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Enhanced Electron-Spin Coherence in a GaAs Quantum Emitter
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A spin-photon interface should operate with both coherent photons and a coherent spin to enable cluster-
state generation and entanglement distribution. In high-quality devices, self-assembled GaAs quantum dots
are near-perfect emitters of on-demand coherent photons. However, the spin rapidly decoheres via the
magnetic noise arising from the host nuclei. Here, we address this drawback by implementing an all-optical
nuclear-spin cooling scheme on a GaAs quantum dot. The electron-spin coherence time increases 156-fold
from T35 = 3.9 ns to 0.608 ps. The cooling scheme depends on a non-collinear term in the hyperfine
interaction. The results show that such a term is present even though the strain is low and no external stress
is applied. Our work highlights the potential of optically active GaAs quantum dots as fast, highly coherent

spin-photon interfaces.
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Photonic quantum technologies require quantum emit-
ters capable of high-fidelity and high-rate operation.
Of particular interest for quantum networks [1-6] and
measurement-based quantum computing [7-9] are plat-
forms that host a spin [10-12], allowing the creation of
spin-photon interfaces.

Self-assembled semiconductor quantum dots (QDs) are
potential candidates for spin-photon interfaces due to the
deterministic photon emission at exceptionally high quality
and rates [13—16] and the ability to load a QD with a single
electron or hole [17]. This has led to demonstrations of
spin-photon entanglement [18—21], distant spin-spin entan-
glement [22,23], and the creation of multiphoton cluster
states [24-26]. However, in these previous experiments,
the short spin coherence times, 75 ~ 1-10 ns, limited the
entanglement fidelity. The short 77 is a consequence of
magnetic noise in the host nuclear spins, coupling to the
electron spin via the hyperfine interaction [27-29].

A powerful way to mitigate the short 77 is to cool the
nuclear spins to ultralow temperatures in order to reduce
the fluctuations. The nuclei can be cooled via the electron
spin itself, exploiting the hyperfine interaction [30]. In an
optical experiment, this was originally demonstrated on
an ensemble of QDs [31]. On single QDs, nuclear-spin
cooling was demonstrated on gate-defined GaAs QDs
via a measure-and-correct feedback loop [32,33]. More
recently, the highly inhomogeneous nuclear spins of a self-
assembled InGaAs QD were cooled via an autonomous
feedback [34]. Subsequently, a quantum sensing protocol
was employed, narrowing the nuclear distribution further,
thereby increasing 775 to 300 ns [35]. For both schemes, a

0031-9007/23/131(21)/210805(7)

210805-1

noncollinear term in the hyperfine interaction is required
to allow for the cooling of the nuclei. In contrast to
the collinear term from the contact hyperfine interaction
(< S.1,), the noncollinear term (« S,/,) arises from
nuclear quadrupolar fields in strained QDs; here S, (/)
is the electron (nuclear) spin operator along the direction of
the applied magnetic field [30,36,37].

The most studied QDs for spin-photon applications
are QDs in the InGaAs/GaAs system. InGaAs QDs are
self-assembled via the strain-driven Stanski-Krastanov
mechanism. GaAs QDs in an AlGaAs matrix represent an
alternative platform. The strain is low such that these QDs
are self-assembled via an alternative mechanism, droplet-
etching. Low-noise GaAs QDs have excellent photonic
properties, all at a convenient wavelength (around 780 nm).
In high-quality material, the optical linewidths are within
10% of the transform limit [38]. Photons emitted by remote
QDs have achieved a two-photon interference visibility of
93% without spectral or temporal filtering [39]. The biexci-
ton cascade generates entangled photon pairs with an
extremely high entanglement concurrence [40]. In terms
of the nuclear spins, the lack of both strain and spin—% In atoms
results in a homogeneous nuclear-spin ensemble [41], as
demonstrated by the success of the Carr-Purcell-Meiboom-
Gill (CPMG) decoupling scheme in prolonging the electron-
spin 7 from 3.8 to 113 ps [42]. However, as for InGaAs
QDs, noise in the nuclear-spin limits 775 to values of a few ns.
To date, the possibility of feedback cooling the nuclear spins
via the electron spin has remained uncertain, due to the
predicted absence of the strain-generated noncollinear hyper-
fine interaction.

© 2023 American Physical Society
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FIG. 1.

Coherent spin control of an electron in a droplet-etched GaAs QD. (a) High-angle dark-field scanning transmission image of a

droplet-etched GaAs QD. The dashed line is a guide to the eye to describe the droplet shape. (b) Schematic of the sample design: a layer
of GaAs QDs is embedded in a diode structure. A magnetic field perpendicular to the growth direction defines the quantization axis.
(c) Energy level diagram of a charged QD in an in-plane magnetic field. The “vertical” transitions are x polarized while the “diagonal”
transitions are y polarized. A circularly polarized rotation pulse detuned by A; = 700 GHz drives a Raman transition between the
electron-spin states. The readout laser is on resonance with the lower-frequency (vertical) transition and initializes the electron into
the |1) state. (d) Electron-spin Rabi oscillations as a function of drive time z. The solid line is an exponential fit to the data with
TR = 73(5) ns. (e) Full control of the rotation axis about the Bloch sphere using two consecutive (/2) pulses as a function of the
phase ¢ of the second pulse. The solid line is a sinusoidal fit to the data.

Here, we implement all-optical cooling schemes on low-
noise GaAs QDs and demonstrate an increase in the
electron-spin coherence time from 775 = 3.9 ns to 0.608 ps.
This is achieved with autonomous feedback and without
any external perturbation (such as strain tuning). We
demonstrate spin control with 775 = 0.608 ps, an extension
of T, with CPMG (with a scaling of 7$™MG o NO-69
matching previous experiments [42]), fast spin rotations
(Rabi frequencies above 100 MHz), and high-fidelity
spin control (F, > 98%). Our results establish GaAs
QDs as an emitter of coherent photons and a host to a
coherent spin.

To create the QDs, droplet-etched nanoholes in an
Alg 15GaggsAs matrix are filled with GaAs and capped
by an Aly33Gage;As layer. The materials are almost
lattice-matched. Figure 1(a) shows a high-angle dark-field
scanning transmission (HAADF-STEM) image of a GaAs
QD [43]. Notable is a thin, Al-rich layer at the bottom surface
of the QD [43]. The QD is embedded in a p-i-n diode
structure [see Fig. 1(b)] such that the QD charge is stabilized
via the Coulomb blockade. Individual QDs exhibit near-
transform-limited optical linewidths [38,39,43]. A 3.00 T
magnetic field is applied perpendicular to the growth
direction (Voigt geometry), at an angle of 45° to the in-plane
crystal axes. The electron Zeeman frequency is f7 =
4.54 GHz corresponding to a g factor of g, = —0.11.

The spin is manipulated by a two-color Raman pulse
detuned from the excited states by A; = 700 GHz [see

Fig. 1(c)]. This pulse is created by amplitude-modulating
circularly polarized light with an electro-optic modulator
driven by an arbitrary waveform generator [43,55]. A laser
resonant with the red “vertical” transition is used to read out
the spin (such that the || ) state is bright, the |1) state is
dark) and to prepare the spin in the |1) state via optical spin
pumping [43].

Driving the electron-spin resonance (ESR) [Fig. 1(d)]
shows clear Rabi oscillations between |1) and |]) with
increasing drive time ¢. We find an exponential decay of the
oscillations with 7521 = 73(5) ns, corresponding to a qual-
ity factor of Q=2TRaifp.i=19(1) and z-pulse fidelity
fﬂ:%(l +e7172)=0.975(2) at Q = 27 x 130 MHz. As has
been observed for InGaAs QDs [55], we find a strong
modulation of the quality factor [43] when the electron
spin is driven close to the nuclear Larmor frequencies w,
(i.e., Q ~ w,), a signature of an electron-nuclei interaction
via a Hartmann-Hahn resonance [56].

We access rotation around a second axis on the Bloch
sphere by controlling the phase of the microwave signal
that is imprinted on the optical field. Figure 1(e) shows
the sinusoidal response after two consecutive (z/2) pulses
on changing the phase ¢ of the second pulse, thereby
demonstrating rotation around an arbitrary axis on the
equator of the Bloch sphere.

On driving Rabi oscillations as a function of the detuning
A with respect to the Zeeman frequency (A = f7 — fprobe)s
we find strong deviations from the typical chevron pattern
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FIG. 2. Locking of electron-spin resonance (ESR) and cooling of nuclei with a Rabi drive. (a) Rabi oscillations versus detuning show
locking of the ESR to the drive within a window of frequencies and unstable Rabi oscillations outside the window. (b) Top:
Pulse sequence for Ramsey interferometry with prior Rabi cooling. For Rabi cooling a 7. = 1 ps long pulse at a Rabi frequency of
Q. =2z x 17 MHz is used. The Ramsey experiment was performed at a larger Rabi frequency of 2z x 100 MHz. Bottom: Top and
bottom envelopes of the Ramsey interferometry with 100 ps pause (circles), zero pause (squares), and Rabi cooling (diamonds); the
extracted coherence times are 75 = 3.9(2), T5 = 7.8(2), and T = 78(2) ns, respectively. Counts are normalized to 0.5 for long delays.
(c) Ramsey interferometry at a probe detuning with respect to the cooling frequency of A = 40 MHz [black dot in (d)]. (d) Oscillation
frequency f in Ramsey interferometry as a function of detuning of probe and cooling frequency A. The solid lines in (b) and (c) are

Gaussian fits to the data.

expected for a two-level system [see Fig. 2(a)]l. In a
~200 MHz window around the Zeeman frequency, we
find that the spin rotations lock to the probe frequency
S probes @ clear signature of electron-spin—nuclear-spin cou-
pling [37,57-59].

When the ESR is locked via the hyperfine interaction,
cooling of the nuclei, equivalently narrowing of the nuclear
distribution, is predicted [60,61]. This can be quantified by a
reduction in oqy, the standard deviation of the ESR fre-
quency fluctuations due to the changing Overhauser field. To
probe this, we perform a free-induction decay (FID) experi-
ment to measure the electron coherence time 77 in a Ramsey
experiment, which acts as a gauge of the temperature of the
nuclear-spin ensemble (coy o 775) [28,29]. We compare the
bare 77 to that obtained after locking the ESR [see Fig. 2(b)].
We observe a 20-fold increase from 75 = 3.9(2) to 78(2) ns
corresponding to a narrowing of ogy from 52(1) to
2.90(5) MHz following the Rabi drive. Remarkably, we
already find an enhancement in coherence time without a
dedicated cooling pulse when the Ramsey experiment is
carried out with a high duty cycle: repetitive Ramsey
experiments lead to a 775 of 7.8(2) ns. To determine the bare
electron coherence time, we add a 100 ps buffer between
each cycle. This observation suggests that the repetitive
application of spin manipulation pulses as short as 4 ns
already leads to a narrowing of ogy.

We confirm the nuclear-spin cooling and locking of the
ESR to the Rabi drive by fixing the cooling frequency f.
during Rabi cooling, subsequently detuning the probe
frequency fpope in @ Ramsey experiment. As expected for a
classic Ramsey experiment, oscillations arise at the detuning

frequencies A = f. — forpe [see Figs. 2(c) and 2(d)], now
with an increased coherence time.

To cool the nuclei further, we implement the recently
developed quantum-sensing-based cooling scheme [35]. In
this protocol, each cooling cycle consists of three steps [see
Fig. 3(a), top]: (i) The electron spin is initialized and then
rotated to the equator with a (z/2) pulse. A period of free
evolution 7. allows the electron to sense the Overhauser
field fluctuation that leads to a detuning A from the target
frequency f.. (ii) A coherent electron-nuclei flip-flop
interaction arising from a noncollinear term in the hyperfine
interaction is activated through ESR driving at Hartmann-
Hahn resonance Q= w,. The sign of the detuning A
determines the direction of the nuclear flops and thus leads
to a reversal of the measured fluctuation. (iii) A projective
measurement of the spin state transfers entropy from the
nuclei and concludes one cycle of the cooling scheme.
Repeating this cycle with increasing sensing time 7 results
in a narrower feedback function in each cycle and hence an
increased sensitivity to changes in oqp.

We find optimal parameters for the quantum-sensing-
based cooling at N = 40 cycles with a linearly increasing
sensing time 7., from 7;, = 20 to 7,,,, = 400 ns, and
electron-nuclei drive time 7. = 125 ns at a Rabi frequency
Q. = 2z x 17 MHz, followed by a spin pumping pulse of
200 ns [43]. This preparation sequence takes ~22 ps and is
repeated before each Ramsey cycle.

The electron coherence time 77 increases from 3.9(2) ns
to 0.608(13) ps after application of the protocol [see
Figs. 3(a) and 3(b)]. This constitutes a 156-fold increase
in T5. The final T7 is a factor of 2 larger than the previous

210805-3



PHYSICAL REVIEW LETTERS 131, 210805 (2023)

(a)

Quantum-sensing-based cooling
0] (ii) (iii)

N Ramsey

Readout

16 T T T T | — T T T 2
— cos(w,,, 7) expl(-7/T, ] 2
@) 5
[e]
2 o
E 0.5H
(2]
s q
0 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
7 (ns) 5
— T 10
(b) 1} O o T, =608 ns| (c)
O .. l%
> 0.5 m
L € 1 °
0.2 .
% 0 _E’ "N .&&0%%00
= o . rd 0o
-20 0 20 _« 7. =78ns ©
P I T el B %,
' 10 10° 10' 1P 10° 10 20 30 40 50 1 23 5 10 20
7 (ns) Q /2n(MHz) N,
FIG. 3. Quantum-sensing-based cooling and dynamical decoupling. (a) Top: Pulse scheme for the quantum-sensing-based cooling

consisting of (i) a sensing step, (ii) a driven electron-nuclei interaction, and (iii) a reset. The last reset pulse in the cooling scheme
initializes the electron spin for the Ramsey experiment performed at a Rabi frequency of 2z x 100 MHz. Bottom: Ramsey
interferometry with serrodyne frequency w., = 27 x 20 MHz [¢(7) = sin(ws.,7)] following quantum-sensing-based cooling gives
T3 = 0.608(13) ps. (b) Comparison of T% before cooling (squares), after Rabi cooling (diamonds), and after quantum-sensing-based
cooling (circles). Inset: fast Fourier transform of the Ramsey visibilities gives ooy = 52(1), ooy = 2.90(5), and ooy = 0.355(4) MHz,
respectively. (c) T versus Rabi frequency during cooling (€2.) for Rabi cooling (diamonds) and quantum-sensing-based cooling
(circles). Dashed lines correspond to nuclear Larmor frequencies, from left to right: Aw = 2z x 17.08, a)(75As) =2 x 219,
o(®Ga) = 27 x 30.7, w(*’Al) = 27 x 33.28, and w("'Ga) = 27z x 39.0 MHz. (d) Rabi oscillations at Q = 27 x 8.9 MHz as a function
of detuning from f following quantum-sensing-based cooling. (¢) Dynamical decoupling of the electron spin with a CPMG sequence.

The solid lines in (a),(b) are Gaussian fits to the data. The solid line in (e) is a power law fit to the data.

highest 7% reported on an electron spin hosted by an
InGaAs QD (296 ns [35]) and just below the highest
reported T of a single electron-spin qubit in a gate-defined
GaAs QD (767 ns [33]). The enhancement corresponds to a
narrowing of the nuclear-spin ensemble from 6oy = 52(1)
to 0.355(4) MHz [see Fig. 3(b), inset].

Using hyperfine constants A, and abundancies 7, of the
nuclei species k € {®Ga, "'Ga, "As} we can estimate the
number of nuclei involved N =5/4 >, mAIT3> = 1.4 x

10° and estimate the hyperfine interaction per nuclei A, =

1/(/5N/2zT5) = 0.13 MHz [27,35,42]. This corre-
sponds to a distribution of cpoy/A. ~ 376.8 macrostates
in the uncooled state and 2.6 after quantum-sensing-based
cooling, entering the regime where just a few nuclei
excitations remain.

For both the quantum-sensing-based and Rabi
cooling schemes, the Rabi frequency €. is an important
parameter [see Fig. 3(c)]. The maximum performance
for both cooling schemes occurs at Q. = 2z x 17 MHz,
close to the difference frequency of 7'Ga and 7°As

[Aw = w("'Ga) — w("°As) =27 x 17.08 MHz]. This result
is in contrast to those on InGaAs QDs for which cooling
was most effective at a direct Hartmann-Hahn reson-
ance [35]. Generally speaking, the fact that cooling via
an autonomous feedback process is effective on GaAs
QDs shows that a noncollinear term in the hyperfine
interaction [30,37,57] must be present even though the
strain in the QDs is small.

Following cooling, a typical chevron pattern is observed
on driving Rabi oscillations as a function of detuning with
respect to the cooling frequency f. [Fig. 3(d)], using here
a Rabi frequency below the Hartmann-Hahn resonances.
This demonstrates that in this case the electron spin is
isolated from the nuclear environment and behaves as a
two-level system. In addition, the quality factor of the
oscillations now increases to Q = 30.0(14) [corresponding
to a z-pulse fidelity of 98.4(1)%] [43], consistent with a
reduction of hyperfine-interaction-induced Rabi decay.

Recent experiments showed that the electron-spin 7', can
be increased by implementing a decoupling scheme, the
CPMG protocol. As a final step, we verify that this is also
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possible on the QD for which nuclear-spin cooling was
highly effective [see Fig. 3(d)]. By applying CPMG pulses,
we extend T, from THE = 2.93(6) ps using a Hahn echo
(N, =1) to TSPMG =22(8) ps, an order of magnitude
increase, with N, = 20 pulses. We extract a T, scaling of
TSPMG o N% with y = 0.69(12), consistent with recent
results on droplet-etched QDs [42] and gate-defined
QDs [62]. This result confirms that the nuclear-spin
ensemble is highly homogeneous. The application of more
pulses is currently limited by imperfect pulse calibrations
and the electron-spin relaxation time 7'y ~ 40 ps [43].

In conclusion, we have demonstrated fast and flexible
optical control of an electron spin confined to a self-
assembled GaAs QD. We show that autonomous feedback
protocols to cool the nuclear spins are very effective even
on an as-grown, close-to-strain-free QD. Nuclear-spin
cooling leads to a 156-fold increase in the 775 time,
T35 = 0.608 ps. Furthermore, both 75 and 7, can be
extended on exactly the same QD, 773 by nuclear-spin
cooling, T, by dynamic decoupling. These results imply
that a small noncollinear term must be present in the
hyperfine Hamiltonian. Following nuclear-spin cooling, 75
is still far from 7', suggesting that more advanced cooling
techniques are necessary to fully remove the inhomo-
geneous broadening [63]. Nonetheless, 75 becomes much
longer than both the time required to rotate the spin and the
time required to generate a photon. Together with recent
results on the generation of indistinguishable photons from
remote GaAs QDs [39] performed on the same sample as
used in this experiment, our results highlight the promise of
GaAs QDs for a coherent spin-photon interface.
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