that already for a system
with relatively weak Coulomb repulsion like 3He it is
important for the pd breakup channel to make use of the
relation derived in this work, which for general two-cluster
states is the leading term in multipole expansions of the
permanent and/or induced charge densities. In particular,
the ANC extracted as A∞ ¼ 1.44ð1Þ fm−1=2 would be off
by about 5% if we were to fit the volume dependence
assuming neutral clusters, already for γ as small as

FIG. 1. Finite-volume energy shifts for two-body system with
attractive Gaussian interaction plus repulsive Coulomb force of
varying strength γ in one (upper panel) and three (lower panel)
dimensions. For each γ the attraction is adjusted to fix the ground
state at κ∞ ≈ 0.86 in infinite volume. All quantities are given in
units of the mass m ¼ 1 (see text).

TABLE I. Fit results for the calculations shown in Fig. 1. All
quantities are given in units of the mass m ¼ 1 (see text).

Finite-volume fit Continuum result

γ κ∞ A∞ L range κ∞ A∞

d ¼ 1
1.0 0.861110(3) 2.1286(1) 12–24 0.860 2.1284
2.0 0.861125(9) 4.4740(9) 12–23 0.860 4.4782
3.0 0.86108(6) 10.386(2) 12–20 0.858 10.435

d ¼ 3
1.0 0.8610(3) 5.039(2) 17–28 0.861 5.049
2.0 0.8607(3) 11.71(4) 15–26 0.860 11.79
3.0 0.8605(7) 29.95(20) 14–24 0.859 30.31
4.0 0.8604(1) 83.14(10) 14–22 0.858 84.76
5.0 0.8604(2) 247.9(5) 14–18 0.857 255.4 FIG. 2. Finite-volume energy shifts for 3He and 3H calculated

with an SU(4)-invariant contact interaction (see text for details).
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0.046 fm−1 here. This importance will increase for systems
with more protons and/or weaker binding energy, such as
proton halo nuclei. As an additional check, we can compare
the ANC that we obtain from fitting the energy volume
dependence to a direct extraction from the finite-volume
wave function (as discussed in Ref. [27] and described
further in Supplemental Material [40]). From that pro-
cedure we obtain a value of 1.46ð1Þ fm−1=2, in good
agreement with the result from the energy fit. Moreover,
taking into account the SU(4)-symmetric scenario that we
consider here, our ANC is in reasonably good agreement
with Ref. [55], which reports an S-wave ANC for 3He of
1.82ð1Þ fm−1=2, converted to our conventions.
Summary and outlook.—We have derived the leading

finite-volume energy correction for bound states of two
charged clusters in a periodic volume. Numerical calcu-
lations for several examples in 1D and 3D systems give
confidence that the analytical results are correct. Our
derivation does not rely on perturbation theory and is
therefore applicable to medium-mass and heavy nuclei with
large numbers of protons. The results should be immedi-
ately useful for ab initio calculations of bound nuclei in
periodic boxes, which is standard practice in Lattice EFT
calculations. The form of the finite-volume energy correc-
tion provides a better extrapolation for the binding energy
at infinite volume. Even more importantly, it yields a new
efficient method for calculating ANCs that play an impor-
tant role in low-energy astrophysical capture reactions. The
extension to bound states of charged particles with nonzero
angular momentum is currently under investigation.
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