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Detecting sudden changes in the environment is crucial in many statistical applications. We mainly focus
on identifying sudden changes in weak signals transmitted by electromagnetic or gravitational waves.
Assuming that the Hamiltonians representing the signals before and after the change are known, we aim to
find a discrimination strategy that can detect the change point with the best possible accuracy. This problem
has potential applications in accurately detecting the precise timing of events such as stellar explosions,
foreign object intrusions, specific chemical bonds, and phase transitions. We formulate this problem as a
quantum process discrimination problem by discretizing the time evolution of a quantum system as a
sequence of unitary channels. However, due to the complexity of the dynamics, solving such a multiple
process discrimination problem is typically challenging. We demonstrate that the maximum success
probability for the Hamiltonian change point problem with any finite number of candidate change points
can be determined and has a simple analytical form.
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Identifying transition points is a crucial issue in many
fields, including quality control [1], bioinformatics [2],
network traffic monitoring [3], and climatology [4]. In
various situations, the environment may undergo a sudden
change, and determining the exact moment of this trans-
formation can provide valuable insights. This challenge,
known as the change point problem, has attracted signifi-
cant research interest. Considerable efforts have been made
to develop effective and efficient detection strategies for
this problem [5–11].
Our main focus lies in detecting sudden changes in

electromagnetic or gravitational waves. When the signal
indicating the change point is weak, it is important to
perform quantum mechanical identification for high-
sensitivity detection. Working on the quantum version of
the change point problem is expected to be in demand in
a wide range of fields such as quantum sensing [12],
quantum imaging [13], and quantum biology [14]. In this
Letter, we aim to accurately identify change points by
assuming that the Hamiltonians representing weak signals
before and after the change are known. Solving this
problem could potentially aid in detecting the precise
timing of events such as stellar explosions, foreign object
intrusions, specific chemical bonds, and phase transitions.
Figure 1 shows a schematic of the problem of detecting

change points in Hamiltonians. The problem of detecting
transitions between quantum states has recently been
addressed, establishing upper and lower bounds for the
maximum success probability [15]. Detecting the change
point in Hamiltonians poses a considerably greater chal-
lenge compared to that in quantum states because it
necessitates optimizing not only output measurements
but also input states, driving Hamiltonians, etc. To obtain
optimal discrimination for Hamiltonians, it is necessary to
consider various types of distinguishing strategies, includ-
ing those that combine entangled input states with ancillary
systems and adaptive strategies.

FIG. 1. Problem of discriminating change points in Hamilto-
nians. The Hamiltonian of a quantum system suddenly changes
from H0ðtÞ to H1ðtÞ at a specific time t ¼ t⋆. The exact values of
H0ðtÞ andH1ðtÞ, whichmay be time dependent, are known but the
point of the transition occurrence (i.e., t⋆) is unknown. Assuming
that candidate change points are given, we wish to identify t⋆ as
accurately as possible by optimizing the state input to the system,
the measurement for the output, and so on. Let us assume that the
number of candidate change points is finite and that each candidate
has an equal chance of becoming a change point.
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Whendiscretizing the time evolution of a quantumsystem
as a sequence of unitary channels, the Hamiltonian change
point problem can be seen as the problem of identifying
quantum processes. The problem of distinguishing between
quantum channels [16–27] or more general quantum proc-
esses (also known as quantummemory channels or quantum
strategies) [28–34] has recently received significant atten-
tion.Analytical solutions have been found for distinguishing
between two simple quantum processes or processes with
significant symmetry, such as those covariant with respect to
unitary operators. However, to achieve our goals, we need to
differentiate between multiple processes that do not exhibit
high symmetry, making it difficult to obtain an analytical
solution. Our task is to identify multiple time-dependent
Hamiltonians, but due to the complexity of the dynamics,
solving such a problem is highly challenging and little is
known about optimal solutions. The formulation of the
quantum process discrimination problem as a semidefinite
programming problem is known [31], which often proves
helpful in obtaining analytical or numerical solutions.
Nevertheless, the conclusions of Ref. [31] cannot be
explicitly appliedwhen theHamiltonians vary continuously.
Also, as the dimension of the system and the number of
candidate change points increase, the computational com-
plexity increases exponentially, which limits the feasibility
of obtaining a solution to small-scale problems.
We demonstrate that optimal performance can be ana-

lytically obtained and expressed in a simple form for the
Hamiltonian change point problem, regardless of the
number of candidate change points. This result may appear
surprising, considering that analytical optimal solutions to
quantum process discrimination problems have only been
found for very simple cases. We should emphasize that
even in the change point problem for quantum states, which
intuitively seems to be easier to solve, an analytical solution
is only found in the limiting case where the number of
candidate change points is infinite [15]. To begin with, we
tackled the task of discriminating the change point when a
sudden change occurs from a unitary channel to the next.
We provide a specialized method for solving this problem.
In this method, after formulating the problem as a semi-
definite programming problem, we devise a discrimination
strategy aimed at maximizing the success probability. We
then show the optimality of this strategy by examining the
dual problem. We also demonstrate that adaptive strategies
and ancillary systems are not required for optimal dis-
crimination. This is in contrast to general channel dis-
crimination problems, which require the use of adaptive
strategies in conjunction with ancillary systems [19,35].
Then, this result is applied to analytically obtain an optimal
solution to the Hamiltonian change point problem.
Identification of change points for unitary channels.—

We first formalize the task of recognizing transition points
within unitary channels. We assume a unitary channel,
where the first n uses correspond to U0, and the remaining

uses correspond to U1. The channels U0 and U1 are known
and n can be any integer between 0 toN. The objective is to
precisely determine the value of n. Let Un<k be U1 if n < k,
and U0 otherwise. Let En be the process consisting of a
sequence of N channels ðUn<1;…;Un<NÞ. This problem
can be formulated as differentiating between the N þ 1
processes E0;…; EN . For example, in the case of N ¼ 2,
there is a need to distinguish between the three possible
sequences: E0¼ðU1;U1Þ, E1¼ðU0;U1Þ, and E2 ¼ðU0;U0Þ.
Let Vk and Wk, with equal dimensions, denote the input
and output systems, respectively, for the channel Un<k.
The most general discrimination strategy, presented in

Fig. 2(a), involves ancillary systems V 0
1;…; V 0

N . We begin
by preparing a bipartite system with initial conditions of
V1 ⊗ V 0

1. The first segment V1 is sent through the channel
Un<1, followed by a channel σ2. Subsequently, V2 is sent
through the channel Un<2, followed by a channel σ3, until
N steps have been completed. The system WN ⊗ V 0

N is
then subjected to a quantum measurement, Π ≔ fΠmgNm¼0.
A collection ðρ; σ2;…; σN;ΠÞ can be used to define any
quantum discrimination strategy allowed by quantum
mechanics, including an entanglement-assisted and/or
adaptive one. This collection of objects is known as a
quantum tester [29]. We want to find a discrimination
strategy that maximizes the success probability. The prob-
lem of obtaining the maximum success probability, denoted
by P, is an optimization problem over quantum testers,
which is formulated as a semidefinite programming prob-
lem [31]. We assume P < 1, which means that U0 and U1

are not perfectly distinguishable with a single evaluation.
Figure 2(b) shows the most general nonadaptive proto-

col, which can be regarded as a special case of the protocol
shown in Fig. 2(a). An initial state ρ is prepared for the
multipartite system VN ⊗ � � � ⊗ V1 ⊗ V 0 of the protocol,
where V 0 is an ancillary system. Subsystems V1;…; VN are
then exposed to their respective channels Un<1;…;Un<N

FIG. 2. (a) The most general protocol of change point dis-
crimination for unitary channels. Each process En consists of a
sequence of N channels ðUn<1;…;Un<NÞ. Any discrimination
strategy is expressed as a collection of a state ρ, channels
σ2;…; σN , and a measurement fΠmgNm¼0. (b) The most general
nonadaptive protocol, which consists of a state ρ and a meas-
urement fΠmgNm¼0.
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and the system WN ⊗ � � � ⊗ W1 ⊗ V 0 is subjected to a
quantum measurement Π ≔ fΠmgNm¼0. Any nonadaptive
discrimination strategy can be described using a collection
ðρ;ΠÞ. The determination of the optimal performance by
using only a nonadaptive strategy is simple; however, the
resulting performance could be inferior to those obtained
using adaptive strategies.
Considering the optimal performance of nonadaptive

strategies, let Λn represent the unitary channel composed
of N unitary channels Un<N;…;Un<1 connected in
parallel, i.e.,

Λn ≔ Un<N ⊗ � � � ⊗ Un<1 ¼ U⊗ðN−nÞ
1 ⊗ U⊗n

0 :

This problem can be expressed as the following optimiza-
tion problem:

maximize
1

N þ 1

XN
n¼0

Tr½Πn ðΛn ⊗ 1V 0 ÞðρÞ�;

where the maximization is taken over all possible
input states ρ of the system VN ⊗ � � � ⊗ V1 ⊗ V 0 and
over all possible measurements Π of the system
WN ⊗ � � � ⊗ W1 ⊗ V 0. We denote the optimal value of
this problem, i.e., the maximum success probability, by Pna.
Pna ≤ P clearly holds. For each b∈ f0; 1g, the channel
Ub is associated with a unitary matrix Ub such that
UbðρÞ ¼ UbρU

†
b.

We first consider the simplest case N ¼ 1; then, the
problem is reduced to distinguishing two unitary channels
U0 and U1 in a single trial, and thus P ¼ Pna holds. Pna was
obtained in Refs. [36,37]; we here briefly review their
results. The maximum success probability for distinguish-
ing two output states U0jψi and U1jψi from a pure input
state jψi is given by

1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jhψ jU†

0U1jψij2
q �

: ð1Þ

The optimal input state jψi minimizes the absolute value of
the inner product ofU0jψi andU1jψi. Let Γ be the polygon
in the complex plane whose vertices are the eigenvalues of
the unitary matrix U†

0U1; then, the distance between the
polygon Γ and the origin is equal to the minimum value of
jhψ jU†

0U1jψij [38]. If λ0 and λ1 are the eigenvalues repre-
senting the points at both ends of the polygonΓ closest to the
origin, and jλ0i and jλ1i are the corresponding normalized
eigenvectors, then jhψ jU†

0U1jψij attains its minimum value
jλ0 þ λ1j=2 at jψi ¼ j�i ≔ ðjλ0i � jλ1iÞ=

ffiffiffi
2

p
. Thus, from

Eq. (1), we obtain

P ¼ γ þ 1

2
; γ ≔

1

2
jλ1 − λ0j: ð2Þ

Next, we examine the case N ¼ 2, which presents us
with the challenge of distinguishing between three

processes. Analogous to the N ¼ 1 scenario, we consider
a discrimination strategy that employs a pure state jψi of
the system V2 ⊗ V1 as the input state. The outputs from the
three processes then become U1 ⊗ U1jψi, U1 ⊗ U0jψi,
and U0 ⊗ U0jψi. Consequently, our task is to optimize jψi
to maximize the distinguishability of these three states.
However, the relationship between these three states and
the maximum success probability is complex, rendering it
unclear how to optimize jψi. This stands in contrast to the
case N ¼ 1, where the optimization of the input state jψi
simply involves minimizing the inner product ofU0jψi and
U1jψi. The utilization of an ancillary system may enhance
the success probability, and it would not be surprising if P
were strictly larger than Pna. These considerations are
equally applicable to cases of N > 2.
Considering the above discussion, obtaining an analyti-

cal expression of P for N ≥ 2 is challenging. However, we
discovered that a nonadaptive strategy can achieve optimal
discrimination for any N. The following theorem provides
a simple expression for the exact value of P as a function
of N and γ.
Theorem 1.—In the problem of change point discrimi-

nation for unitary channels, we have

P ¼ Pna ¼
Nγ þ 1

N þ 1
: ð3Þ

Proof.—We present a summary of the proof; for more
details, please refer to Sec. III of Supplemental Material
(SM) [39]. Consider a nonadaptive discrimination strategy
in which pure state jψi of the system VN ⊗ � � � ⊗ V1 is
input into the channel Λn. Assume that the measurement in
an orthonormal system fjπmigNm¼0 identifies the pure out-
put state from the channel Λn, which is represented by

½U⊗ðN−nÞ
1 ⊗ U⊗n

0 �jψi; then, the conditional probability,
denoted by pmjn, that the measurement result is m, given
that the change point n is represented as

pmjn ¼ jhπmj½U⊗ðN−nÞ
1 ⊗ U⊗n

0 �jψij2:

Let us choose

jψi ¼
X

s1 ∈ f−1;1g
…

X
sN ∈ f−1;1g

as1;…;sN jϕsN i � � � jϕs1i ð4Þ

with jϕ1i ≔ jþi and jϕ−1i ≔ j−i, where as1;…;sN isQ
N−1
k¼1 ½ðskskþ1

ffiffiffi
γ

p þ 1Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðγ þ 1Þp � if the sequence

s1;…; sN has an even number of elements equal to −1,
and 0 otherwise. It can be seen that there exists an
orthonormal system fjπmigNm¼0 satisfying

pmjn ¼

8>><
>>:

P
0
k¼−∞ Lðk − n; ζÞ; m ¼ 0;

Lðm − n; ζÞ; 0 < m < N;P∞
k¼N Lðk − n; ζÞ; m ¼ N;
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where ζ ≔ ð1 − γÞ=ð1þ γÞ and Lðn; ζÞ is the probability
mass function of the discrete Laplace distribution, given by

Lðn;ζÞ≔ 1− ζ

1þ ζ
ζjnj; 0< ζ< 1:

This nonadaptive strategy provides the success probabi-
lity of

1

N þ 1

XN
n¼0

pnjn ¼
Nγ þ 1

N þ 1
≕ q;

which is clearly not greater than Pna. In addition, we can
demonstrate that the optimal value, denoted by D, of the
Lagrange dual of the change point problem is upper
bounded by q. As the weak duality inequality P ≤ D
holds, we have q ≤ Pna ≤ P ≤ D ≤ q, and thus all these
inequalities are equalities. ▪
In practice, it may be challenging to implement the

entangled states described by Eq. (4). Alternatively,
consider using a separable state, jþi⊗N , as an input. In
this situation, the problem is to identify the state
fðU1jþiÞ⊗ðN−nÞðU0jþiÞ⊗ngn, and thus reduces to a quan-
tum change point problem for pure states, which has been
studied in Ref. [15]. However, the use of a separable state
results in performance degradation, as shown in Fig. 3.
Identification of change points for Hamiltonians.—The

above-mentioned discussion can be expanded to address
the problem of identifying Hamiltonian change points.
Consider a situation where a HamiltonianH0ðtÞ acting on a
quantum system changes to H1ðtÞ at a particular time t⋆.
Assume that the change point t⋆ is known to be one of the
possible candidates t0;…; tN with equal prior probabilities.
To frame this problem as a process discrimination problem,

it is imperative to consider time in a discrete manner. Also,
it is necessary to contemplate any quantum discrimination
strategy permitted by quantum mechanics, which may
involve applying channels at time points other than
t0;…; tN . Consequently, we explore the concept of dis-
cretizing time into sufficiently short intervals. We arbitrar-
ily choose a natural number R and time instants
τ0 < τ1 < … < τNR such that τkR ¼ tk holds for each
k∈ f0;…; Ng. For each b∈ f0; 1g, 1 ≤ k ≤ N, and

1 ≤ r ≤ R, let Uðk;rÞ
b be the unitary channel representing

the time evolution with the Hamiltonian HbðtÞ between the
time interval τðk−1ÞRþr−1 ≤ t ≤ τðk−1ÞRþr, i.e.,

Uðk;rÞ
b ðρÞ ≔ Uðk;rÞ

b ρUðk;rÞ†
b ;

Uðk;rÞ
b ≔ T

�
exp

�
−i

Z
τðk−1ÞRþr

τðk−1ÞRþr−1

HbðtÞdt
��

;

where T is the time-ordered operator. Also, let En be the
sequence expressed by

En ≔
h
Uð1;1Þ
n<1 ;U

ð1;2Þ
n<1 ;…;Uð1;RÞ

n<1 ;

Uð2;1Þ
n<2 ;U

ð2;2Þ
n<2 ;…;Uð2;RÞ

n<2 ;…;

UðN;1Þ
n<N ;UðN;2Þ

n<N ;…;UðN;RÞ
n<N

i
:

The problem is then reduced to distinguishing quantum
processes E0;…; EN similar to the problem of unitary
channels. However, the main difference in this case is that
the Hamiltonians can be time dependent and we can use
arbitrarily short time intervals. As a result, this problem is
challenging to solve analytically.
Let μmaxðtÞ and μminðtÞ, respectively, be the maximum

and minimum eigenvalues of H1ðtÞ −H0ðtÞ. Also, let

γk ≔ Δ
�Z

tk

tk−1

½μmaxðtÞ− μminðtÞ�dt
�
; 1 ≤ k ≤ N; ð5Þ

where ΔðθÞ ≔ sin½minðθ; πÞ=2�.
For N ¼ 1, the problem is to identify two processes E0

and E1. In essence, this problem involves distinguishing
whether the Hamiltonian applied to the system between
the time interval t0 ≤ t ≤ t1 is H0ðtÞ or H1ðtÞ. In this
problem, the maximum success probability is known as
ðγ1 þ 1Þ=2 [36,40], which is obtained as limit R → ∞.
In addition, some experiments have been conducted using
this result [41]. We find that by extending the proof of
Theorem 1, an analytical expression of the ultimate
performance for each N is obtained, as stated in the
following theorem (the proof is given in Sec. III C of
SM [39]).
Theorem 2.—The maximum success probability in the

change point problem for two Hamiltonians H0ðtÞ and

FIG. 3. Probability of successful identification of change points
for λ0 ¼ 1 and λ1 ¼ expðiπ=10Þ. Psep is the maximum success
probability when the separable state jþi⊗N is used as an input,
which is obtained by numerically solving a semidefinite pro-

gramming problem. Pð∞Þ ¼ γ and Pð∞Þ
sep are limits as N → ∞. The

analytical solution of Pð∞Þ
sep is given in Ref. [15].
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H1ðtÞ with any integer N ≥ 1 is given by

1

N þ 1

�XN
k¼1

γk þ 1

�
: ð6Þ

Let Pk represent the maximum success probability of
distinguishing whether the Hamiltonian applied to the
system between the time interval tk−1 ≤ t ≤ tk is H0ðtÞ
or H1ðtÞ. Drawing from the discussion for the case N ¼ 1,
we deduce Pk ¼ ðγk þ 1Þ=2. Therefore, the maximum
success probability of Eq. (6) can be expressed as a linear
function of the sum of these probabilities,

P
N
k¼1 Pk.

Moreover, from Eq. (5), we ascertain that for each k,
Pk is monotonically nondecreasing with respect to
γ0k ≔

R tk
tk−1 ½μmaxðtÞ − μminðtÞ�dt. Therefore, the maximum

success probability generally increases as each γ0k increases.
In the limit of large N, it follows from Eq. (6) that the
maximum success probability tends to the average of
γ1; γ2;…; γN (i.e.,

P
N
k¼1 γk=N).

In Sec. VI of SM [39], we provide a tangible example of
a Hamiltonian change point problem, in which H0 and H1

oscillate at disparate frequencies. Given that frequency
often encodes information about energy, position, and
structure, detecting changes in frequency could be of
paramount importance for several applications.
Conclusions.—In this Letter, we investigated the diffi-

culty of identifying a precise moment when the Hamiltonian
suddenly changes, and we presented an analytical expres-
sion of the maximum success probability. We first discussed
the quantum change point problem for unitary channels, as a
simpler problem. The objective of this task is to accurately
identify the exact moment when a unitary channel changes
to another. We demonstrated that the maximum success
probability can be expressed in a simple analytical form by
using only the number of possible change points and a
parameter reflecting the ease of recognizing the channels
before and after the change, assuming identical prior
probabilities. The proposed method was then applied to
derive the optimal performance for the problem of discrimi-
nating change points for Hamiltonians.
This Letter lays the foundation for future research on

related topics, including the estimation of a continuous-
valued change point and the detection of multiple change
points. In addition, it can facilitate research on the change
point problem for channels in open systems (i.e., nonuni-
tary channels) and the optimization with other criteria such
as unambiguous or Neyman-Pearson. We anticipate that
our results will provide a solid starting point for addressing
these challenges.

We thank for O. Hirota, M. Sohma, T. S. Usuda, and
K. Kato for insightful discussions. This work was sup-
ported by the Air Force Office of Scientific Research under
Award No. FA2386-22-1-4056.
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