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We study time evolution in a simple model of de Sitter quantum gravity, namely, Jackiw-Teitelboim with
a positive cosmological constant. We find that time evolution is isometric rather than unitary. The states that
are projected out under time evolution correspond to initial conditions that crunch. Our findings suggest
that knowledge of bulk physics, even on arbitrarily large timescales, is insufficient to deduce the de Sitter S
matrix.
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Introduction.—Do the postulates of quantum mechanics
survive in quantum gravity? The main tools for studying
quantum gravity, the gravitational path integral (including
its Hamiltonian formulation), and string theory, naturally
produce states and transition amplitudes and so start by
assuming most of the postulates. However, the probabilistic
interpretation of amplitudes, enforced by the unitarity of
time evolution, is not guaranteed within the path integral
formulation and has to be checked.
We use the gravitational path integral and find a simple

mechanism whereby a sum over nonsingular geometries
leads to isometric rather than unitary evolution, which we
demonstrate in a simple model of de Sitter quantum gravity.
The basic result is that some states evolve into singular
spacetime geometries with a crunch, and others to a
bounce, and the former are projected out under evolution.
Evolution acts unitarily on the “code subspace” of states
that do not develop a crunch, while “crunch” states are
projected out under evolution. In this way the Hilbert space
of bulk states is smaller than the space of asymptotic states
appearing in the de Sitter Smatrix. We find this to be true in
Jackiw-Teitelboim (JT) gravity, a nonperturbatively soluble
model of two-dimensional dilaton gravity [1–11] that has
been the subject of much recent work [12]. We then discuss
how our results may generalize to more realistic models of
quantum gravity.
Our findings are consistent with a recent proposal [13]

that time evolution is isometric for quantum gravity in
expanding cosmologies. In [13], one of us gave general
arguments for isometric evolution and provided examples
with matter effective field theory in rigid curved

spacetimes. In this Letter, we give a proof of principle
for the proposal in a simple model of dynamical gravity.
Our analysis of de Sitter JT gravity builds upon previous

work (including our own) [6–8]. In [8] we studied the S
matrix of JT gravity to leading order in a topological
expansion and to all orders in the gravitational coupling.
We considered asymptotic states corresponding to large
closed universes with a fixed renormalized length and on
which the dilaton of JT gravity is constant. In between such
states we found the infinite time evolution operator Û to be
a projector. In this paper, we make sense of this projector,
and see that it is a consequence of isometric evolution. We
analyze the Hilbert space of de Sitter JT gravity at
intermediate times, and find a basis in which we can
cleanly identify states that correspond to bouncing and
crunching cosmologies, as well as the change-of-basis
matrix to the basis of asymptotic states. The sum over
nonsingular geometries projects out the crunching states.
We are able to write the infinite evolution operator as
Û ¼ V̂V̂†, where V̂ is the evolution operator from a bulk
time to the infinite future (with V̂† the evolution from the
infinite past to a bulk time). Crucially, we find that V̂ is an
isometry. Furthermore, while previous work on de Sitter JT
gravity involved asymptotic states with constant dilaton,
our analysis allows for arbitrary asymptotic states and we
find isometric evolution in this richer setting. In particular,
we find an infinity of null asymptotic states, so that
asymptotic states with a varying dilaton differ from those
with a constant dilaton by a null state.
We begin the Letter with a review of de Sitter JT gravity,

followed by our analysis of isometric time evolution. We
conclude a discussion, suggesting that isometric time
evolution may be present in more realistic models of
quantum gravity, perhaps including our own universe.
de Sitter JT gravity.—JT gravity is a model of two-

dimensional gravity with a dilaton ϕ and a metric g. The
action of the de Sitter version is
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SJT ¼ S0
4π

Z
d2x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d2x

ffiffiffiffiffiffi
−g

p
ϕðR − 2Þ þ Sbdy:

The term proportional to S0 is topological, and we take
S0 ≫ 1 to suppress fluctuations of the spacetime topology.
The second term has ϕ acting as a Lagrange multiplier (and
hence it has a real contour in a Lorentzian path integral)
enforcing R ¼ 2. The basic solution to the field equations is
global dS2 space,

ds2 ¼ −dt2 þ α2cosh2ðtÞdx2; ϕ ¼ ϕ0 sinhðtÞ; ð1Þ

where x ∼ xþ 2π and α is a modulus labeling the space.
These are bounce cosmologies where the spatial universe is
a circle reaching a minimum size of 2πjαj in between two
asymptotically dS2 regions reached as t → �∞. The
general definition of an asymptotically future dS2 region
is a line element and dilaton which behave as

ds2 ¼ −dt2 þ
�
e2t þOð1Þ

�
dx2;

ϕ ¼ 1

2π
etþφðxÞ þOð1Þ; ð2Þ

as t → ∞, and similarly for a past asymptotic region. From
this form we define asymptotically future dS2 boundary
conditions as follows. We introduce a boundary at t ¼ lnΛ
with Λ tending to infinity, on which the induced metric is
∼Λ2dx2 and the dilaton is ∼ΛeφðxÞ=2π. We add the
boundary term

Sbdy ¼ −
S0
2π

Z
∂M

dx
ffiffiffi
γ

p
K − 2

Z
∂M

dx
ffiffiffi
γ

p
ϕðK − 1Þ; ð3Þ

to the action, with γ the induced metric and K the extrinsic
curvature of the boundary, and take the boundary to
infinity. Through this procedure we fix a large future
boundary with a renormalized boundary metric dx2 and
a renormalized dilaton eφðxÞ. The boundary term in the
action is required so that JT gravity has a consistent
variational principle with these boundary conditions.
This boundary is spacelike and therefore prepares a final

quantum state labeled by the dilaton profile. We notate a
final state with dilaton profile eφ1 as heφ1 j. Similarly,
asymptotically past dS2 boundary conditions with a dilaton
profile eφ2 prepare an initial quantum state that we notate as
j − eφ2i. The relative minus sign in our labeling of past and
future asymptotic states can, for now, be understood as a
convention, having to do with the fact that asymptotic states
are actually characterized by the renormalized dilaton times
the sign of the extrinsic curvature of the boundary circle;
we further comment on this in Supplemental Materials B
[14]. Because the states heφ1 j and j − eφ2i are prepared in
the far future and past we call them asymptotic states. There
are also multi-universe asymptotic states where the initial

or final space is a disjoint set of n large circles, each of
which is characterized by a renormalized dilaton.
Previous work [6–11] on de Sitter JT gravity focused on

asymptotic states where the dilaton is constant, and so is
incomplete since the most general asymptotic state has a
varying dilaton. Even so, the three main quantities con-
sidered were (i) the wave function at future infinity of the
no-boundary (Hartle-Hawking) state j∅i of de Sitter JT
gravity, where there is no past and the future is a large
asymptotic circle; (ii) the sum over spacetimes with the
topology of global dS2, comprising the infinite-time tran-
sition amplitude between an asymptotic circle in the past
and an asymptotic circle in the future; and (iii) the inner
product on asymptotic states [8]. The inner product is
required to obtain properly normalized transition ampli-
tudes. (In our previous work [8] we also proposed a
topological expansion for de Sitter JT gravity which we
do not discuss in the present work.)
We proceed to study the more general asymptotic states.

We relegate a detailed description to the Supplemental
Material [14]. The main point is that JT gravity has no bulk
degrees of freedom; the dilaton acts as a Lagrange
multiplier enforcing the constant curvature condition,
uniquely fixing the spacetime metric up to moduli that
must be integrated over with the correct measure.
Furthermore, as in the AdS version of JT gravity, each
asymptotic boundary is equipped a single boundary degree
of freedom, a “Schwarzian mode,” which has to be
integrated over in the quantum theory. The action for the
Schwarzian mode is more complicated when the dilaton
varies, but as we explain in Supplemental Materials A and
B [14] its path integral can still be computed exactly. (See
also the Supplemental Material [14] for a discussion of how
the AdS JT matrix model of [5] can be augmented to
accommodate nonconstant dilaton boundary conditions.)
We note that the action is only sensible when eφ is
everywhere positive, or everywhere negative, and formally
we must equip eφ with an infinitesimal imaginary part.
Following the methods of [8] and accounting for the

Schwarzian path integral with a varying dilaton, we find
that the inner product of the asymptotic states jeφ1i and
jeφ2i is

heφ1 jeφ2i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Φ1Φ2

p
δ ðΦ1 −Φ2Þ eiS½φ1�−iS½φ2�; ð4Þ

where we define S½φ� ≔ ð1=2πÞ R 2π
0 dx eφφ0ðxÞ2 and also

Φ−1
i ≔ ð1=2πÞ R 2π

0 dx e−φi . A depiction of the inner prod-
uct, along the lines of [8], can be seen in Fig. 1. The result
(4) implies an infinite redundancy in the spectrum of
asymptotic states. Consider two dilaton profiles eφ1 and
eφ2 with the property that Φ1 ¼ Φ2. Then all states of the
form

jΨi ¼ eiS½φ1�jeφ1i − eiS½φ2�jeφ2i ð5Þ
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are null. We construct a physical Hilbert space Hasy in the
usual way by identifying any two states that differ by a null
state. Under that identification the state jeφi is identi-
fied with e−iS½φ�jΦi, i.e., the state characterized by a
constant dilaton with the same Fourier zero mode as
e−φ. The physical Hilbert space is then spanned by
equivalence classes whose representatives are states with
a constant dilaton jΦi, with inner product hΦ1jΦ2i ¼ffiffiffiffiffiffiffiffiffiffiffiffi
Φ1Φ2

p
δðΦ1 −Φ2Þ. In de Sitter JT gravity the dilaton

can be positive or negative and Φ∈R. So the Hilbert space
of asymptotic statesHasy is isomorphic to the Hilbert space
of a quantum mechanical particle on the line. We then
rescale asymptotic states as jΦi → jΦi= ffiffiffiffi

Φ
p

so that they
have the standard inner product hΦ1jΦ2i ¼ δðΦ1 −Φ2Þ,
and so have a completeness relation 1 ¼ R

dΦjΦihΦj.
Note that this analysis implies that the work of [8] with

constant dilaton states was complete after all.
The existence of the null states is a consequence of

large diffeomorphisms. Consider an asymptotically future
dS2 region (2). There is a family of diffeomorphisms that
preserve the form of the line element and dilaton, but
change the renormalized dilaton. These diffeomorphisms
are “large,” acting all the way to the boundary, and so we do
not divide by them in the sum over metrics. However, they
relate asymptotic states. To be more precise, the trans-
formation

et →
et

x0ðyÞ
�
1 −

e−2t

4

x00ðyÞ2
x0ðyÞ2 þOðe−4tÞ

�
;

x → xðyÞ þ e−2t

2
x00ðyÞ þOðe−4tÞ; ð6Þ

preserves (2) while acting on the renormalized dilaton as

e−φðxÞ → x0ðyÞe−φðxðyÞÞ: ð7Þ

Here xðyÞ is a reparametrization of the spatial circle
obeying xðyþ 2πÞ ¼ xðyÞ þ 2π and x0ðyÞ ≥ 0. This trans-
formation preserves the Fourier zero mode of e−φ, namely,
Φ−1. Moreover, because the dilaton has to be everywhere

nonzero, the transformation can be used to relate any two
dilaton profiles with the same zero mode Φ. In particular,
once we know from our Schwarzian analysis that the
dilaton must be either always positive or always negative,
then we learn that there is a large diffeomorphism that
relates the state heφj to the constant dilaton state hΦj.
In the basis of properly normalized asymptotic states the

wave function of the no-boundary state at future infinity is,
to leading order in the topological expansion,

ΨHHðΦÞ ¼ hΦjHHi ¼ hΦjV̂j∅i ≈ i
3
2Φffiffiffiffiffiffi
2π

p eS0þiΦ; ð8Þ

which notably is non-normalizable:
R
dΦjΨHHðΦÞj2 ∝R

dx x2 diverges. Here V̂ is the semi-infinite evolution
operator from the bulk time at which the no-boundary state
is created to the infinite future. A depiction is shown
in Fig. 2.
Now consider the infinite-time transition amplitudes

between asymptotic states with a large universe with Φ2

in the past and a large universe with Φ1 in the future. The
result from [8] for that amplitude, coming from the sum
over cylinder geometries that smoothly connect the past
and future circles, is

hΦ1jÛjΦ2i ≈
i
2π

1

Φ1 −Φ2 þ iϵ
; ð9Þ

where ≈means that we are neglecting higher order terms in
the genus expansion, and where we have included an iϵ
prescription that renders the JT path integral convergent.
The pole in this amplitude corresponds to the global dS2
saddle (1) which, with our convention that past asymptotic
states are labeled by j − eφi, has Φ1 ¼ Φ2. Now consider a
change of basis from states of definite Φ to those of its

FIG. 1. A depiction of the inner product heφ1 jeφ2i. Following
[8], we consider boundary conditions in the future asymptotic
region corresponding to a bra and a ket, and perform the path
integral over those metrics that interpolate between the boundary
conditions in the limit that the corresponding boundaries
approach one another.

FIG. 2. The no-boundary state evolved to the infinite future to
give the Hartle-Hawking state. The state j∅i corresponding to the
Euclidean cap is prepared at a finite time, and is then evolved in
Lorentzian time by V̂ to the infinite future. The wave function is
naturally computed in the Φ basis by projecting onto hΦj in the
far future.
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canonical conjugate, which we will call p (thinking of Φ as
a position and p as a momentum). In the p basis we have

hp1j Û jp2i ≈ Θðp1Þδðp1 − p2Þ: ð10Þ

In this basis time evolution is very simple, and we see that
infinite time evolution is unitary on the “code subspace” of
states jpi with p > 0. In fact, there is a matrix model
interpretation of this result which we found in our previous
work [8].
In the next section we will see that p eigenstates are

readily interpreted as bulk states, where p > 0 correspond
to bouncing cosmologies and p < 0 to a crunch
cosmologies.
Isometric evolution in JT.—Nowwe consider bulk states.

We find it convenient to fix a “temporal gauge” in which
the line element reads

ds2 ¼ −dt2 þ Aðt; xÞ2dx2: ð11Þ

Note that any metric on a cylinder can be put into this form
up to a large diffeomorphism, which can be understood to
act on the initial and final states. With this gauge fixing and
on a finite-time cylinder, the JT action reads

S ¼ 2

Z
dt dxϕðÄ − AÞ þ ðbdyÞ: ð12Þ

Under the field redefinitionQ ¼ ϕ=Ȧ and P ¼ A2 − Ȧ2 the
action is simply

S ¼ −
Z

dt dxQṖ þ ðbdyÞ; ð13Þ

an extremely simple quantum mechanics in Hamiltonian
form. After this field redefinition we can adjust boundary
terms so as to fix QðxÞ on a constant time slice, which
prepares a state jQðxÞi. Alternatively, we can adjust
boundary terms so as to fix PðxÞ on a constant time slice,
which prepares a state jPðxÞi. In an asymptotically de Sitter
region limt→∞QðxÞ ¼ eφðxÞ=2π and so asymptotic states
with fixed renormalized dilaton correspond to Q eigen-
states. On the other hand, we can fix the initial and final
states to be P eigenstates. Asymptotically these are
Neumann-like boundary conditions, but at finite time they
naturally produce bulk states.
Integrating out Q enforces that P is conserved at each x.

Because PðxÞ is conserved quantum mechanically we can
deduce the corresponding metric, with

A ¼ cþðxÞet þ c−ðxÞe−t: ð14Þ

Requiring that the metric is everywhere nonsingular, which
implies cþ and c− are nonzero, there is a residual large
diffeomorphism that “straightens out” PðxÞ so that it is a

constant which we call P. Initial states are equivalence
classes labeled only by this constant which obey
hP1jP2i ¼ δðP1 − P2Þ. This puts A2 into the form

A2 ¼
�
P cosh2ðtÞ; P > 0;

jPj sinh2ðtÞ; P < 0:
ð15Þ

The former is simply global dS2 with P ¼ α2, while the
latter is singular at t ¼ 0. So P > 0 states correspond to
bounce cosmologies and P < 0 states to crunch cosmol-
ogies. The latter are projected out in the path integral
formulation thanks to the sum over nonsingular geometries.
That is, we build a bulk Hilbert space Hbulk out of
superpositions of jPi’s with P > 0. On that space finite
time evolution Û simply acts as the identity, with

hP1jÛjP2i ≈ δðP1 − P2Þ: ð16Þ

Taking stock, we have two Hilbert spaces in de Sitter JT
gravity: (i) a space of asymptotic states Hasy with a basis
jpi with p∈R and where infinite time evolution preserves
p, and (ii) a space of bulk states Hbulk with a basis jPi
with P > 0, where P is conserved. So the time evolution
operator V̂ from the bulk to asymptotia is in fact a map from
a smaller Hilbert space to a larger one, V̂∶ Hbulk → Hasy.
The natural (and correct) guess for V̂ is that it simply takes
P to p. To show this consider the matrix element hΦjV̂jPi.
This object is the de Sitter JT version [6–8] of the “trumpet”
of AdS JT gravity [5], where the initial state fixes that the
geometry is ds2 ¼ −dt2 þ Pcosh2ðtÞdx2 with t starting at
some finite time. The JT path integral in this case reduces to
a Schwarzian path integral at future infinity which depends
on P and Φ with the result (in terms of normalized states
hΦj and jPi)

hΦjV̂jPi ≈ 1ffiffiffiffiffiffi
2π

p eiΦP ; ð17Þ

which implies hpjV̂jPi ≈ δðp − PÞ as expected. To derive
(17), we observe that the de Sitter trumpet amplitude is
ZT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðiΦ=2πÞp

eiα
2Φ, and so after accounting for the

square root factor
ffiffiffiffi
Φ

p
coming from the norm on jΦi

states as well as the identification α2 ↔ P, we obtain (17).
(We have further chosen a global phase for jPi to cancel off
the

ffiffi
i

p
factor in ZT .) More details of the trumpet amplitude

are given in the Supplemental Material [14].
The operator V̂ is therefore an isometry: the product V̂†V̂

acts as the identity on Hbulk while V̂V̂† ¼ Û acts as a
projector on Hasy. This is the main result of this Letter. A
depiction of the de Sitter S matrix can be seen in Fig. 3.
Using the result (17) we can reconstruct the bulk wave

function of the no-boundary state. In particular, since
the Hartle-Hawking state is jHHi ¼ V̂j∅i, we have
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V̂†jHHi ¼ j∅i and so

hPj∅i ≈ δ0ðP − 1Þ; ð18Þ

which is supported on P ¼ 1 and is also clearly non-
normalizable. This is consistent with the fact that the JT
sphere partition function, expected on general grounds to
be the norm of the no-boundary state, diverges [15].
Discussion.—Our work shows that the S matrix need not

be unitary in quantum gravity. In de Sitter JT gravity this is
a consequence of a mismatch between the bulk and
asymptotic Hilbert spaces: initial conditions that corre-
spond to crunching universes live in the Hilbert space of
asymptotic states, but not in the “code subspace” of bulk
states. As a result, complete knowledge of bulk physics,
even on arbitrarily large timescales, is not enough to deduce
the de Sitter S matrix. We also find that evolution is trivial
within the code subspace, with finite time evolution acting
as the identity. In our examples this breakdown of infinite-
time unitary evolution and its replacement by a combina-
tion of projections and isometries is invisible in perturba-
tion theory, but rather arises nonperturbatively.
There are additional contributions to the S matrix arising

from higher-genus spacetimes, although these corrections
are nonperturbatively suppressed in the topological expan-
sion; as such, our conclusions in this Letter remain salient.
The computation of these corrections is conceptually and
technically subtle [6–8], and we provide a decisive analysis
in forthcoming work [16].
Our JT example is particularly simple because it is model

of pure gravity in low dimensions. It would be natural to
enrich our analysis by considering JT coupled to defects,
worldlines, or conformal matter. In these settings we expect
the code subspace of noncrunching geometries to be much

richer, with an interplay between gravity and matter. We
note minimally coupling matter to JT retains the same
metrics since matter does not interfere with the R ¼ 2
constraint imposed by the dilaton. As such, singular metrics
corresponding to crunch geometries are still excluded from
the moduli space, although the precise analytic form of the
S-matrix elements will be modified. Some care is required
since S-matrix amplitudes in JT coupled to matter are
divergent on general grounds, and so to proceed one might
require an effective field theory formalism akin to [17].
An important question is if some version of our results

holds in more realistic models of quantum gravity. The
answer to this question is relevant for understanding the
origins and ultimate fate of our Universe, as we (presum-
ably) live in a code subspace. While we expect pure de
Sitter quantum gravity in 2þ 1 dimensions, a model with
no local degrees of freedom, to be rather similar to de Sitter
JT gravity, the setting of Einstein gravity in 3þ 1 dimen-
sions is less clear. However, [18] explains how JT analyses
can in some cases be lifted to gravitational constrained
saddle analyses in higher dimensions (see also [19–21]).
Along these lines, some of the features of time evolution in
de Sitter JT gravity generalize to the minisuperspace
approximation of Einstein gravity with a positive cosmo-
logical constant where the spatial universe is a round
sphere. The minisuperspace approximation can be treated
quantum mechanically by recapitulating our de Sitter JT
analysis (see Supplemental Material [14]), with the result
that the Hilbert space of bulk states corresponds to
cosmologies which bounce or crunch. The latter are
projected out by evolution, consistent with isometric rather
than unitary evolution. The conclusions are similar for the
minisuperspace approximation of Einstein gravity coupled
to a scalar field (see Supplemental Materials C [14]), and
connect to the work of [22]. These analyses suggest that the
basic features of our work, namely, a mismatch between
bulk and asymptotic Hilbert spaces and isometric evolu-
tion, persist in more realistic settings.
A foreseeable question is whether the restriction to a sum

over nonsingular geometries is realized in UV completions
of de Sitter gravity, such as in string theory (if indeed a
suitable stringy completion exists). For instance, maybe
certain singular metrics that are sensible in string theory
ought to be included in the low-energy theory. Perhaps a
useful toy model to keep in mind is de Sitter JT gravity
coupled to defects; here the Universe can begin or end on a
defect. As such there is still a code subspace: it consists of
all states which either evolve into a nonsingular geometry,
or into a conical singularity that can be sourced by a defect.
However not all conical singularities are allowed since the
set of defects is constrained. This means that the code
subspace encodes the “spectrum” of allowed singularities.
More broadly, we expect that the true Hilbert space of de

Sitter quantum gravity is drastically smaller than the naïve
one indicated by semiclassical gravity. In particular,

FIG. 3. The JT de Sitter S matrix, starting in the state jp2i and
ending in the state hp1j. Time evolution from past infinity to the
bottleneck is given by V̂†, and time evolution from the bottleneck
to future infinity is given by V̂. Since V̂ is an isometry, the total
time evolution Û ¼ V̂V̂† is a projector.
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holographic arguments suggest that the actual dimension is
nonperturbatively finite. Our findings are a first step in this
direction, where we can already see the pruning of the bulk
Hilbert space in the low-energy effective description.
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