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We use a result of Hawking and Gilkey to define a Euclidean path integral of gravity and matter which
has the special property of being independent of the choice of basis in the space of fields. This property
allows the path integral to also describe physical regimes that do not admit position bases. These physical
regimes are pregeometric in the sense that they do not admit a mathematical representation of the physical
degrees of freedom in terms of fields that live on a spacetime. In regimes in which a spacetime
representation does emerge, the geometric properties of the emergent spacetime, such as its dimension and
volume, depend on the balance of fermionic pressure and bosonic and gravitational pull. That balance
depends, at any given energy scale, on the number of bosonic and fermionic species that contribute, which
in turn depends on their masses. This yields an explicit mechanism by which the effective spacetime
dimension can depend on the energy scale.
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While there are a number of promising approaches to
quantum gravity, see, e.g., Refs. [1–19], the question has not
been settled of how a spacetime that hosts matter fields
could emerge from a pregeometric quantum gravity regime.
It has also remained a largely open question how the
dimension of spacetime might depend on the energy scale.
To investigate these questions, we here work with a path
integral of Euclidean signature. The Euclidean signature is
commonly used because of its technical advantages, such as
better convergence properties; see, e.g., Refs. [20,21]. Here,
we choose the Euclidean signature because it enables the
use of powerful techniques of spectral geometry, such as
Weyl’s asymptotic formula for characterizing a spacetime’s
dimension, and the ability to use the gap of the Laplacian to
characterize the size of a spacetime. Our general approach
does not depend on the choice of the Euclidean signature.
Further, we choose to model the natural ultraviolet (UV)
cutoff that is widely expected at the Planck scale [22–27] as
a cutoff Λ̄ on the spectrum of the Laplace operator Δ. This
model of a natural UV cutoff has the advantage that it is
simple, that it can also be implemented with the Lorentzian
signature (see, e.g., Refs. [28–30]), and that it possesses an
information-theoretic interpretation as a covariant bandli-
mitation [31–35]: it allows one to describe spacetime as
simultaneously discrete and continuous [36] in mathemati-
cally the same way that bandlimited information is simulta-
neously discrete and continuous. To see this, recall
Shannon’s sampling theorem which is in ubiquitous use
throughout signal processing [37,38]. This theorem holds

that if the amplitudes of a bandlimited function are known
on an arbitrarily chosen, sufficiently [39] dense lattice,
then the function’s amplitudes can be perfectly recon-
structed everywhere. Further, this choice of UV cutoff
renders the dimension N of the Hilbert space of scalar
fields on the spacetime finite. By a spectral geometric result
of Gilkey [40] and Hawking [41], N can then be expressed
in terms of a curvature expansion which is proportional to
the Einstein-Hilbert action with higher order curvature
corrections:

N ¼ 1

16π2

Z
d4x

ffiffiffi
g

p �
Λ̄2

2
þ Λ̄

6
RþOðR2Þ

�
: ð1Þ

Note that this general form of Eq. (1) had to be expected
since N, being a curvature-dependent geometric invariant,
should possess an expansion in scalar integrals over
curvature scalars [21]. Equation (1) allows us to express
the gravitational action basis independently as a trace,

Sg ¼ μN ¼ μTrð1Þ; ð2Þ

with μ ¼ ð6π=Λ̄Þ. Since the higher order curvature correc-
tions are suppressed by powers of Λ̄, they are unobservably
small at currently experimentally accessible energies. What
speaks in favor of including these terms is that they render
the gravity action Sg of Eq. (2) not only very simple but
also positive, since N ∈ IN. This avoids the problem of the
potential lower unboundedness of the Euclidean gravity
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action. We recall also that this type of correction terms is in
any case necessarily induced through the renormalization of
interacting fields [42,43].
We now also write the action of Nb free bosonic field

species basis independently:

Sb ¼
1

2

XNb

i¼1

Tr½ðΔþm2Þjϕiihϕji�: ð3Þ

For simplicity, we initially choose all species to possess the
same nonzero mass m. The bra-ket notation is here used to
basis independently denote fields in the Hilbert space of
fields that we will sum over in the path integral. The
conventional representation of Sb in coordinates would be
obtained by performing the trace in a position basis. Here,
we will not make the assumption that position bases exist.
Instead, we perform the trace in the eigenbasis of Δ, which
is guaranteed to exist by the spectral theorem, to obtain

Sb ¼
XNb

i¼1

XN
n¼1

λnðϕi
nÞ2: ð4Þ

The fλng, n∈ f1;…; Ng, are the eigenvalues of the wave
operator Δþm2, which are positive, and the ϕi

n are the
coefficients of jϕii in the eigenbasis basis of Δ. Similarly,
the Dirac action of fermionic fields in a positional basis,

Sf ¼
Z

d4x
ffiffiffi
g

p
Ψ̄ðiΓμDμÞΨ; ð5Þ

we here express in the eigenbasis of the Dirac operator,
reading, for Nf fermionic species,

Sf ¼
XNf

i¼1

XN
n¼1

ffiffiffiffi
λi

p
θinθ̄

i
n: ð6Þ

For now, the fermionic wave operator in Eq. (6) is for
simplicity taken to be the positive square root of the
bosonic wave operator. The θin, θ̄in are the Grassmann-
valued components of the Dirac field ψ i of the ith fermionic
species. In the eigenbasis of the wave operators, the total
action S of gravity and matter therefore reads

S ¼ Sg þ Sb þ Sf; ð7Þ

with Sg, Sb, and Sf given by Eqs. (2), (4), and (6).
Rationale for working in the eigenbasis of the wave

operators.—We choose to work in the eigenbasis of the
wave operators for two reasons. First, in this basis, the
action is expressed entirely in terms of diffeomorphism
invariant quantities. Therefore, we avoid the problem [6,41]
of path integrating over the metric while modding out the
diffeomorphism group.

Second, when writing the action basis independently,
the existence of a coordinate basis is no longer enforced,
while wave operators, being self-adjoint, always possess an
eigenbasis. Working in this basis, we will be able to show
below that, besides regular regimes that describe a space-
time and matter, the path integral also contains physical
regimes that do not admit position bases. These regimes
are pregeometric in the sense that they do not admit a
mathematical representation of the degrees of freedom in
terms of fields that live on a spacetime. Consistent with the
fact that the path integral of the action of Eq. (7) describes
both geometric and pregeometric regimes is that its
invariance group is now manifestly enlarged from the
diffeomorphism group to the full unitary group of the
Hilbert space of fields, since S in Eq. (7) is basis
independent. (Recall that the unitary group is larger
because, while coordinate transformations are unitary,
not all unitaries are coordinate transformations.)
Path integral.—The gravitational part of the path integral

is now the integral over the eigenvalues fλigNi¼1 of the wave
operators and the sum over the number N of these
eigenvalues. The matter part of the path integral is the
integration over the coefficients ϕj

i , θ
j
i , θ̄

j
i of the bosonic

and fermionic fields.
A choice to be made is whether to path integrate over

spacetimes with or without boundaries. The choice to
integrate effectively only over spacetimes with boundary
can be implemented by integrating all eigenvalues of Δ
from zero to the cutoff. The probability that an eigenvalue is
zero is then of measure zero. Since zero is an eigenvalue of
all compact Riemannian manifolds without a boundary (the
corresponding eigenfunctions being constant functions),
this effectively excludes these manifolds. Alternatively, and
this will be the choice here, we can choose to enforce that
zero is an eigenvalue of Δ by setting the lowest eigenvalue
of the bosonic wave operator to λ1 ¼ m2. The calculations
for spacetimes with boundaries are analogous. We therefore
set λ1 ¼ m2 and integrate over the Laplacian’s remaining
(N − 1) eigenvalues fλng, n ¼ 2;…; N. Defining
Λ ≔ Λ̄þm2, the path integral Z then reads:

Z ¼
X∞
N¼1

Z
Λ

m2

Dλ

Z
Dϕ

Z
DθDθ̄e−βS

ΛN½ðNf=2Þ−1�

ðN − 1Þ! : ð8Þ

The powers of the UV cutoff Λ arise because Z is unitless.
They could be omitted by choosing natural units in which
Λ ¼ 1. In Eq. (8), we integrate over the λi without ordering
the eigenvalues, which we then remedy with the factor
½ðN − 1Þ!�−1 to prevent overcounting the spectra. After
integrating out the fermion and boson fields, as well as the
Laplacian’s spectrum fλng and after summing over N, the
path integral evaluates to
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Z ¼ Cmd−2 exp

�
2C

Λd=2 −md

d

�
: ð9Þ

Here, we defined d ≔ 2 − Nb þ Nf and βmax ≔ ½ð2Nf −
NbÞ=2μ�, as well as C ≔ ð2πÞNb=2e−βμβμβmaxΛ1−ðNf=2Þ. We
can now use Z to calculate expectation values.
Spacetime dimension depends on the balance of bosonic

and fermionic matter species.—We begin by showing that
the effective dimension deff of the spacetime, whenever a
spacetime representation does exist, depends on the num-
bers of fermion and boson species:

deff ¼ d ¼ Nf − Nb þ 2: ð10Þ

To see this, we use Weyl’s asymptotic formula. Weyl
showed that in regimes in which the behavior of the
eigenfunctions of Δ is dominated by the spacetime dimen-
sion rather than by curvature, such as for large λ, the scaling
law for the density ρðλÞ of eigenvalues is that of flat space
and is, therefore, in one-to-one correspondence to the
dimension n of the manifold [44,45]:

lim
λ→∞

ρðλÞ ∝ λn=2−1: ð11Þ

Here, we can calculate the scaling of ρðλÞ from the
eigenvalue probability density pðλiÞ through

ρðλÞ∝pðλiÞ¼
1

Z

X
N

Z
D0λ

Z
Dϕ

Z
Dθ

Z
Dθ̄e−βS; ð12Þ

where D0λ includes all eigenvalues except one arbitrary λi,
which we will call λ. Evaluating these integrals and the sum
yields:

pðλÞ ∝ λNf=2−Nb=2: ð13Þ

Comparing this scaling with Eq. (11), we find that the
effective dimension deff is given by the number of fer-
mionic and bosonic species in the model, as stated in
Eq. (10). Note that Eq. (10) could be interpreted as tracing
the integer nature of spacetime dimensions to the integer
nature of the numbers of species.
Balance of Nf and Nb, and therefore the spacetime

dimension, can depend on the energy scale.—While the
calculations can be performed for positive and negative
deff , a representation in terms of matter fields that live on a
curved spacetime can of course only exist, i.e., a spacetime
populated by matter can only emerge, if deff > 0, i.e., if in
Eq. (10), Nf > Nb − 2. More generally, we now show that,
if the bosonic and fermionic species possess nontrivially
distributed rest masses, then the numbers of bosonic and
fermionic fields that effectively contribute to Nf andNb are
energy scale dependent. This in turn makes the effective
dimension deff energy scale dependent. To see this, we

calculate the probability density pðλÞ in the case of Nb
families of bosons and Nf families of fermions with
different masses, to obtain

pðλÞ ∝
YNb

k

ðλþm2
bk
Þ−1=2

YNf

l

ð
ffiffiffi
λ

p
þmfkÞ: ð14Þ

In any interval of the energy axis, i.e., in any region of λ
values, in which the scaling of pðλÞ is approximately
constant, Eq. (10) then yields an effective dimension
deffðλÞ:

deffðλÞ ¼ −2λ
∂ log½pðλÞ�

∂λ
þ 2: ð15Þ

In energy regimes, i.e., in ranges of λ, in which deffðλÞ is not
close to an integer, one of two cases can occur: (a) Weyl’s
formula does not apply because curvature at that scale is
still large enough to prevent the eigenvalues to scale as in a
flat space of some dimension, or (b) Weyl’s formula does
not apply because there is no spacetime representation.
In Fig. 1, we give an example with a set of species

possessing low masses and a set of species with medium
masses. At very low energies λ, we expect as usual
curvature-induced deviations from Weyl scaling, i.e., case
(a). Indeed, on the very left of the plot, we have deff initially
slightly below an integer, here 4. For larger λ, one reaches
Weyl scaling with deff ¼ 4. Further, when approaching the
energy scale of the set of species with medium mass, we
expect the balance of the number of fermionic and bosonic
species to shift. Figure 1 indeed shows a transitional regime
where, consistent with case (b), there exists no spacetime
representation while deff drops to 2. Finally, toward the UV,
one expects Weyl scaling to set in again and Fig. 1 indeed

FIG. 1. The effective dimension deffðλÞ for an example with
Nf ¼ Nb ¼ 33, where 32 fermionic masses and 30 bosonic
masses are chosen to be of the order of λ ∼ 10−22 and 3 bosonic
masses and one fermionic mass are chosen of the order of
λ ∼ 10−10, in natural units where Λ ¼ 1.
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shows that one arrives at a spacetime of dimension 2. While
the case of dimensional reduction at high energies has
been motivated in many models of quantum gravity [46],
both increases and drops of deff can here be modeled with
suitable boson and fermion mass spectra. Note also that
just before the transition of deff from 2 to 4, deff slightly
overshoots 4. It was pointed out in Refs. [47,48] that such
an overshoot could potentially cause an observable effect in
gravitational wave detectors. Finally, note that if we chose
instead Nf and Nb with Nf þ 2 ≤ Nb, then we would
obtain a pregeometric regime in the UV, with deff < 0.
Expected number hNi of degrees of freedom per

species.—We now calculate the expectation value hNi of
the number of eigenvalues, i.e., the expected dimension of
the Hilbert space of fields for each species. hNi is of interest
because it represents the expected number of “degrees of
freedom” of each field in the given spacetime. To see this,
recall that functions f in an N-dimensional function space
H possess N degrees of freedom in the sense that to fully
determine such a function f, it suffices to know the
function’s amplitudes an ¼ fðxnÞ at N generic points xn.
This is because these N equations can be used to determine
the N coefficients of f in a basis.
Since the calculation of hNi with nontrivial mass spectra

is lengthy, we here for simplicity return to the case of one
regime, where deff is effectively constant, by setting all
masses to a low energy value m. We obtain

hNi ¼ −Z−1

β

∂Z
∂μ

¼ 1þ 2C
Λd=2 −md

d
: ð16Þ

Let us now analyze the dependence of hNi on m, Nf, Nb,
and β, the latter playing the role of an inverse temperature
β ¼ 1=T, if we choose to interpret the Euclidean path
integral as a thermal partition function. hNi depends on β
through C, as defined with Eq. (9). From there we obtain
that if the spacetime dimension is positive, deff > 0, and
Nf > 1, then hNi→ 1 for β → ∞ and β → 0 with hNi
maximal at β ¼ βmax ¼ ð2Nf − NbÞ=2μ. From Eqs. (9)
and (16), the massm influences only the height of the curve
hNiðTÞ. The shape of the curve, as shown in Fig. 2, is
determined by the balance of Nf and Nb, through C.
Figure 2 shows that, for boson dominance in the sense that
deff ¼ Nf − Nb þ 2 ≤ 0, i.e., when where there is no
spacetime representation, the expected number of degrees
of freedom hNi is unbounded while for fermion domi-
nance, deff ¼ Nf − Nb þ 2 > 0, i.e., when a spacetime
representation exists, the expected number of degrees of
freedom hNi is bounded. This result is intuitive since when
there exists a representation on a spacetime and the
spacetime has a finite volume, then fermions should indeed
only allow a finite number of degrees of freedom in that
volume, given the UV cutoff. Let us now investigate the
expected spacetime volume.

Spectral gap and the size of the spacetime.—For a
compact Riemannian manifold M, the spectral gap of Δ
is closely related to l−2, with l its largest geodesic distance
(see, e.g., Ref. [49]), and therefore, roughly, to its volume
V ≈ ld. In this sense, defining g ≔ λ2 − λ1 ¼ λ2 −m2, the
expression hgi−d=2 provides a rough estimate of the
effective volume Veff ≡ hgi−d=2 of an emergent spacetime
of dimension d. To this end, we calculate

hλ2i ¼
Z

Λ

m
dλ2λ2Pðλ2jN ≥ 2Þ: ð17Þ

Here, Pðλ2jN ≥ 2Þ is the probability of the value λ2,
assuming N ≥ 2. This probability can be found using
Bayes’s theorem: Pðλ2jN≥2Þ¼ ½Pðλ2;N≥2Þ=PðN≥2Þ�¼
fPðλ2;N≥2Þ=½1−PðN¼1Þ�g. We find

hλ2i ¼
Að d

2CÞ2=d
�
Γð1þ 2

d ;C
2m2

d Þ− Γð1þ 2
d ;2C

Λd=2

d Þ
�

C
;

where A ¼ C
exp

n
2Cmd

d

o

1− exp
n
−2CΛd=2−md

d

o : ð18Þ

Here, Γða; bÞ ¼ R
∞
b dy ya−1e−y is the incomplete Γ func-

tion. In Fig. 3, we plot the resulting effective spacetime
volume Veff as a function of T in natural units, along with
hNi. Analytically, the curves of hNi and Veff are not
identical, but they match very closely. The ratio hNi=Veff
varies but stays roughly of order 1 and the maximum of hNi
and Veff is at the same value, βmax.
Consistency check.—The fact that the curves for the

number of degrees of freedom and the volume closely
match, see Fig. 3, implies a constant density of degrees of

FIG. 2. Log plot of the expectation value hNi of the number of
eigenvalues of Δ as a function of T ¼ 1=β, with T displayed as a
multiple of the UV cutoff Λ. Solid lines represent cases where
deff ¼ Nf − Nb þ 2 > 0, including the case fNb;Nfg ¼ 30, 32,
implying deff ¼ 4. In contrast, dashed lines represent cases where
deff < 0, i.e., where no spacetime representation exists and hNi
grows without bound.
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freedom, up to corrections, which constitutes a highly
nontrivial consistency check. To see this, note that in
Eq. (1) the integral over the first term on the rhs is the
spacetime volume. Dividing Eq. (1) by the volume there-
fore shows that, for a classical spacetime, the density of
degrees of freedom N=V of a classical field is constant, up
to curvature corrections: N=V ¼ Λ̄2=32π2 þ R

dV OðRÞ.
The fact that the present calculations yield an analogous
result after quantization is nontrivial since here in the
quantum case the density of degrees of freedomwas instead
indirectly inferred using Weyl’s law and the behavior
of the gap. Indeed, in the nongeometric regime where
Nb > 2þ Nf, i.e., where there is no positive effective
spacetime dimension, there is no geometric relationship
between Veff and hNi since for large T the quantity Veff
remains finite while hNi diverges.
Outlook.—Passing this nontrivial consistency check, the

present results on the emergence of spacetimes, and
possible changes of their dimension, support the proposal
in Ref. [50]. There, it was proposed that the physics of the
emergence of spacetime and matter can be described,
technically, as the emergence of the mathematical repre-
sentability of otherwise abstract degrees of freedom as
quantum fields on a curved spacetime. Further, the present
results now encourage exploring the use of the Lorentzian
signature and the inclusion of gauge symmetries and
interactions. As we will show in a longer follow-up paper,
to include interactions, even if only perturbatively, is the
key [50,51] to moving to the Lorentzian signature. This is
because, in the Lorentzian signature, neither Weyl scaling
nor the gap can be relied upon to infer the dimension or
volume of an emergent spacetime. The use of interaction
terms, however, will allow one to calculate even more,
namely the metric itself. The reason is that interaction terms
are local, i.e., they single out positional bases, whenever

they exist, namely as those bases in which the interaction
terms are diagonal. This then allows one to represent
propagators in positional bases. At short spacetime dis-
tances, a propagator is a function of the geodesic distance,
therefore also yields infinitesimal distances and, therefore,
the metric [50,51].
It will also be interesting to explore the nongeometric

regimes. For example, the spectra of wave operators are
naturally linked in geometric regimes but may vary
independently in nongeometric regimes. Indications for
this possibility have been found recently with methods of
Causal Dynamical Triangulations, where it was shown that
the scaling of the spectra of the Laplacians on k-forms can
vary with k [52]. One may also explore path integrating
over mass spectra and over Nf and Nb.
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