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The effectiveness of measurement-based feedback control protocols is hampered by the presence of
measurement noise, which affects the ability to accurately infer the underlying dynamics of a quantum
system from noisy continuous measurement records to determine an accurate control strategy. To
circumvent such limitations, this Letter explores a real-time stochastic state estimation approach that
enables noise-free monitoring of the conditional dynamics including the full density matrix of the quantum
system using noisy measurement records within a single quantum trajectory—a method we name as
“conditional state tomography.” This, in turn, enables the development of precise measurement-based
feedback control strategies that lead to effective control of quantum systems by essentially mitigating the
constraints imposed by measurement noise and has potential applications in various feedback quantum
control scenarios. This approach is particularly useful for reinforcement-learning-(RL) based control,
where the RL-agent can be trained with arbitrary conditional averages of observables, and/or the full
density matrix as input (observation), to quickly and accurately learn control strategies.
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Future advancements in quantum technologies will hinge
on the ability to effectively manipulate quantum systems by
controlling their states through reliable protocols and
feedback strategies [1–4]. Broadly speaking, pure control
strategies entail using open-loop pulse-based controls for
quantum circuits, and such problems have been success-
fully tackled using conventional optimal control tools like
gradient-ascent pulse engineering [5–8]. These methods are
fundamentally based on a differentiable model of quantum
dynamics that cannot be extended to feedback-based
controls [5,9]. For controls employing continuous meas-
urement, nontrivial strategies need to be identified based on
conditional dynamics. These measurement-based feedback
control (MBFC) techniques are considered pivotal for
achieving real-time quantum control in laboratory experi-
ments [10–18]. Reinforcement learning (RL) has recently
been proven to be a powerful new ansatz for such control
tasks, which, in the quantum domain, was first demon-
strated for quantum error correction [19] and optimization
of quantum phase transition in 2018 [20]. Following
these initial studies, we have recently witnessed its
applications in different sets of nonintuitive problems,
including applications in quantum control [8,21–24], state

transfer [25,26], quantum state preparation and engineer-
ing [27–30], and quantum error correction [31]. Very
recently, the use of RL controls for real laboratory experi-
ments of a quantum system has become a reality [32,33].
At a fundamental level, the MBFC approaches based on

continuous measurements suffer from the limitations of two
primary sources. First, such approaches often fail to control
the dynamics beyond a specific limit set by the signal-to-
noise ratio of the intrinsic and unavoidable measurement-
induced noise to the measured quantity. The level of noise
increases as 1=

ffiffiffiffiffiffi
κδt

p
, where κ denotes the measurement rate,

and δt is the measurement time interval, which given the fact
that δt is related directly to the variance of the noise
distribution (in the Wiener noise model) and δt ≪ 1, the
actual measured signal can be well hidden in the sea of
random noise [24]. This makes it practically impossible for
MBFC to find suitable control strategies for the system to
achieve the desired dynamics. Second, the continuous
measurement process naturally leads to the so-called meas-
urement backaction,whichmakes theMBFC schemes highly
nonintuitive and nontrivial in general [19,24,27,34,35].
In this Letter, we research in this direction and propose

an efficient MBFC protocol that can precisely control the
dynamics of a quantum system of interest based on noisy,
continuous, and real-time measurement data. This is made
possible by developing a measurement-based stochastic
estimator that can extract the real-time state of the measured
system noiselessly and without collapse, thereby control-
ling the system dynamics in any desired way. Unlike
the usual method of state estimation with continuous
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measurement using thousands of trajectories from that
many copies of the quantum system, this method estimates
the conditional state of the system from single trajectory, a
method we term as “conditional state tomography.” We
demonstrate the efficiency of the scheme by applying it to
control the dynamics of linear and nonlinear quantum
systems where the applied feedback is state based or
conditional. We also show the usefulness of the scheme
for cases where control laws can be derived based on
conditional moments (assuming perfect extraction of the
measured signal from the noisy data, which is typically not
possible in realistic experiments), which we illustrate with
an example of preparing symmetric and antisymmetric
entangled states of two qubits. Moreover, our scheme is
adaptable for real-time feedback with RL controllers,
allowing optimal and efficient training and control.
The protocol is shown schematically in Fig. 1. It consists

of two operation steps, the estimation stage and the control
stage. In the estimation stage, the to be controlled quantum
system (shown on the left), with an unknown initial state
[given by the density matrix ρð0Þ] is measured using a
(weak) continuous measurement approach. The noisy
current streams from the measurement are then used to
construct a stochastic estimator (shown on the right), which
is a computational model of the measured quantum system,
with the same Hamiltonian but with any random initial
quantum state ρeð0Þ. The estimator can track the dynamics
of the measured quantum system in real time after a while,
as the conditional state of the estimator converges to that
of the physical quantum system. In the control stage of
operation, a controller is developed to mediate between the
real system and the estimator by applying feedback on the
systems based on the conditional dynamics of the latter
while continuing to control the systems through the real-
time measured data of the physical quantum system.
We first describe the theory behind the measurement-

based stochastic estimator and the feedback control
method. Suppose the laboratory quantum system (top left
in Fig. 1), with Hamiltonian Ĥ0, is being measured
continuously with a weak probe for the measurement
operator Â (suitably scaled to make it dimensionless).
Such a continuous measurement process leads to condi-
tional stochastic dynamics of the system density matrix in
time ρcðtÞ and is described by the so-called quantum
stochastic master equation (SME),

dρcðtÞ
dt

¼ −i½Ĥ0; ρcðtÞ� þ κD½Â�ρcðtÞ
þ ffiffiffiffiffi

κη
p

H½Â�ρcðtÞdξðtÞ: ð1Þ

Here, κ is the measurement rate (the rate at which
information is extracted from the detector), η is the
measurement efficiency of the detector, and dξðtÞ repre-
sents an instantaneous random Wiener noise increment
(white noise model with zero mean and variance

ffiffiffiffiffi
dt

p
,

where dt is the time interval between successive measure-
ments). D½Â� and H½Â� are the superoperators describing,
respectively, the backaction and diffusion terms in the
SME [1,3], see Supplemental Material [36] for more
details. Probing the system with a weakly coupled meter
that, in effect, has a broad probability distribution of the
quantum state leads to noisy measurement records given by

IðtÞ ¼ hÂðtÞic þ
1
ffiffiffiffiffiffiffi
4κη

p dξðtÞ: ð2Þ

The first term on the right-hand side of the above equation
denotes the conditional mean of the measurement operator
(the signal) and the second term represents the contribution
of the measurement noise, which depends on η and κ.
The estimator is a model quantum system with the same

Hamiltonian cH0, as depicted in Fig. 1 (top right), which is
initialized in any arbitrary quantum state ρeð0Þ, and is driven
by the noisy measurement current of the real laboratory
quantum system, IðtÞ [Eq. (2)]. The dynamics of the
estimator is described by the modified SME [1,35,44],

dρecðtÞ ¼ −i½Ĥ0; ρecðtÞ�dtþ κD½Â�ρecðtÞdt
þ 2κη½IðtÞ − hAðtÞiec�H½Â�ρecðtÞdt; ð3Þ

FIG. 1. The schematic of the proposed protocol. Top: the
estimation stage. A physical quantum system (left) described
by Hamiltonian Ĥ0 is continuously monitored to probe the
observable Â, and the noisy measurement outcomes are fed to
the estimator (right)—a simulator based on the mathematical
model of the real physical system on a classical processor, e.g., a
field programmable gate array. The state of the physical system
(estimator) at time t is described by ρðtÞ [ρeðtÞ] which becomes
equal at t ≥ tc. Bottom: the control stage. A controller is used to
apply accurate feedback F̂ðtÞ to both the physical as well as the
estimator systems as a function of the estimated noiseless
conditional signal hÂðtÞic obtained through the estimator.
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where ρecðtÞ denotes the conditional density matrix of the
estimator independent of the real system, and hÂðtÞiec ¼
Tr½ρeÂ� is the conditional mean calculated for the estimator
at time t. In essence, the estimator dynamics is driven by the
noisy real-timemeasurement currents from themeter and the
conditionalmeans of the estimator itself. It can be shown that
the overlap between the states ρðtÞ and ρeðtÞ following
Eqs. (1) and (3) monotonically increases until it reaches
unity: δTr½ρρe�ðtÞ ∼ Tr½ ffiffiffi

ρ
p ðÂþ hÂiÞρeðÂþ hÂiÞ × ffiffiffi

ρ
p �δt.

Thus, provided the estimator gets a sufficient amount of
measurement data, the convergence of its dynamic state to
that of the physical quantum system, i.e., ρeðtÞ ∼ ρðtÞ can
always be guaranteed, except for the cases where
½Ĥ0; Â� ¼ 0. In case of the latter, the observable Â is a
constant of motion, and the continuous measurement of it
does not provide any information about the state of the
system, causing ρeðtÞ to remain in one of the eigenstates of
Ĥ0. It is possible to ensure convergence regardless of the
values of η and κ, although the time it takes to reach
convergence, tf, will be longer if η and κ are lower (see the
Supplemental Material [36] for an example of a qubit to
illustrate the protocol). Once this estimation stage is com-
plete, the second stage of the MBFC scheme, namely the
control stage, is initiated, as shown in Fig. 1 (bottom).
We first apply the scheme for dynamic feedback cooling

of a linear quantum harmonic oscillator and demonstrate
how it becomes possible to employ accurate state-
based feedback control to achieve this. The Hamiltonian
of the linear quantum harmonic oscillator is given by
Ĥ0 ¼ p̂2=2mþmω2x̂2=2, where x̂ and p̂ are the position
and momentum operators, respectively,m is the mass of the
oscillator, and ω denotes the frequency of oscillation.
Consider making a measurement of the position operator
such that Â ¼ x̂. In Fig. 2(a), the instantaneous fidelity
between the states of the real system and the estimator F ðtÞ
is shown during the estimation stage of the control protocol.
As shown in terms of the monotonically improved fidelity,
the estimator starts mimicking the dynamics of the mea-
sured quantum system; also shown in the inset of Fig. 2(a),
where the evolution of the conditional means of x̂ for the
measured system and estimator are compared. After the
estimation stage is completed, which is typically smaller
than κ−1, the control stage is initialized. We now use a state-
based control strategy given by ĤðtÞ ¼ Ĥ0 − hx̂ðtÞicp̂,
where hx̂ðtÞic denotes the conditional mean of x̂ at time
t. Such a feedback represents a damping control scheme,
where the controller applies feedback based on the condi-
tional mean of the position operator to effectively reduce
the momentum as it approaches hx̂ðtÞic → 0. The feedback
is applied to both the measured system and the estimator
based on the noise-free conditional mean of the position
extracted by the estimator. The results are shown in
Fig. 2(b), where it is found that the proposed control
protocol leads to fast and accurate dynamic cooling of the

quantum harmonic oscillator. The inset of Fig. 2(b) shows
how the control protocol could keep the quantum state at a
dynamical minimum to any length of time, which is crucial.
Next, we consider a nonlinear quartic potential with the

unperturbed Hamiltonian given by Ĥ0 ¼ p̂2=2mþ λx̂4,
where we have chosen m ¼ 1=π and λ ¼ π=25 with proper
dimensions. We apply artificial control viz. RL [37–39], to
devise proper feedback strategies in this case. It is note-
worthy that with the designed stochastic estimator, it is now
possible to apply the full density matrix as well as the
means and moments of the operators for choosing any
accurate feedback scheme. Therefore, the scheme allows
using accurate conditional means of observables as the
input st (observation) to the RL agent; for example, here we
use st ¼ fhx̂i; hp̂ig. Another advantage of the estimator
control is that state fidelities are now realizable, which are
usually pervasive in real experimental measurements.
Therefore, given that we have access to the fidelity F ðtÞ
of the estimator, it can be used as a simple and efficient
reward function that needs to be maximized by the RL
agent in the training process. The agent is first trained with
a given initial state, which, due to the generalizability of the
trained model, permits use for controlling the system
started with other (random) initial states. The learning
curve as the mean fidelity F ðNÞ over each training episode

FIG. 2. Control of a linear quantum harmonic oscillator using
the protocol. (a) In the estimation phase, the fidelity F ðtÞ
between the physical system and the estimator steadily con-
verges. The inset displays the conditional means of the observ-
able x̂. (b) Subsequently, a state-based controller is applied,
swiftly guiding the particle’s motion around the center
hx̂ðtÞic ¼ 0. The instantaneous fidelity F gðtÞ (depicted in black)
quantifies the closeness between the physical system or estimator
state and the target state, i.e., the ground state of the oscillator.
The conditional mean population hâ†âðtÞic in the oscillator is
shown in red.
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N is shown in black in Fig. 3. Using conditional means for
training the RL agent makes learning quicker and more
accurate. The evaluated episodic fidelity variation F ðtÞ is
shown in the red colored line in Fig. 3 in the biaxial plot’s
second scale, demonstrating accurate feedback control by
the trained RL model.
Besides, it is often possible to derive control laws for

systems undergoing continuous measurement based on the
conditional means of observables (without the noise com-
ponent). Although such control laws would not have much
value in realistic situations due to the unavailability of
accurate noiseless signal, we now show in the following
that in such context too, our proposed scheme would be
useful. To illustrate it, we consider the preparation of
symmetric (ρs) and antisymmetric (ρa) entangled states
of two qubits, where the states are given by ρðs=aÞ ¼
1
2
ðψ↑↓ � ψ↓↑Þðψ↑↓ � ψ↓↑Þ�. Here, ψ↑↓ ¼ ð↑Þ ⊗ ð↓Þ and

ψ↓↑ ¼ ð↓Þ ⊗ ð↑Þ are the tensor product states of the
individual qubit states in the ground and excited states.
The quantum filtering equation under feedback with con-
trol variables u1ðtÞ and u2ðtÞ is given by

dρðtÞ ¼ −iu1ðtÞ½σð1Þy ; ρðtÞ�dt − iu2ðtÞ½σð2Þy ; ρðtÞ�dt

−
1

2
½Fz; ½Fz; ρðtÞ��dtþ

ffiffiffi
η

p fFzρðtÞ þ ρðtÞFz

− 2Tr½FzρðtÞ�ρðtÞgdWt; ð4Þ

where dWt is the Winner noise increment at time t. σig,
g∈ fx; y; zg and i ¼ f1; 2g are tensored Pauli operators for
qubit i, and Fz ¼ σ1z þ σ2z [40]. The control laws dictate
nonintuitive choices of the control parameters u1ðtÞ and

u2ðtÞ provided the real-time conditional fidelity between the
current and the target states ρs and ρa could be accurately
extracted via conditional tomography of the quantum states,
which is often a difficult task if not impossible. These are
discussed in Supplemental Material [36] and conveniently
represented in Fig. 4(a). Using these control laws with the
MBFC scheme makes it possible to evaluate the controls
u1ðtÞ and u2ðtÞ in real time, which leads to a guaranteed
preparation of the states ρa and ρs, shown in black and red
lines, respectively, in Fig. 4(b). It becomes also possible to
use RL for control similar to the case shown for a quartic
oscillator above, in which case one can use the full density
matrix for training along with conditional means, and the
performance is shown in the inset of the figure. Compared to
the control laws, the RL controller can help the system reach
its target state in a shorter time scale.
Finally, we will mention possible shortcomings of the

proposed scheme. First, the protocol leans toward a model-
based approach, aiming to maximize controlled output
accuracy based on a highly precise physical model, and

FIG. 3. The protocol is applied to control a particle’s motion in
a nonlinear quartic potential to cool it to its dynamic ground state
using RL-based control. The training process is shown in a black
colored line as the average fidelity over each episode N with
respect to the target state (ground state) F̄ ðNÞ, which is
maximized through training. Note that the sudden drop at
N ∼ 100 is due to the exploration of the RL agent. The
performance of the trained agent is shown in the red line.

FIG. 4. Demonstration of the proposed MBFC protocol for the
preparation of symmetric, ρs, and antisymmetric, ρa, entangled
states between two qubits as an example for when it is possible to
derive control laws based on conditional moments within
stochastic dynamics. Control laws u1 and u2 are selected depend-
ing on the conditional value of ρðtÞρμ, where μ∈ fs; ag (sym-
metric and antisymmetric) are in the three regimes, conveniently
demonstrated in (a), and the arrows represent the direction of the
entrance boundary of ρðtÞ to the middle section. γ is the damping
parameter, the measurement rate κ is assumed to be 0.1, and the
efficiency η ¼ 0.5 for this simulation. After the estimation stage
(not shown), these control laws are applied on conditional mean
data (density matrices to compute instantaneous fidelity), which
leads to convergence to the target states (ρa: black and ρs: red),
shown in (b). In the absence of such laws, RL can be used—the
performance is shown in the inset of figure (b) with similar color
settings.
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therefore one should care about potential model bias. To
remove model bias, one can integrate model learning
techniques such as Hamiltonian learning beforehand [45].
It is also possible to use machine learning techniques such
as Bayesian estimation [46] and RL [47,48] for estimating
model parameters. Second, when dealing with real-time
feedback control problems, it is likely to have potential
delays between the measurement and feedback operations.
The estimator, being a simulator in a classical processor,
needs finite time for simulation that can add to this delay
event, especially for large systems. While the estimation
stage of the protocol can be streamlined by completing it in
a single pass by providing all previous measurement
results at once to the estimator; for the control stage, it
would be advantageous to provide the estimator and the
controller with frequent measurement results, to discover
finer controllability, tailored to the system’s complexity.
In such cases, RL-based methods can be especially
effective [32,33].
In conclusion, even when employing sophisticated noise

filtering techniques such as linear quadratic regulator, linear
quadratic Gaussian, and Kalman filters in standard MBFC
experiments, extracting the exact signal from the noisy
measurement results remains a formidable task [18].
Consequently, conventional feedback strategies fall short
of achieving accurate control. The proposed protocol
circumvents this by estimating accurate conditional state
tomography, thereby enabling precise quantum feedback
control within the realm of continuous measurement.
Furthermore, this protocol integrates seamlessly with
RL-based control methods, enabling efficient training
and control.
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