
Wigner-Araki-Yanase Theorem for Continuous and Unbounded Conserved Observables

Yui Kuramochi 1,* and Hiroyasu Tajima2,3
1Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan
2Graduate School of Informatics and Engineering, The University of Electro-Communications,

1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
3JST, PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan

(Received 14 September 2022; revised 21 July 2023; accepted 29 August 2023; published 21 November 2023)

The Wigner-Araki-Yanase (WAY) theorem states that additive conservation laws imply the commu-
tativity of exactly implementable projective measurements and the conserved observables of the system.
Known proofs of this theorem are only restricted to bounded or discrete-spectrum conserved observables of
the system and are not applicable to unbounded and continuous observables like a momentum operator. In
this Letter, we present the WAY theorem for possibly unbounded and continuous conserved observables
under the Yanase condition, which requires that the probe positive operator-valued measure should
commute with the conserved observable of the probe system. As a result of this WAY theorem, we show
that exact implementations of the projective measurement of the position under momentum conservation
and of the quadrature amplitude using linear optical instruments and photon counters are impossible. We
also consider implementations of unitary channels under conservation laws and find that the conserved
observable LS of the system commutes with the implemented unitary US if LS is semibounded, while

U†
SLSUS can shift up to possibly nonzero constant factor if the spectrum of LS is upper and lower

unbounded. We give simple examples of the latter case, where LS is a momentum operator.
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Introduction.—One of the fundamental questions of the
quantum measurement theory is whether there exist lim-
itations on the implementable measurements imposed by
the physical laws. One of the fundamental findings of
quantum measurement theory [1] is the fact that the
physical conservation laws restrict our ability to implement
measurements. By considering specific examples of spin
measurements, Wigner [2] found that additive conservation
law prohibits the projective and repeatable measurements
of an observable that does not commute with the conserved
one. He also discussed that an approximate measurement is
possible if a probe state has a large coherence in the
conserved quantity. Later, Araki and Yanase [3,4] gener-
alized Wigner’s result to arbitrary repeatable projective
measurements and bounded conserved observables. The
former no-go result is now called the Wigner-Araki-Yanase
(WAY) theorem.
From these pioneering works by Wigner, Araki, and

Yanase, many results have been published that sophisticate
the WAY theorem and extend it to various directions.
The first and exciting direction is to extend the WAY
theorem to a quantitative form. Since the original WAY

theorem was a qualitative theorem, many researchers,
including Yanase and Ozawa, extended it to provide
necessary conditions for an approximate implementation
of desired measurements [4–7]. By imposing the Yanase
condition, which requires that the probe observable of the
measurement model should commute with the conserved
observable, it became clear that the size of the measurement
device [4], the variance [5], and quantum fluctuations [6,7]
of the conserved quantities must be inversely proportional to
the error in implementing the desired measurement. The
second direction is extending the WAY theorem to general
quantum information processings beyond quantum mea-
surements. This extension was first made as a restriction on
the implementation of controlled-NOT gates [8], extended
to various limited unitary gates [9–11]; then it was shown
that, for an arbitrary unitary gate [12,13], the same restriction
is given as in measurements. This direction has been further
deepened in recent years, and now extended versions of the
WAY theorem are given for various objects, such as error-
correcting codes [14,15], thermodynamic processes [15],
and the toy model of black holes [14,15].
Most of the existing WAY-type results are, however,

restricted to bounded conserved observables and not
applicable to physically important examples in which
unbounded conserved observables are common. This
problem is crucial, since if the WAY theorem is correct
for unbounded operators, the position measurement with-
out error is impossible under the momentum conservation
law (see Fig. 1).
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Because of its importance, there has been active research
on extending the WAY theorem to unbounded systems.
However, despite previous important progress [16–21],
this problem remains unsolved. The extensions proved
in [16,17] require some technical additional conditions,
which do not hold for the position measurement under the
momentum conservation. There are also detailed accounts
of the position measurements under the momentum con-
servation [18,20]. Particularly in Ref. [20], a trade-off
relation is obtained for the accuracy of the position
measurement and the momentum coherence of the probe
under the momentum conservation. However, in the der-
ivation of the trade-off, as pointed out in [21], issues related
to domains of unbounded operators are ignored. Moreover,
even if the trade-off relation was valid, it would not imply
the impossibility of the exact implementation of the
position measurement under momentum conservation
because we can prepare a probe state with a divergent
momentum coherence and the trade-off relation gives the
trivial inequality 0 ≥ 0 in this case.
Here we give a positive answer to this question: we

present the WAY theorem for general unbounded and
continuous conserved observables under the Yanase con-
dition, which is a basic condition introduced in Refs. [4,5]
and used in [20]. We also consider the unitary channel
implementation and show that a similar theorem holds in
that case. For the unitary channel implementation without
error under the conservation law, we show that the
implemented unitary US and the conserved observable
LS must commute, except for a very limited scenario in
which LS is upper and lower unbounded and the change of
LS by US is a constant shift: U†

SLSUS ¼ LS þ γ1 [22].
Notation and definitions.—In this Letter, the Hilbert

space of a quantum system S is denoted byHS, which may
be finite or infinite dimensional. The unit operator and sets

of bounded and trace-class operators on a Hilbert spaceHS
are, respectively, denoted by 1S BðHSÞ, and TðHSÞ. A non-
negative operator ρS ∈TðHSÞ with a unit trace is called a
density operator, which corresponds to a quantum state.
The set of density operators on HS is denoted by DðHSÞ.
For a linear map Λ∶ TðHAÞ → TðHBÞ that is bounded

with respect to the trace norms on TðHAÞ and TðHBÞ,
the adjoint map Λ†∶ BðHBÞ → BðHAÞ is well defined
by Tr½ΛðρAÞb� ¼ Tr½ρAΛ†ðbÞ�½ρA ∈TðHAÞ; b∈BðHBÞ�,
where Tr½·� denotes the trace. A linear map Λ∶TðHAÞ →
TðHBÞ is called a quantum channel if Λ is trace preserving
and Λ† is completely positive (CP) [23,24]. The
map Λ† represents the channel in the Heisenberg picture.
A triple ðΩ;Σ;ESÞ is called a positive operator-valued

measure (POVM) [25,26] on HS if Σ is a σ-algebra on the
set Ω and ES∶Σ → BðHSÞ satisfies (i) ESðXÞ ≥ 0ðX∈ΣÞ,
(ii) ESð∅Þ ¼ 0, ESðΩÞ ¼ 1S, and (iii) ESð∪k XkÞ ¼P

k EðXkÞ in the weak operator topology [27,28] for any
disjoint sequence ðXkÞ ⊆ Σ. A POVM ðΩ;Σ;ESÞ is called a
projection-valued measure (PVM) if each ESðXÞðX∈ΣÞ is
a projection. A POVM ðΩ;Σ;ESÞ on HS describes the
outcome statistics of a general measurement process so that
the outcome probability measure when the state is prepared
in ρS ∈DðHSÞ is given by Σ ∋ X ↦ Tr½ρSESðXÞ�.
Wenowconsider the implementation of a quantumchannel

Ψ∶ TðHSÞ → TðHS0 Þ by a system-environment model.
Here a tuple ðHP;HS0 ;HP0 ; ρP; UÞ is called a system-envi-
ronment model if P, S0, and P0 are quantum systems,
ρP ∈DðHPÞ is a density operator onP called the probe state,
and U∶ HS ⊗ HP → HS0 ⊗ HP0 is a unitary operator. The
system-environment model ðHP;HS0 ;HP0 ; ρP; UÞ is said to
implement Ψ if

ΨðρSÞ ¼ TrP0 ½UðρS ⊗ ρPÞU†� ½ρS ∈DðHSÞ�; ð1Þ

where TrA½·� denotes the partial trace over a system A and the
dagger denotes the adjoint. The condition (1) says that the
channel Ψ is realized if we first prepare the system S in an
arbitrary state ρS and P in the fixed probe state ρP, then they
interact according to the unitary U, and finally discard the
output probe system P0 (see Fig. 2).
The implementation of a measurement by a measure-

ment model is defined in a similar way as follows. A tuple
M ¼ ðHP;HS0 ;HP0 ; ρP; U; ðΩ;Σ;FP0 ÞÞ is called a “‘meas-
urement model” if ðHP;HS0 ;HP0 ; ρP; UÞ is a system-
environment model and ðΩ;Σ;FP0 Þ is a POVM on HP0 .

Laser

position

Detector

FIG. 1. It is well known that position and momentum cannot be
measured without error simultaneously. However, in natural
settings like the above schematic, position measurements will
be performed under the momentum conservation law. If the WAY
theorem is correct for unbounded operators, the position itself
cannot be measured without error under such natural settings.

trash
U

FIG. 2. A system-environment model that implements a
channel Ψ.
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The measurement model M is said to implement a POVM
ðΩ;Σ;ESÞ on HS if

ESðXÞ ¼ TrP½ð1S ⊗ ρPÞU†ð1S0 ⊗ FP0 ðXÞÞU� ð2Þ

for all X∈Σ (see Fig. 3).
Let LA be a possibly unbounded self-adjoint

operator [27,28] on a Hilbert space HA and let domðLAÞ ⊆
HA denote the domain of LA. A bounded operator
a∈BðHAÞ is said to commute with LA if a commutes with
the spectral measure [27,28] of LA. If UA ∈BðHAÞ is
unitary, then UA commutes with LA if and only if LA ¼
U†

ALAUA, where the domain of the self-adjoint operator
U†

ALAUA is U†
AdomðLAÞ.

The spectrum σðLAÞ of a self-adjoint operator LA onHA
is the set of λ∈C such that the operator LA − λ1A has no
bounded inverse. The spectrum σðLAÞ is a closed subset of
the reals R and, if HA is finite dimensional, coincides with
the set of the eigenvalues of LA. A self-adjoint operator LA
is said to be semibounded (respectively, unbounded) if
σðLAÞ is an upper or lower bounded (respectively,
unbounded) subset of R. For example, the quantum
harmonic oscillator Hamiltonian is unbounded but still
semibounded.
Main results.—We now state the main results of this

Letter.
Theorem 1: WAY theorem for projective measure-

ments.—Let ½HP;HS0 ;HP0 ; ρP; U; ðΩ;Σ;FP0 Þ� be a meas-
urement model that implements a PVM ðΩ;Σ;ESÞ on HS.
Suppose that there are (possibly unbounded) self-adjoint
operators LS, LP, LS0 , and LP0 that act, respectively, onHS,
HP, HS0 , and HP0 and satisfy the conservation law

U†LS0P0U ¼ LSP; ð3Þ

where LSP≔LS⊗1Pþ1S⊗LP and LS0P0 ≔ LS0 ⊗ 1P0þ
1S0 ⊗ LP0 . We also assume the Yanase condition that
FP0 ðXÞ commutes with LP0 for every X∈Σ. Then ESðXÞ
commutes with LS for every X∈Σ.
Theorem 2: WAY theorem for unitary channels.—Let

US→S0∶ HS → HS0 be a unitary operator between Hilbert
spaces HS and HS0 , let US→S0∶ TðHSÞ → TðHS0 Þ be the
unitary channel defined by US→S0 ðρSÞ ≔ US→S0ρSU

†
S→S0

½ρS ∈TðHSÞ�, and let ðHS;HP;HS0 ;HP0 ; ρP; UÞ be a sys-
tem-environment model that implements US→S0 . Suppose
that there are (possibly unbounded) self-adjoint operators

LS, LP, LS0 , and LP0 that act, respectively, onHS,HP,HS0 ,
and HP0 and satisfy the conservation law (3). Then there
exists a real number γ ∈R such that

U†
S→S0LS0US→S0 ¼ LS þ γ1S: ð4Þ

Moreover, if HS ¼ HS0 and LS ¼ LS0 hold and LS is
semibounded, then US ≔ US→S0 commutes with LS.
The latter part of Theorem 2 can be immediately proved

from the former part as follows. Assume HS ¼ HS0 and
LS ¼ LS0 . Then Eq. (4) implies

U†
SLSUS ¼ LS þ γ1S: ð5Þ

Suppose that σðLSÞ is lower bounded and let λminðLSÞ∈R
denote the finite infimum of the spectrum σðLSÞ. Since the
spectra of LS and U†

SLSUS coincide, Eq. (5) implies
λminðLSÞ ¼ λminðLSÞ þ γ and therefore γ ¼ 0; hence US
commutes with LS. The claim is similarly proved by
considering the supremum of σðLSÞ when LS is upper
bounded.
Theorems 1 and 2 can be proved by using the notion of

the multiplicative domains of unital CP maps [24,29]. This
notion is recently used in [30] to derive WAY-type trade-off
relations for bounded observables. In the proof, arguments
on the topological group R and its unitary representations
are also essential that derive statements valid for all
t∈R from those valid only for restricted t. We also remark
that Theorems 1 and 2 can be generalized to general
continuous symmetries described by connected topological
groups [31,32]. All the details of the proofs, including the
generalization to continuous symmetries, are given in the
Supplemental Material [33].
Applications of the WAY theorem for projective

measurements.—Now we see two applications of
Theorem 1, which show that some kinds of measurements
are not implementable.
The first one is the position measurement under the

momentum conservation [18,20]. Since the position and
momentum operators of a one-dimensional quantum
particle are noncommutative in the sense that their spectral
measures do not commute, it immediately follows from
Theorem 1 that no measurement model satisfying the
momentum conservation and the Yanase condition can
implement the projective position measurement of the par-
ticle. This gives a positive answer to the open question in [20].
The next one is the projective measurement of a

quadrature amplitude of a single-mode optical field by
using beam splitters, phase shifters, and photon counters.
We consider fixed-frequency optical fields and denote by
âA the annihilation operator acting on the Hilbert spaceHA
of a mode A. In this situation, the accurate implementation
of the projective measurement of the quadrature amplitude
operator q̂S ¼ ðâS þ â†SÞ=2 is important in continuous-
variable (CV) quantum technologies like CV quantum

U
trash

U

FIG. 3. A measurement model that implements a POVM ES.
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key distribution [46] or CV quantum teleportation [47].
However, since the quadrature amplitude operator q̂S ¼
ðâS þ â†SÞ=2 does not commute with the number operator
LS ¼ n̂S ¼ â†SâS, Theorem 1 implies that the errorless
projective measurement ES of q̂S is not implementable
by any measurement model satisfying the conservation law
of the total photon number and the Yanase condition.
To see the detail of the above, let us introduce a

measurement model of the passive optical operations
(see Fig. 4) and how Theorem 1 works on this model. A
two-mode passive optical unitary V∶ HAin

⊗ HBin
→

HAout
⊗ HBout

is a unitary such that V†âAout;Bout
V is a linear

combination of âAin
and âBin

and energy (photon number)
conservation

V†ðn̂Aout
þ n̂Bout

ÞV ¼ n̂Ain
þ n̂Bin

ð6Þ

holds. Here we abbreviated the identities and tensors. The
Hilbert spaces HP ¼ HP1

⊗ … ⊗ HPN
, HS0 ¼ HS01 ⊗ …

⊗ HS0M , HP0 ¼ HP0
1
⊗ … ⊗ HP0

N−Mþ1
are finite tensor

products of single-mode Hilbert spaces and the total unitary
U∶ HS ⊗ HP → HS0 ⊗ HP0 is finite compositions of
passive optical unitaries satisfying Eq. (6). We assume that
the probe POVM ½Ω;Σ;FP0 ð·Þ� on HP0 commutes with the
outcome photon number operators n̂P0

1
;…; n̂P0

N−Mþ1
so that

the Yanase condition holds. For example, if the probe
measurementFP0 is realized by postprocessing the outcomes
of photon-counting measurements on the modes
P0

1;…; P0
N−Mþ1, this condition holds.

Because of Theorem 1, the above model cannot imple-
ment the projective measurement ES of q̂S. To see that, let
us put the conserved observables in Theorem 1 as LS ≔ n̂S,
LP ≔

P
k n̂Pk

, LS0 ≔
P

k n̂S0k , LP0 ≔
P

k n̂P0
k
. Then the

conservation law (3) holds, which is in this case the total
photon number conservation U†ðn̂S þ n̂PÞU ¼ n̂S0 þ n̂P0 .
Moreover, since q̂S does not commute with n̂S ¼ LS, the
projective measurement ES of q̂S also does not commute
with LS. Therefore, Theorem 1 prohibits the implementa-
tion of ES. We remark that we do not require any condition
on the probe state ρP.

We can still realize approximate measurement of q̂S by
the balanced homodyne detection [48,49], in which the
signal optical field is mixed with a strong local oscillator
(LO) field by a half beam splitter and the properly
normalized difference of the photocounts of the output
fields is recorded. The measurement model of the homo-
dyne detection apparently satisfies the above assumptions
and hence does not implement the projective measurement
of q̂S.
On the other hand, it can be shown [48] that if we prepare

the probe LO state as a coherent state jβLOiP ¼
e−jβLOj2=2

P∞
n¼0ðβnLO=

ffiffiffiffiffi
n!

p ÞjniP (βLO ∈R), where jniP
denotes the photon number eigenstate of the probe LO
field, then, for every initial state ρS, the probability
distribution of the homodyne measurement converges in
distribution to that of the projective measurement of q̂S in
the strong LO limit βLO → ∞. This is in accordance with
the “positive part” of the original WAY arguments, since
strong LO means a large spread of jβLOiP in the photon
number basis. We should still be careful about the statewise
nature of the convergence that results from the unbounded-
ness of the conserved observable n̂S. For example, if we
prepare the input state as a coherent state jαSiS and jαSj is
comparable with the LO amplitude βLO, the outcome
distribution is far from that of the projective measurement
of q̂S.
Examples of implementations of unitary channels.—We

now give two examples of implementations of a unitary
channel in which the constant term γ1S in Eq. (4) is
nonzero.
In the models, the final systems S0 and P0 are, respec-

tively, the same as the initial systems S and P. We take one-
dimensional quantum particles as the system and probe
systems so that the Hilbert spaces HS ¼ HS0 and HP ¼
HP0 are both the space L2ðRÞ of square-integrable func-
tions on R. Let x̂α and p̂α (α ¼ S; P) denote, respectively,
the position and momentum operators of the system α,
which satisfy the Weyl relation

eitx̂αeisp̂α ¼ e−isteisp̂αeitx̂α ðs; t∈R; α ¼ S; PÞ; ð7Þ

where ℏ is set to 1. We fix an arbitrary real number γ ≠ 0
and give two implementation models of the unitary channel
USðρSÞ ¼ USρSU

†
S with US ≔ eiγx̂S . We put LS ¼ LS0 ¼

p̂S and LP ¼ LP0 ¼ p̂P. Then from Eq. (7) we can see that
U†

SLSUS ¼ LS þ γ1S holds.
In the first example, we take the following total unitary:

Uð1Þ
SP ≔ eiγx̂S ⊗ e−iγx̂P : ð8Þ

Then from (7) this unitary satisfies the momentum con-
servation law

Uð1Þ†
SP ðp̂S þ p̂PÞUð1Þ

SP ¼ p̂S þ p̂P; ð9Þ

U post- 
processing

S

P P’

S’

P

P

1

2

N

P’

P’

1

2

N’

FIG. 4. Measurement model with passive optical operations
and photon-counting measurements.
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where we omitted the tensors and units. Moreover, for an
arbitrary probe state ρP ∈DðHPÞ we have

TrP½Uð1Þ
SPðρS ⊗ ρPÞUð1Þ†

SP � ¼ USρSU
†
S ð10Þ

½ρS ∈DðHSÞ�. This shows that the system-environment

model ðHS;HP;HS;HP; ρP; U
ð1Þ
SPÞ satisfies all the assump-

tions of Theorem 2 together with (4) with nonzero γ.
There is another example of an implementation of the

unitary channel US in which the total unitary is not in
product form. For simplicity, we assume γ > 0 and define
the total unitary

Uð2Þ
SP ≔ eiγx̂S ⊗ e−iγx̂P1Xðp̂PÞ þ 1S ⊗ 1RnXðp̂PÞ; ð11Þ

which is not in product form. Here,

1AðλÞ ≔
�
1 ðλ∈AÞ;
0 ðλ ∉ AÞ ð12Þ

is the indicator function of a subset A ⊆ R, and X ⊆ R
is a measurable set such that X þ γ ≔ fxþ γ∶x∈Xg ¼ X,
and neither X nor RnX is a null set. For definiteness, we
take as X ¼∪n∶ integer ½γn − γ=3; γnþ γ=3�. Then, since
eiγx̂P1Xðp̂PÞe−iγx̂P ¼ 1Xðp̂P − γÞ ¼ 1Xþγðp̂PÞ ¼ 1Xðp̂PÞ,
that is, eiγx̂P and 1Xðp̂PÞ commute, the operator Uð2Þ

SP in
Eq. (11) is unitary. Moreover, from

Uð2Þ†
SP ðeitp̂S ⊗ eitp̂PÞUð2Þ

SP

¼ e−iγx̂Seitp̂Seiγx̂S ⊗ eiγx̂Peitp̂Pe−iγx̂P1Xðp̂PÞ
þ eitp̂S ⊗ eitp̂P1RnXðp̂PÞ ð13Þ

¼ eitp̂S ⊗ eitp̂P ðt∈RÞ; ð14Þ

the momentum conservation

Uð2Þ†
SP ðp̂S þ p̂PÞUð2Þ

SP ¼ p̂S þ p̂P ð15Þ

holds. If we take a state ρP ∈DðHPÞ supported by the

projection 1Xðp̂PÞ, then we have Uð2Þ
SPðρS ⊗ ρPÞUð2Þ†

SP ¼
Uð1Þ

SPðρS ⊗ ρPÞUð1Þ†
SP ½ρS ∈ DðHSÞ� and therefore from

Eq. (10) we can see that the system-environment model

ðHP;HS;HP; ρP; U
ð2Þ
SPÞ implements US.

Conclusion.—We investigated measurement implemen-
tations under conservation laws of unbounded observables
and established the WAY theorem for projective measure-
ments under the Yanase condition. Applications of this
WAY theorem revealed that the projective measurements of
the position and the quadrature amplitude are incompatible
with the conservation of the momentum and the photon
number, respectively. It is still open whether the original
WAY theorem [3] (or Theorem 8.1 of [50]) for repeatable

measurement models can be generalized to unbounded
conserved observables.
We also considered implementation of unitary channels

under conservation laws and found that the implemented
unitary commutes with the conserved observable if it is
semibounded, while the conserved observable can shift up
to a constant factor if the conserved observable is upper and
lower unbounded. The former case in finite dimensions can
be immediately derived from the more general trade-off
relation [13], while the latter case is essentially infinite
dimensional and cannot be expected from the finite-dimen-
sional existing works.
Our work has several possible directions of future

extensions. One such possibility is the generalization to
the state-dependent scenario (e.g., energy-constrained
states), while our results are restricted to the state-inde-
pendent case. Another possible extension is to consider
approximate implementations. This Letter concerns only
the extreme case of exact implementations of projective
measurements or unitary channels. On the other hand, as
mentioned in the Introduction, results on approximate
implementations of measurements and unitary gates have
been actively studied in recent years. With few exceptions,
these have not been extended to infinite-dimensional
systems. (See the brief review in Supplemental
Material [33].) It is an interesting future direction to extend
these results to unbounded observables.
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