PHYSICAL REVIEW LETTERS 131, 210602 (2023)

Universal Sampling Lower Bounds for Quantum Error Mitigation

Ryuji Takagi S Hiroyasu Tajima,3’4’T and Mile Gu™>%*
1Deg)artment of Basic Science, The University of Tokyo, Tokyo 153-8902, Japan
Nanyang Quantum Hub, School of Physical and Mathematical Sciences,
Nanyang Technological University, 637371, Singapore
3Department of Communication Engineering and Informatics, University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
4JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
>Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
6Majulﬂb, CNRS-UNS-NUS-NTU International Joint Research Unit UMI 3654, Singapore

® (Received 15 November 2022; accepted 10 October 2023; published 22 November 2023)

Numerous quantum error-mitigation protocols have been proposed, motivated by the critical need to
suppress noise effects on intermediate-scale quantum devices. Yet, their general potential and limitations
remain elusive. In particular, to understand the ultimate feasibility of quantum error mitigation, it is crucial
to characterize the fundamental sampling cost—how many times an arbitrary mitigation protocol must run
anoisy quantum device. Here, we establish universal lower bounds on the sampling cost for quantum error
mitigation to achieve the desired accuracy with high probability. Our bounds apply to general mitigation
protocols, including the ones involving nonlinear postprocessing and those yet to be discovered. The results
imply that the sampling cost required for a wide class of protocols to mitigate errors must grow
exponentially with the circuit depth for various noise models, revealing the fundamental obstacles in the

scalability of useful noisy near-term quantum devices.
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Introduction.—As recent technological developments
have started to realize controllable small-scale quantum
devices, a central problem in quantum information science
has been to pin down what can and cannot be accomplished
with noisy intermediate-scale quantum (NISQ) devices [1].
One of the most relevant issues in understanding the
ultimate capability of quantum hardware is to characterize
how well noise effects could be circumvented. This is
especially so for NISQ devices, as today’s quantum devices
generally cannot accommodate full quantum error correc-
tion that requires scalable quantum architecture. As an
alternative to quantum error correction, quantum error
mitigation has recently attracted much attention as a
potential tool to help NISQ devices realize useful appli-
cations [2,3]. It is thus of primary interest from practical
and foundational viewpoints to understand the ultimate
feasibility of quantum error mitigation.

Quantum error mitigation protocols generally involve
running available noisy quantum devices many times. The
collected data is then postprocessed to infer classical
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information of interest. While this avoids the engineering
challenge in error correction, it comes at the price of
sampling cost—computational overhead in having to sam-
ple a noisy device many times. This sampling cost
represents the crucial quantity determining the feasibility
of quantum error mitigation. If the required sampling cost
becomes too large, then such quantum error mitigation
protocol becomes infeasible under a realistic time con-
straint. Various prominent quantum error mitigation meth-
ods face this problem, where sampling cost grows
exponentially with circuit size [4-8]. The crucial question
then is whether there is hope to come up with a new error
mitigation strategy that avoids this hurdle or if this is a
universal feature shared by all quantum error mitigation
protocols. To answer this question, we need a characteri-
zation of the sampling cost that is universally required for
the general error-mitigation protocols, which has hitherto
been unknown.

Here, we provide a solution to this problem. We derive
lower bounds for the number of samples fundamentally
required for general quantum error mitigations to realize the
target performance. We then show that the required samples
for a wide class of mitigation protocols to error-mitigate
layered circuits under various noise models—including the
depolarizing and stochastic Pauli noise—must grow expo-
nentially with the circuit depth to achieve the target perfor-
mance. This turns the conjecture that quantum error
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mitigation would generally suffer from the exponential
sampling overhead into formal relations, extending the
previous results on the exponential resource overhead
required for noisy circuits without postprocessing [9—11].
We accomplish these by employing an information-theoretic
approach, which establishes the novel connection between
the state distinguishability and operationally motivated error-
mitigation performance measures. Our results place the
fundamental limitations imposed on the capability of general
error-mitigation strategies that include existing protocols
[5-8,12-31] and the ones yet to be discovered, being
analogous to the performance converse bounds established
in several other disciplines—such as thermodynamics
[32-34], quantum communication [35,36], and quantum
resource theories [37,38]—that contributed to characterizing
the ultimate operational capability allowed in each physical
setting.

Our work complements and extends several recent
advancements in the field. Reference [39] introduced a
general framework of quantum error mitigation and estab-
lished lower bounds for the maximum estimator spread,
i.e., the range of the outcomes of the estimator, imposed on
all error mitigation in the class, which provides a sufficient
number of samples to ensure the target accuracy. Those
bounds were then employed to show that the maximum
spread grows exponentially with the circuit depth to
mitigate local depolarizing noise. Reference [40] showed
a related result where for the class of error-mitigation
strategies that only involve linear postprocessing, in which
the target expectation value can be represented by a linear
combination of the actually observed quantities, either the
maximum estimator spread or the sample number needs to
grow exponentially with the circuit depth to mitigate local
depolarizing noise. The severe obstacle induced by noise in
showing a quantum advantage for variational quantum
algorithms has also recently been studied [41-43]. Our
results lift the observations made in these works to rigorous
bounds for the necessary sampling cost required for general
error mitigation, including the ones involving nonlinear
postprocessing that constitute a large class of protocols
[7,12-17,19,21,22,24,25,27,29-31,44].

Framework.—Suppose we wish to obtain the expectation
value of an observable A € O for an ideal state p € S where
O and S are some sets of observables and states. We assume
that the ideal quantum state p is produced by a unitary
quantum circuit U/ applied to the initial state p;,; €S;, as
p = U(pi) Where Sy, is the set of possible input states. The
noise in the circuit, however, prevents us from preparing the
state p exactly. We consider quantum error mitigation
protocols that aim to estimate the true expectation value
under the presence of noise in the following manner [39]
(see also Fig. 1).

In the mitigation procedure, one can first modify the
circuit, e.g., use a different choice of unitary gates with
potential circuit simplification, apply nonadaptive operations

(enabling, e.g., dynamical decoupling [45,46] and Pauli
twirling [6]), and supply ancillary qubits—the allowed
modifications are determined by the capability of the
available device. Together with the noise present in the
modified circuit, this turns the original unitary ¢/ into some
quantum channel ', which produces a distorted state p’. The
distorted state can be represented in terms of the ideal state p
by p' = E(p), where we call £ := F *UT an effective noise
channel.

The second step consists of collecting N samples
{&€,(p)}N_, of distorted states represented by a set of
effective noise channels E:={&,}_, and applying a
trailing quantum process P, over them. The effective
noise channels in E can be different from each other in
general, as noisy hardware could have different noise
profiles each time, or could purposely change the noise
strength [5,47]. The trailing process P, then outputs an
estimate represented by a random variable £, (p) for the
true expectation value Tr(Ap). The main focus of our study
is the sampling number N, the total number N of distorted
states used in the error mitigation process.

We quantify the performance of an error-mitigation
protocol by how well the protocol can estimate the expect-
ation values for a given set O of observables and a set S of
ideal states, which we call target observables and target
states respectively. We keep the choices of these sets
general, and they can be flexibly chosen depending on
one’s interest. For instance, if one is interested in error
mitigation protocols designed to estimate the Pauli observ-
ables (e.g., virtual distillation [15,16,21]), O can be chosen
as the set of Pauli operators. As the trailing process includes
a measurement depending on the observable, an error-
mitigation strategy with target observables O is equipped
with a family of trailing processes {P4 } 4 ¢ - Similarly, our
results hold for an arbitrary choice of S, where one can, for
instance, choose this as the set of all quantum states, which
better describes the protocols such as probabilistic error
cancellation [5,47-52], or as the set of states in a certain
subspace, which captures the essence of subspace expan-
sion [12,14,17].

This framework includes many error-mitigation protocols
proposed so far [5-8,12-31]. It is worth noting that our
framework includes protocols that involve nonlinear post-
processing of the measurement outcomes. Error-mitigation
protocols typically work by (i) making some set of (usually
Pauli) measurements for observables {O;};, (ii) estimating
their expectation values {(O;)}; for distorted states, and
(iii) applying a classical postprocessing function f over them.
The protocols with linear postprocessing functions, i.e., the
ones with the form f((0;);,) = >, ¢;(0;), are known to
admit simpler analysis [39,40], but numerous protocols—
including virtual distillation [15,16,21], symmetry verifica-
tion [13], and subspace expansion [12,14,17]—come with
nonlinear postprocessing functions. In our framework, the
sampling number N is the fofal number of samples used,
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where we consider the output represented by £, (p) as our
final guess and thus do not generally assume repeating some
procedure many times and take a statistical average. This
enables us to have any postprocessing absorbed in the trailing
process P, making our results valid for the protocols with
nonlinear postprocessing functions.

We also remark that our framework includes protocols
with much more operational power than existing protocols,
as we allow the trailing process to apply any coherent
interaction over all distorted states. Our results thus provide
fundamental limits on the sampling overhead applicable to
an arbitrary protocol in this extended class of error-
mitigation protocols.

Sampling lower bounds.—We now consider the required
samples to ensure the target performance. The performance
of quantum error mitigation can be defined in multiple
ways. Here, we consider two possible performance quan-
tifiers that are operationally relevant.

Our first performance measure is the combination of the
accuracy of the estimate and the success probability. This
closely aligns with the operational motivation, where one
would like an error mitigation strategy to be able to provide
a good estimate for each observable in O and an ideal state
in S at a high probability. This can be formalized as a
condition

Prob(|Tr(Ap)—E(p)|<8)>1—¢, ¥V peS, VA€O (1)

where § is the target accuracy and 1 — e is the success
probability (see also Fig. 1).

The problem then is to identify lower bounds on the
number N of distorted states needed to achieve this
condition as a function of 6 and e. We address this by

FIG. 1. Framework of quantum error mitigation. For an ideal
state p €S and an observable A € O of interest, we first prepare N
copies of distorted states {&,(p)}_,, where E = {&,}_, is the
set of effective noise channels. A trailing quantum process P, is
then applied to N distorted states, producing the final estimation
of Tr(Ap) represented by a random variable £, (p). We quantify
the error-mitigation performance in two ways by studying the
property of the distribution of £, (p); the first is the combination
of the accuracy 6 and the success probability 1 —¢, and the
second is the combination of the bias b, (p) := (E4(p)) — Tr(Ap)

and the standard deviation agEM of E,(p).

observing that the trailing process of quantum error
mitigation is represented as an application of a quantum
channel and thus can never increase the state distinguish-
ability. To formulate our result, let us define the observable-
dependent distinguishability with respect to a set O of
observables as

Do(p.0) = max|Tr[A(p = o). 2)

This quantity can be understood as the resolution in
distinguishing two quantum states by using the measure-
ments of the observables in O. We note that when O =
{A|0 < A <T} [53], the quantity in (2) becomes the trace
distance Dy (p. o) =% |p —ol|; [54].

We then obtain the following sampling lower bounds
applicable to an arbitrary given set E of effective noise
channels. (Proof in Appendix A in the Supplemental
Material [55].)

Theorem [.—Suppose that an error-mitigation strategy
achieves (1) with some §>0 and 0 <e<1/2 with N
distorted states characterized by the effective noise chan-
nels E = {&,}"_,. Then, the sample number N is lower
bounded as

N> max min loe [48“1_8)}
~ poes geklog[1/F(E(p),E(0))]’

Dg(p.0)226
o 2(1=2e)?
N > , 3
= ess fetm2-SEWE0) 3

Do(p.6)=26

where F(p,o) = ||\/p\/ol|} is the (square) fidelity and
S(p|le) = Tr(plogp) — Tr(plog o) is the relative entropy.

This result tells that if the noise effect brings states close
to each other, it incurs an unavoidable sampling cost to
error mitigation. The minimization over E chooses the
effective noise channel that least reduces the infidelity and
the relative entropy, respectively. On the other hand, the
maximum over the ideal states represents the fact that to
mitigate two states p and o that are separated further than 26
in terms of observables in O, the sample number N that
achieves the accuracy 6 and the success probability 1 — ¢
must satisfy the lower bounds with respect to p and ¢. The
maximization over such p and o then provides the tightest
lower bound. This also reflects the observation that error
mitigation accommodating a larger set O of target observ-
ables would require a larger number of samples.

We remark that although the set E—which depends on
how one modifies the noisy circuit—ultimately depends on
a specific error-mitigation strategy in mind, fixing E to a
certain form already provides useful insights as we see later
in the context of noisy layered circuits. We also stress that
the above bounds hold for an arbitrary choice of E,
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providing the general relation between the error mitigation
performance and the information-theoretic quantity.

The bounds in Theorem 1 depend on the accuracy &
implicitly through the constraints on p and o in the
maximization. For instance, if one sets 6 = 0, one can
find that both bounds diverge, as the choice of ¢ = p would
be allowed in the maximization. In Appendix B of [53], we
report an alternative bound that has an explicit dependence
on the accuracy 6.

Let us now consider our second performance measure
based on the standard deviation and the bias of the estimate.
Let GSEM(p) be the standard deviation of E,(p) for an
observable A € O, which represents the uncertainty of the
final estimate of an error mitigation protocol. Since a good
error mitigation protocol should come with a small fluc-
tuation in its outcome, the standard deviation of the
underlying distribution for the estimate can serve as a
performance quantifier. However, the standard deviation
itself is not sufficient to characterize the error mitigation
performance, as one can easily come up with a useless
strategy that always outputs a fixed outcome, which has
zero standard deviation. This issue can be addressed by
considering the deviation of the expected value of the
estimate from the true expectation value called bias, defined
as bu(p) = (E(p)) — Tr(Ap) for a state p€S and an
observable A € O (see also Fig. 1).

To assess the performance of error-mitigation proto-
cols, we consider the worst-case error among possible
ideal states and measurements. This motivates us to
consider the maximum standard deviation 0324 =
max, e oMax, SGSEM(p) and the maximum bias by, =
max, ¢ pMax, e sh (p). Then, we obtain the following sam-
pling lower bound in terms of these performance quantifiers.
(Proof in Appendix C of [53].)

Theorem 2.—The sampling cost for an error-mitigation
strategy with the maximum standard deviation oM and
the maximum bias b,,,, is lower bounded as

log |1-7—tm 2
<1+ max )

Do ()~ Zomax
> i . 4
Nz ma M e 1/FEp) o) Y

Do (pvg)_zbmuxzo

This result represents the trade-off between the standard
deviation, bias, and the required sampling cost. To realize
the small standard deviation and bias, error mitigation
needs to use many samples; in fact, the lower bound
diverges at the limit of a%Ei“ — 0 whenever there exist
states p,o €S such that Dg(p, 6) > 2b,. On the other
hand, a larger bias results in a smaller sampling lower
bound, indicating a potential to reduce the sampling cost by
giving up some bias.

The bounds in Theorems 1,2 are universally applicable
to arbitrary error mitigation protocols in our framework.

Therefore, our bounds are not expected to give good
estimates for a given specific error-mitigation protocol in
general, just as there is a huge gap between the Carnot
efficiency and the efficiency of most of the practical heat
engines. Nevertheless, it is still insightful to investigate how
our bounds are compared to existing mitigation protocols.
In Appendix D [53], we compare the bound in Theorem 1
to the sampling cost for several error-mitigation methods,
showing that our bound can provide nontrivial lower
bounds with the gap being the factor of 3 to 6.
Although this does not guarantee that our bound behaves
similarly for other scenarios in general, this ensures that
there is a setting in which the bound in Theorem 1 can
provide a nearly tight estimate. We further show in
Appendix E [53] that the scaling of the lower bound in
Theorem 2 with noise strength can be achieved by the
probabilistic error cancellation method in a certain sce-
nario. This shows that probabilistic error cancellation
serves as an optimal protocol in this specific sense,
complementing the recent observation on the optimality
of probabilistic error cancellation established for the
maximum estimator spread measure [39].

Noisy layered circuits.—The above results clarify the
close relation between the sampling cost and state distin-
guishability. As an application of our general bounds, we
study the inevitable sample overhead to mitigate noise in
the circuits consisting of multiple layers of unitaries.
Although we here focus on the local depolarizing noise,
our results can be extended to a number of other noise
models as we discuss later.

Suppose that an M-qubit quantum circuit consists of
layers of unitaries, each of which is followed by a local
depolarizing noise, i.e., a depolarizing noise of the form
D, = (1 - p)id+ pl/2, where p is a noise strength,
applies to each qubit. We aim to estimate ideal expectation
values for the target states S and observables O by using N
such noisy layered circuits. Although the noise strength can
vary for different locations, we suppose that L layers are
followed by the local depolarizing noise with noise strength
of at least y. We call these layers U, U,, ..., U; and let
Yn.m denote the noise strength of the local depolarizing
noise on the mth qubit after the /th unitary layer U, in
the nth noisy circuit, where m < M, [ < L, n < N. This
gives the expression of the local depolarizing noise after

Ith layer in the nth noisy circuit as ®%_, D, , . where

Ynim 2y VY n,lm.

Here, we focus on the error-mitigation protocols that
apply an arbitrary trailing process over N distorted states
and any unital operations (i.e., operations that preserve the
maximally mixed state) before and after U, (Fig. 2). This
structure ensures that error correction does not come into
play here, as the size of input and output spaces of the
intermediate unital channels is restricted to M qubits, as
well as that unital channels do not serve as good decoders
for error correction.
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FIG. 2. Each distorted state (nth copy depicted in the figure) is
produced by a circuit with L layers Uy, ..., U, followed by a
local depolarizing noise with noise strength at least y, i.e.,
Ynim 27, Y n,l,m. Each layer U; can be sandwiched by addi-
tional unital operations A, ; and E, ;. Other layers and depolariz-
ing channels with noise strength smaller than y are absorbed in
these operations as they are also unital.

We show that the necessary number of samples required
to achieve the target performance grows exponentially with
the number of layers in both performance quantifiers
introduced above.

Theorem 3.—Suppose that an error-mitigation strategy
described above is applied to an M-qubit circuit to mitigate
local depolarizing channels with strength at least y that
follow L layers of unitaries, and achieves (1) with some
6>0 and 0 <& < 1/2. Then, if there exist at least two
states p, o € S such that Dg(p, 6) > 26, the required sample
number N is lower bounded as

2
Ny =27 (5)
2In(2)M(1 —y)?*t

The proof can be found in Appendix F [53]. This result
particularly shows that the required number of samples
must grow exponentially with the circuit depth L. We
remark that the bound always holds under the mild
condition, i.e., Dg(p,o) >25 for some p,c€S. This
reflects that, to achieve the desired accuracy o satisfying
this condition, error mitigation really needs to extract the
expectation values about the observables in O and the states
in S, prohibiting it from merely making a random guess.

In Appendix G [53], we obtain a similar exponential
growth of the required sample overhead for a fixed target
bias and standard deviation. We also obtain in Appendix H
[53] alternative bounds that are tighter in the range of
small €.

With a suitable modification of allowed unitaries and
intermediate operations, we extend these results to a wide
class of noise models, including stochastic Pauli, global
depolarizing, and thermal noise. The case of thermal noise
particularly provides an intriguing physical interpretation:
the sampling cost N required to mitigate thermal noise after
time ¢ is characterized by the loss of free energy
N = Q(1/[F(p,) — Feq), where p, is the state at time ¢
and F is the equilibrium free energy. This in turn shows
that the necessary sampling cost grows as N = Q(e%n'),

where a,, is a constant characterized by the minimum
entropy production rate. We provide details on these exten-
sions in Appendix I of the Supplemental Material [53].

We remark that Theorem 1 (and related results discussed
in the Supplemental Material [53]) extends the previous
results showing the exponential resource overhead required
for noisy circuits without postprocessing [9-11]. In
Appendix J, we provide further clarifications about the
differences between the settings considered in the previous
works and ours.

Conclusions.—We established sampling lower bounds
imposed on the general quantum error-mitigation protocols.
Our results formalize the idea that the reduction in the state
distinguishability caused by noise and error-mitigation
processes leads to the unavoidable computational overhead
in quantum error mitigation. We then showed that error-
mitigation protocols with certain intermediate operations
and an arbitrary trailing process require the number of
samples that grows exponentially with the circuit depth to
mitigate various types of noise. We presented these bounds
with respect to multiple performance quantifiers—accuracy
and success probability, as well as the standard deviation
and bias—each of which has its own operational relevance.

Our bounds provide fundamental limitations that uni-
versally apply to general mitigation protocols, clarifying
the underlying principle that regulates error-mitigation
performance. As a trade-off, they may not give tight
estimates for a given specific error-mitigation strategy,
analogously to many other converse bounds established
in other fields that typically give loose bounds for most
specific protocols. A thorough study to identify in what
setting our bounds can give good estimates will make an
interesting future research direction.

Note added.— Recently, we became aware of an indepen-
dent work by Tsubouchi et al. [81] that obtained a result
related to our Theorem S.2 in Appendix G [53], in which
they showed an alternative exponential sample lower bound
applicable to error-mitigation protocols that achieve zero
bias using quantum estimation theory.
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