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Excitable media are ubiquitous in nature, and in such systems the local excitation tends to self-organize
in traveling waves, or in rotating spiral-shaped patterns in two or three spatial dimensions. Examples
include waves during a pandemic or electrical scroll waves in the heart. Here we show that such phenomena
can be extended to a space of four or more dimensions and propose that connections of excitable elements
in a network setting can be regarded as additional spatial dimensions. Numerical simulations are performed
in four dimensions using the FitzHugh-Nagumo model, showing that the vortices rotate around a two-
dimensional surface which we define as the superfilament. Evolution equations are derived for general
superfilaments of codimension two in an N-dimensional space, and their equilibrium configurations are
proven to be minimal surfaces. We suggest that biological excitable systems, such as the heart or brain
which have nonlocal connections can be regarded, at least partially, as multidimensional excitable media
and discuss further possible studies in this direction.
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Introduction.—Many real-world systems exhibit a large
nonlinear response to external or internal stimuli, and are
therefore called excitable systems. In the continuum limit,
several of these systems are reasonably understood, as
unifying geometric principles have been revealed that
enable us to understand and quantify their dynamics. As
a first example, nonlinear traveling waves of constant
amplitude have been observed as depolarization waves
in neural [1] and cardiac tissue [2], combustion [3] or
oxidation [4] processes, Mexican waves in crowds [5], and
infection waves in a pandemic [6]. This extremely diverse
range of phenomena has been described mathematically in
the continuum limit using reaction-diffusion equations

∂tu ¼ PΔNuþ FðuÞ; ð1Þ

where uðr⃗; tÞ is a state vector with S components that varies
in N-dimensional space and time, and P is a diagonal S × S
matrix containing the diffusivity of each state variable, ΔN
the Laplacian operator in N spatial dimensions and FðuÞ a
local excitation model. The state vector can support waves,
and it was shown mathematically that their wave fronts
undergo curvature-driven dynamics, with the lowest order
effect behaving like surface tension [7–9]. These curvature
effects are governed by the medium characteristics, math-
ematically represented by the model parameters. Wave

fronts are known to be lines in two-dimensional (2D)
media, and surfaces in 3D media. This property can be
summarized as wave fronts having spatial codimension
C ¼ 1, i.e., they are (N − C)-dimensional structures in an
N-D space.
In observations of excitable surfaces (N ¼ 2), excitation

patterns were often found to organize into rotating spiral-
shaped patterns. Their study is largely motivated by car-
diological applications, since electrical rotors have been
observed on the surface of the heart during rhythmdisorders.
Like for wave fronts, spiral wave drift is affected by
geometric factors, such as the local Gaussian curvature of
the excitable surface [10], possibly incorporating anisotropy
ofwave propagationwithin the surface [11]. Spiral waves on
a surface rotate around a core region, which is commonly
idealized into a phase singularity (PS) point, of codimension
2 [12]. The case where quasiperiodically moving (meander-
ing) PSs occur is more involved, and has been described
recently [13–15]. In 3Dmedia, such as cardiac tissue, a stack
of spiral waves is known as a scroll wave. A scroll wave
rotates around a curve consisting of PSs, the filament which
has dimension N−C¼ 3−2¼ 1. The curvature-induced
dynamics of filaments was first established numerically
in Refs. [16–18] for isotropic excitable media where they
were shown to exhibit so-called filament tension [19],
a medium-dependent emerging parameter. For positive
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filament tension, filaments straighten up [17,18], while for
negative filament tension, filaments elongate and tend to
break up [16], if the medium is thick enough [20]. In the
context of cardiac arrhythmias, the topological configura-
tion of filament curves in the cardiac wall (e.g., O, I, or
U-shaped) is being used as a classifier for arrhythmia
patterns. Moreover, spatiotemporal drift (due to internal
interaction or gradients in the medium) is thought to be
responsible for transitions between arrhythmias [21].
From the above overview of the current knowledge, a

natural question arises that is at first sight purely math-
ematical: Which other patterns of codimension C exist in
N-dimensional media? In this Letter, we provide some
answers to these questions. We confirm that indeed other
patterns exist, more specifically, superfilaments (C ¼ 2),
i.e., the organizing center of superscrolls in a space with
N > 3 spatial dimensions.
Research hypothesis.—We claim that such higher-

dimensional patterns are significant for real-world excitable
systems. The crucial point is that simulations on an N-D
grid are related to a regular network of connected excitable
elements. Indeed, when the aforementioned systems in
N ¼ 2 or N ¼ 3 spatial dimensions are studied numeri-
cally, they are often simulated on a Cartesian grid with
lattice constant h. Using the second order accurate
Laplacian stencil (see Fig. 1), the discretization of
Eq. (1) for the ith node in the grid becomes

∂tui ¼ P
X

j∶Aij¼1

uj − ui

h2
þ FðuiÞ: ð2Þ

Here, Aij ¼ 1 if the node i is next to j and 0 otherwise. In
R1, every interior point will have two such neighbors, in
R2, four neighbors, etc. Thus, if one will discretize
similarly the Laplacian in R4, every interior point will
have eight neighbors, and in RN , one obtains 2N such
neighbors. Note, however, that Eq. (2) can also be regarded
as an excitable network [22], where Aij is the adjacency
matrix of the graph consisting of the edges that form the
network. In this view, going toN > 3 actually makes sense,
as an idealized model for excitable networks in which each
node is connected to 2N neighbors. In network language,
such a graph would be a limit of a translationally invariant
network with average degree 2N, also called a regular
network. In view of real-world networks with unexplained
emergent pattern formation, N can grow large. For exam-
ple, on social networks, the average degree is of magnitude
102–103 [23]. In brain tissue, cerebellar granule cells make
about 675 synaptic connections with Purkinje cells, which
in their turn receive input from around 185 000 parallel
fibers [24]. If a network with high degree is realized in 3D
space that surrounds us, it implies that the network exhibits
long-range, or global connections. Within this Letter,
analytical results are obtained for any integer N > 2.

However, we will consider in simulations only one extra
dimension, such that N ¼ 4, which already shows interest-
ing new physical phenomena.
Analytical derivation.—Motivated by multiple applica-

tions, as presented above, and inspired by previous results
in two and three dimensions [8,19,25], the equation of
motion for the superfilaments of codimension C ¼ 2 will
be derived here. In those works, a scroll wave was
constructed by stacking a set of spiral waves along a
filament curve. Let xi, 1 ≤ i ≤ N, be the coordinates in an
N-dimensional domain. By definition, the superfilament F
will be an (N − 2)-dimensional submanifold; hence we can
define its coordinates σm, where 1 ≤ m ≤ N − 2. The
embedding of the superfilament in the N-dimensional
domain is then given by Xiðσ1;…; σN−2Þ, 1 ≤ i ≤ N. In
one point of F , we construct two orthogonal unit normal
vectors N⃗c, with c∈ f1; 2g. The spatial change of these
vectors between different points on the submanifold is
given by the Weingarten formula [26]:

DmN⃗c ¼ −SN⃗c
ðe⃗mÞ þ∇⊥

mN⃗c: ð3Þ

Here, Dm is the derivative in RN in the direction of
coordinate σm, SN⃗c

is the shape operator inherited from

the normal direction N⃗c, and e⃗m is the tangent vector to F
corresponding to coordinate direction σm. The second term
∇⊥

mN⃗c is the normal connection, describing the relative
rotation of both normals when one moves along the
superfilament. This term can be set to 0 by choosing the
normal vectors N⃗1 and N⃗2 to be parallel with respect to
the normal connection. This procedure is similar to
choosing a relative parallel frame to a curve in 3D [27].
Next, we introduce normal coordinates ρc for points in

the vicinity of the superfilament:

xi ¼ XiðσmÞ þ
X2
c¼1

ρcNi
c: ð4Þ

This allows us to define the normal vectors N⃗c also in
the vicinity of the superfilament, by Ni

c ¼ð∂xi=∂ρcÞ. The
divergence of N⃗c is then related to the curvature of the

FIG. 1. Stencil for the second order accurate discretization of
the Laplacian. Nodes connected to the central point obtain a
weight 1=h2; see Eq. (2).
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superfilament. Indeed, by construction, DdN⃗c ¼ 0⃗ for
c∈ f1; 2g, d∈ fN − 1; Ng, such that with Eq. (3) we
obtain [26,28]

div
�
N⃗c

�
¼
XN−2

m¼1

e⃗m ·DmN⃗c ¼−tr
�
SN⃗c

�
¼−N⃗c · H⃗; ð5Þ

with H⃗ the (non-normalized) mean curvature of the
superfilament.
With these preparations, we can now explicitly construct

the superscroll as a stack of spiral wave solutions. Say
Uðx; y;ϕÞ is a spiral wave solution in the 2D plane, rotated
around the origin over an angle ϕ. Then, we propose as a
solution to Eq. (1) in N dimensions

uðxi; tÞ ¼ Uðρ1; ρ2;ϕðσm; tÞÞ þ ũðxi; tÞ;
ϕ̇ðσm; tÞ ¼ ωþ ω̃ðσm; tÞ; ð6Þ

where ω is the spiral’s natural rotation frequency in a plane.
This approximation is a gradient expansion around a
planar superfilament, and the ũ and ω̃ terms are higher-
order corrections in the extrinsic curvature of the super-
filament, similar to earlier work on classical scroll wave
filaments [8,25]. Substituting the expressions in the reac-
tion diffusion equation (RDE) brings, in leading order,

˙̃u− L̂ ũ¼
X2
c¼1

h
PdivðN⃗cÞþ

�
N⃗c ·

˙⃗X
�i

∂U
∂ρc

þω
∂U
∂ϕ

; ð7Þ

where L̂ ¼ PΔ2 þ ω∂ϕ þ F0ðUÞ. This operator only
depends on the standard 2D unperturbed rotating spiral

solution. From symmetry arguments, it is known to have
critical eigenmodes (Goldstone modes) [8,25,29–32], as
well as response functions [31]. They are critical modes of
the adjoint operator L̂† ¼ PHΔ2 − ω∂ϕ þ F0HðUÞ. Taking
the overlap integral of Eq. (7) with the response functions
delivers, after averaging over one rotation period [19,25],

˙X⃗ ¼ −γ1
X2
c¼1

div
�
N⃗c

�
N⃗c − γ2

X2
c;d¼1

εcddiv
�
N⃗d

�
N⃗c: ð8Þ

Here, γ1 and γ2 are the scalar and pseudoscalar filament
tension coefficients that were introduced in Ref. [19], and
εcd are the components of the Levi-Civita symbol
¯̄ε ¼

�
0
−1

1
0

�
. Using Eq. (5) we can express the superfilament

dynamics in terms of its mean curvature:

˙X⃗ ¼ γ1H⃗ þ γ2 ¯̄ε · H⃗: ð9Þ

Our result is consistent with the lower-dimensional case:
For N ¼ 3, the superfilament becomes a filament curve
with arc length s, curvature k, tangent vector T⃗, and unit
normal N⃗, such that H⃗ ¼ kN⃗ ¼ ð∂T⃗=∂sÞ. Then, Eq. (9)
reduces to the classical result of Biktashev et al. [19].
From the equation of motion (9), it follows that sta-

tionary superfilaments must have H⃗ ¼ 0⃗; thus the total
mean curvature must vanish. For the case N ¼ 4, this
means that a stationary superfilament must be a minimal
surface, generalizing Wellner’s minimal principle to super-
scrolls [33]. It proves a property that we postulated before

FIG. 2. Superscrolls rotating around superfilaments in four spatial dimensions. Projections of superfilament points are shown centrally;
the back left, back right, and bottom of the medium are colored according to the u value at those planes. (a) A superscroll rotating around a
2D curved superfilament (n ¼ 61, h ¼ 1 mm). Four visualizations of the same time frame are shown, each frame with a different
dimension rendered as color of the superfilament. (b) Apierced superfilament (n ¼ 31,h ¼ 0.5 mm), shownwith projections as in (a). See
the Supplemental Material [35] for interactive figures and movies of these simulations. (c) Projection of superfilament points on the Y, Z,
and A-axes that spans a minimal surface between obstacles (shaded in gray) at opposite domain boundaries (n ¼ 50, h ¼ 0.5 mm).
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based on an action principle [34]; see also the discussion on
Fig. 2(c) below.
Similar to wave fronts and classical filaments, the motion

of superfilaments in a homogeneous medium is driven by
curvature. It is possible to explicitly show that in the case of
positive filament tension, the superfilament will decrease its
size, as follows. With A the total area of a (hyper)surface S

and ˙⃗X prescribing temporal evolution for all points on that
surface, Gauss’ first law for the variation of surface area

states dA=dt ¼ −
R
S H⃗ · ˙⃗XdV, with dV the volume form on

the (hyper)surface [36,37]. For superfilaments F , combin-
ing this relation with Eq. (9) yields:

dA
dt

¼−
Z
F
H⃗ · ½γ1H⃗þ γ2 ¯̄ε · H⃗�dV¼−γ1

Z
F
kH⃗k2dV ð10Þ

with k:k the Euclidean norm of a vector. Equation (10)
gives the analog of the change-of-length rate dL=dt ¼
−γ1

R
k2ds for classical filaments [19], which we retrieve as

the case N ¼ 3. We have here shown that superfilaments
monotonically decrease their generalized surface area in the
case of positive filament tension. As a corollary, stable
superscrolls can persist in excitable media as minimal
surfaces (or their higher-dimensional counterparts), e.g.,
by anchoring to opposite boundaries of the medium, as in
Refs. [33,34]. Stable knotted structures may also exist [38],
but this investigation falls outside our present scope.
Conversely, if γ1 < 0, classical filaments are known to
destabilize, which is named as a possible pathway from
ventricular tachycardia in the heart to fibrillation [20,39].
Based on Eqs. (9) and (10), this phenomenon can also
occur in higher-dimensional media.
Numerical results.—To substantiate the analytical

results, the reaction-diffusion system [Eq. (1)] was inte-
grated numerically using the Forward Euler method, with
an N-dimensional hypercube as the domain: r⃗∈ ½0; L�N and
no-flux boundary conditions at the edges. In each dimen-
sion, space was using n points along each dimension. This
discretization results in a lattice with spacing h ¼ L

n, chosen
small enough such that no discretization artifacts could be
observed in the state variable fields. For the local excitation
dynamics FðuÞ, we chose the FitzHugh-Nagumo (FHN)
kinetics [40]: u ¼ ½u; v�T , F ¼ ½fðu; vÞ; gðu; vÞ�T with

f¼ ϵ−1
�
uþu3

3
−v

�
; g¼ ϵðu−avþbÞ ð11Þ

and P ¼ diagð1; 0Þ, meaning that only u is diffused. We
used ϵ ¼ 0.3, a ¼ 0.5, and b ¼ 0.68, which corresponds to
the γ1 > 0 regime in 3D. The FHN model was originally
formulated for neural conduction, but has been applied
equally to continuous models of cardiac excitation [41]. As
such, it is well suited to explore the boundary between
discrete and continuous excitation models.

We here report numerical results for N ¼ 4 only. In a
medium of 61 × 61 × 61 × 61 voxels of size h ¼ 1 mm, a
traveling wave was initiated by setting u ¼ 1 inside a ball
around the point ð−20 mm;−20 mm; 31 mm; 45 mmÞ of
radius 40 mm. After 15 ms, u ¼ 1 was set for y ≤ 10 mm.
This protocol resulted in a curved planar superfilament, to
which we applied filament tracking in each pair of
coordinate planes [42] with threshold values u ¼ 0,
v ¼ 0. We thus created the first superscroll rotating around
a superfilament surface; see Fig. 2(a). We show only 3D
projections here. Other snapshots and movies are given in
the Supplemental Material [35].
Secondly, we created a nontrivial state with a pierced

superfilament; see Fig. 2(b). We started from a stable
superscroll with planar superfilament in ½0 mm; 61 mm�4,
limited the domain to ½0 mm; 15 mm�4, doubled spatial
resolution to h ¼ 0.5 mm by linear interpolation, and set
u ¼ 0 in the hypercylinder ðz − 8Þ2 þ ða − 8Þ2 < 25.
Remarkably, the shrinking of the hole in the filament does
not occur in the plane of the superfilament, but according to
Eq. (9) at an angle to it, since the pseudoscalar filament
tension component γ2 ≠ 0 for this system, reminiscent of
the oblique drift of classical filaments under an external
perturbation [19,43].
In a third simulation, we created a superfilament in 4D

that is anchored to two obstacles at opposite domain
boundaries, which shows indeed that a minimal surface
spanned between the obstacles is a stationary config-
uration. See the detailed setup in the Supplemental
Material [35].
Discussion.—We have shown via both analytical calcu-

lations and simulations that adding a fourth spatial dimen-
sion to reaction-diffusion systems yields new structures: a
superscroll and a superfilament. It is expected that even
more complex structures will arise when the number of
dimensions N, or the codimension C of the structure is
further increased. Our motivation for this research is the
link between Laplacian stencils used for simulations
according to the Euler method (see Fig. 1) and regular
networks [22]. When the classical scroll waves and
filament were introduced in cardiology, they enabled a
better understanding of the emergent patterns seen at the
outer surface of the heart. Also, the distance-weighed
averaging of the excitation patterns is reflected in the
electrical recordings near the heart or on the body surface,
and the properties of the scroll wave are now known to
affect the frequencies present in the electrograms [44].
With this Letter, we aim to open up research on scrolls in

more dimensions, here called superscrolls, in relation to
nonlinear excitation dynamics in networks. Several addi-
tional facts will have to be accounted for. First, we assume
here a regular, translationally invariant network. In realistic
networks, this condition is typically not met. However,
locally there will be closed loops along which the excitation
dynamics can travel and re-excite; we leave open the
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possibility that its description may require also a noninteger
number of dimensions [45]. Secondly, the properties of a
network typically vary between the excitable elements.
Heterogeneity of excitable nodes can be dealt with as a
gradient as in cardiac modeling, whereas the local varia-
tions in nodal degree (i.e., number of connections) may
require a probabilistic approach. Thirdly, in our derivation
of curvature-driven dynamics, a linear coupling between
elements was assumed in Eq. (2). Such effective coupling is
also traditional in cardiac tissue modeling, although it is
known that signal conduction consists of a traveling wave
along the cell membrane interleaved with conduction over
gap junctions.
Finally, we suggest searching for superscrolls in real-life

systems, as they may offer geometric insight in yet
unknown mechanisms. In this search, the notion of excita-
bility can be taken very broadly, as any arrangement of
elements that responds nonlinearly to stimuli. Examples in
human society may include spreading of opinions or
epidemics. In technology, contamination, combustions,
(temporary) failure and overflow may provide examples.
Also oscillatory media may host superscrolls, but the
distinction with phase waves needs to be made.
Conclusion.—In this Letter, we have introduced a

mathematical generalization of scroll waves and filaments
to N-dimensional Euclidean space. Superfilaments were
shown to obey curvature-driven dynamics and an area-
minimizing principle in the case of positive tension.
Although the world around us is only three-dimensional,
we conjecture that superscrolls can occur in media where
oscillatory or excitable elements are connected on average
to more than 2N neighbors, i.e., in networks with nonlocal
connections, such as neural tissues, and social, biochemical
or technological networks.
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