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The emergence of collective behaviors in networks of dynamical units in pairwise interaction has been
explained as the effect of diffusive coupling. How does the presence of higher-order interaction impact the
onset of spontaneous or induced synchronous behavior? Inspired by actuation and measurement constraints
typical of physical and engineered systems, we propose a diffusion mechanism over hypergraphs that
explains the onset of synchronization through a clarifying analogy with signed graphs. Our findings are
mathematically backed by general conditions for convergence to the synchronous state.
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A cornerstone in the literature explaining the onset of
synchronized behavior in coupled dynamical systems has
been the assumption of diffusive coupling between the
nodes [1,2]. Since the seminal work of Pecora and Carroll
[1], the classical equation to study the coordinated behavior
of N coupled systems has been of the type

ẋi ¼ fðxi; tÞ þ
X

j∈N i
in

σijgðyj − yiÞ;

yi ¼ γðxiÞ; i ¼ 1;…; N; ð1Þ

where xi ∈Rn and yi ∈Rm are the state and output of node
i, f∶ Rn ×Rþ → Rn is the vector field describing the
individual dynamics, γ∶ Rn → Rm is the output function,
g∶ Rm → Rn is the coupling function, N i

in is the in-
neighborhood of node i, defined as the set of nodes having
an outgoing link to i, and σij is a positive scalar quantifying
the coupling strength of the edge ðj; iÞ.
Most of the network models in the literature can be

expressed in terms of the general model (1). For instance, it
can be used to describe the dynamics in groups of identical
Kuramoto oscillators [3]. Furthermore, a wide range of
work that detailed the mechanism underlying the synchro-
nization of chaotic systems can be written as in (1), as well
as all works on pinning control [4–7] and the classical
consensus problem [8,9], with appropriate settings of
functions g and γ.
An assumption underlying the classical work on net-

works is the dyadic nature of the interaction among the
nodes. Awide range of network systems, however, display

many-body interactions that cannot be, in general, fac-
torized in terms of pairwise interactions. This is the case
for functional brain networks, where the use of higher-
order topological objects provided insight on the homo-
logical structure of the brain’s functional patterns [10]. A
natural framework to encode higher-order interactions is
that of hypergraphs, a generalization of the concept of
graph [11–13].
As in the case of pairwise interactions, research on

synchronization in hypergraphs first focused on specific
dynamics, and described how in a generalized Kuramoto
model [14–17] the forward and backward transitions to
synchronized and desynchronized states are affected by the
presence of higher-order interactions. A crucial step in the
study of higher-order synchronization for generic individ-
ual dynamics has been made in [18], where conditions for
synchronization have been derived assuming the interaction
happens on simplicial complexes, and may also be in
general nondiffusive. These results have been extended in
[19] to a class of directed hypergraphs, denotedM-directed,
where hyperedges appear in groups according to suitable
permutations of their nodes.
The existing modeling frameworks cannot encode con-

straints on the feedback mechanisms that typically arise in
physical and engineered network systems. For example,
consider a 3-node leader-follower consensus problem,
where the leader (node 1) injects a signal to the followers
(2 and 3), but can only measure their average state
x23 ¼ ðx2 þ x3Þ=2. A natural control choice would be to
feed back σðx1 − x23Þ, obtaining
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ẋ1 ¼ 0; ẋ2 ¼ ẋ3 ¼ −σðx1 − x23Þ: ð2Þ

This simple, linear three-body interaction can neither be
captured by the model (1), nor by the inherently undirected
framework in [18], nor by the M-directed hypergraph
model in [19], see Fig. 1.
In this Letter, we propose a novel general model of

coupled dynamical systems that is able to incorporate such
constraints on sensing and actuation, with the ambition to
be the natural higher-order counterpart of the classical
model (1). Our model is founded on the formalism of
directed hypergraph as formulated by Gallo et al. [21], and
the definition of hyperdiffusive coupling protocol in [22].
We consider that the interactions take place on a directed
hypergraphH ¼ fV; Eg, where V is the set of the N nodes
of the network, and E is the set of its M directed hyper-
edges; see Fig. 2, left panel. A directed hyperedge ε∈ E is
an ordered pair ðT ðεÞ;HðεÞÞ of disjoint ordered subsets of
V, where T ðεÞ and HðεÞ are the set of tails and heads of ε.
The order of ε is given by the total number of its heads and
tails, and the order of the hypergraph H is the maximum
order of its hyperedges.
We describe the dynamics of the ith unit as

ẋi ¼ fðxi; tÞ þ
X

ε∈ E·;i
σεgðyτεαε − yhεβεÞ;

yi ¼ γðxiÞ; i ¼ 1;…; N; ð3Þ

where E·;i is the set of hyperedges of ε∈ E such that
i∈HðεÞ, and σε is the coupling strength associated with ε;
yτε ∈Rm×jT ðεÞj and yhε ∈Rm×jHðeÞj are the tail and head
output matrices, obtained by juxtaposing columnwise the
outputs of the nodes in T ðεÞ andHðεÞ, respectively; αε and
βε are the (unit sum) vectors stacking the weights asso-
ciated with the tails and heads of ε, respectively.
The proposed model (3) can naturally recover our

motivating leader-follower example (2) by considering
the hypergraph in Fig. 1(c), and choosing equal weights
β1 ¼ β2 ¼ 0.5 for the two heads [and setting f ¼ 0,
gðxÞ ¼ γðxÞ ¼ x, σε ¼ 1]. This simple example is para-
digmatic of the wide range of diffusive interactions of any
order that the model is able to encode, with the hyperedge
tails and heads representing the nodes who inject and
receive a higher-order feedback signal, respectively.
Moreover, the hyperdiffusive coupling protocol is synchro-
nization noninvasive [18], and therefore the synchroniza-
tion manifold xiðtÞ ¼ sðtÞ for all i∈V is invariant, with s
being a solution of the decoupled dynamics ṡ ¼ fðs; tÞ.
We now seek for an analytic tool to discriminate between

the detrimental or beneficial effect higher-order interactions
have on synchronizability in our general model (3). First,
we note that the argument of the nonlinear function g in (3)
can be rewritten as

X

j∈ T ðεÞ
ðα̃εÞjðyj − yiÞ −

X

j∈HðεÞ
ðβ̃εÞjðyj − yiÞ: ð4Þ

Leveraging this equivalence, we can then define δxi ¼
xi − s as the deviation of the ith node from s, and linearize
its dynamics around s, thus obtaining

˙δxi ¼ JFðsÞδxi −
XN

j¼1

LijJGð0ÞJΓðsÞδxj; ð5Þ

where JF∈Rn×n, JG∈Rn×m, and JΓ∈Rm×n are the
Jacobian matrices associated with f, g, and γ, respectively;
Lij is the entry ij of the Laplacian matrix of the signed
graph S ðH Þ associated with H , defined as

Lij ¼
X

ε∈ E·;fi;jg
ðβ̃εÞjσε −

X

ε∈ Ej;i
ðα̃εÞjσε; ð6Þ

where Ej;i is the set of hyperedges having j as a tail and i as
a head, while E·;fi;jg is the set of hyperedges having both i
and j as heads; β̃ε (α̃e) is a vector ofRN , whose element j is
0 if node j is not a tail (head) of ε, whereas, if j is a tail
(head) of ε, it is equal to the weight associated with that tail
(head). This means that the linearized dynamics of the
higher-order model (3) can be equivalently represented
over a directed signed graphS ðH Þ [23], with hyperedges
replaced by positive directed edges from the tails to the

FIG. 1. Different formalisms to encode directed network
interactions, exemplified on the case of three nodes, where
(a) is a digraph, (b) a 1-directed hypergraph [19], and (c) the
directed hypergraph we propose. Our model is the only one that
can capture the motivating example (2). For instance, the
dynamics of node 2 would read ẋ2 ¼ −σðx1 − x2Þ over digraphs,
whereas (b) would yield ẋ2 ¼ −σβðx1 þ x3 − 2x2Þ for some
scalar β according to the dynamics in [19]; see Supplemental
Material, Sec. S1 [20].

FIG. 2. A sample hypergraph H and its equivalent signed
graph S ðH Þ obtained using rule (6).
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heads, and negative undirected edges between the heads;
see Fig. 2 and Supplemental Material, Sec. S2 [20].
Defining the stack vector δx ¼ ½δx1;…; δxN �, we intro-

duce the transformed variable η ¼ ðV−1 ⊗ InÞδx, where V
is the full rank matrix such that V−1LV is the Jordan matrix
associated with L, and decompose η as the vertical stack
½η1;…; ηN �, where ηi ∈Rn. Note that, regardless of the
hypergraph topology, since L is zero row-sum, it will
always have a 0 eigenvalue (with eigenvector 1N) that we
will denote λ1. Therefore, from (5), η̇1 ¼ JFðsÞη1 will
describe the dynamics along the synchronization manifold,
irrelevant for its transversal stability. Then, to study
synchronizability, we need to focus on the remaining
blocks of the Jordan canonical form [24]. A generic
Jordan block of size b will be associated with the trans-
formed variables ηi;…; ηiþb−1 for some i > 1, whose
dynamics are given by

η̇i ¼
�
JFðsÞ − λiJH

�
ηi; ð7aÞ

η̇iþ1 ¼
�
JFðsÞ − λiJH

�
ηiþ1 − JHηi; ð7bÞ

..

.

η̇iþb−1 ¼
�
JFðsÞ − λiJH

�
ηiþb−1 − JHηiþb−2; ð7cÞ

where JH ¼ JGð0ÞJΓðsÞ.
Introducing the master equation

ζ̇ ¼ �
JFðsÞ − νJGð0ÞJΓðsÞ�ζ; ð8Þ

where ζ∈Rn, and ν is a complex number, we can then
define the master stability function (MSF)ΛðνÞ for network
(3) as the maximum Lyapunov exponent associated with
(8). The stability of the synchronization manifold of net-
work (3) will require the evaluation of Λ at ν ¼ λi,
i ¼ 2;…; N. Indeed, if

Λmax ¼ max
i¼2;…;N

ΛðλiÞ < 0; ð9Þ

then all Jordan blocks (7) will be asymptotically stable [24],
and the synchronization manifold of (3) will be locally
asymptotically stable.
Different from the classical MSF approach on graphs,

when dynamics take place over hypergraphs one needs to
study Λ also for ν with negative real-part, since the
spectrum of the Laplacian matrix L associated with the
signed graph S ðH Þ may also include negative real-part
eigenvalues.
Studying the n-dimensional parametric master stability

equation (8) we derived, it is possible to gauge the impact
that higher-order interactions described by model (3) have
on the stability of the synchronization manifold, without
the need of simulating the network dynamics. We demon-
strate the potential of our approach in two paradigmatic
numerical experiments on synchronization and control of
network systems, where we elucidate the interplay between
pairwise and high-order directed interactions and explore
efficient control strategies in different directed hypergraph
structures, respectively.
Synchronization.—Here, we focus on hypergraphs of

order 3 and set all pairwise and triadic interactions to have
the same weights σð2Þ and σð3Þ, respectively. In general, one
of these five scenarios may occur: (a) the synchronization
manifold can be stabilized both by using only pairwise
(σð3Þ ¼ 0) and only triadic (σð2Þ ¼ 0) interactions; (b) the
synchronization manifold can be stabilized by using only
pairwise (σð3Þ ¼ 0) but not using only triadic (σð2Þ ¼ 0)
interactions; (c) the synchronization manifold can be
stabilized by using only triadic (σð2Þ ¼ 0) but not using
only pairwise (σð3Þ ¼ 0) interactions; (d) the synchroniza-
tion manifold can only be stabilized by using both pairwise
and triadic interactions; and (e) the synchronization
manifold cannot be stabilized for any value of the pair
ðσð2Þ; σð3ÞÞ.
To investigate the prevalence of these scenarios, we

randomly generated a set of 100 Erdös-Rényi (ER)
hypergraphs (with N ¼ 100 nodes, p ¼ 0.05, see
Supplemental Material, Sec. S3 [20]). As individual

FIG. 3. Synchronizability of directed hypernetworks of N ¼ 100 Rössler oscillators. Panels (a)–(e) report the color maps of Λmax as a
function of the pair ðσð2Þ; σð3ÞÞ for five different ER hypergraphs of order 3 with p ¼ 0.05, with a star identifying the pairs ðσð2Þ; σð3ÞÞ
minimizing Λmax; when present, the black dotted curve encircles the region of the plane ðσð2Þ; σð3ÞÞ where Λmax is negative and the
synchronization manifold is locally asymptotically stable. The associated master stability function Λ is reported in Supplemental
Material, Fig. S3 [20].
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dynamics, we considered Rössler chaotic oscillators [25],
fðz; tÞ ¼ ½−z2 − z3; z1 þ 0.2z2; 0.2þ z3ðz1 − 7Þ�, coupling
function g as the identity, and output function
γðzÞ ¼ ½z1; 0; 0�, so that the MSF of the network is the
same studied in [1], where it was first derived. Scenarios
from (a) to (e) are observed in 6, 46, 7, 40, and 1 instances,
respectively, and Fig. 3 depicts a sample occurrence of each
scenario. Therefore, in about half of the cases, the interplay
between pairwise and triadic interactions is key for
synchronizability.
To gauge the role of higher-order interactions for

synchronizability, we consider ER hypergraphs for differ-
ent values of the parameter p (varied between 0.01 and 0.1
with step 0.01) modulating the expected number of hyper-
edges, and compare them against digraphs with the same
expected cardinality jEj. We observe that synchronization is
more likely achieved in topologies with triadic interactions;
see Supplemental Material, Table S1 [20]. This is mainly
due to the additional hyperpaths associated with hyper-
edges of order 3, which favor the formation of a directed
spanning tree (DST) in the associated signed graph, a
necessary condition to satisfy (9) [26]. This also explains
why, for increasing values of p, we observe a gradual
transition from scenarios (e) to (a); see Supplemental
Material, Table S2 [20].
Leader-follower control.—In classical leader-follower

control on digraphs, the leader can measure the output
of the nodes where the control input is injected [27]. Our
formalism can account for a constraint on the measurement
resolution, where the leader can only gather an aggregated
measurement from groups of nodes, as typical in control
applications [28,29]. Under the tenable premise that
obtaining highly resolved measurements of the aggregated
state of small node groups may be more expensive or
unfeasible, we evaluate how our ability to control the
network varies with the resolution.
We start with the 100 ER hypergraphs (with p ¼ 0.05) of

N ¼ 100 Rössler systems studied above, and consider as
coupling gains ðσð2Þ; σð3ÞÞ those maximizing Λmax. The
leader is an extra node, never a head of a hyperedge, so that
its dynamics ẋNþ1ðtÞ ¼ fðxNþ1; tÞ are not influenced by
the rest of the nodes, and injects a feedback signal to all
followers to set the synchronization manifold sðtÞ to
xNþ1ðtÞ.
The coarseness of the measurements the leader can take

depends on the available resolution r ¼ 1=hc, with hc
being the number of the heads of the control hyperedges of
which the leader measures an aggregated state. For in-
stance, in the N ¼ 8 follower nodes network in Fig. 4(a),
r ¼ 0.25, and the leader is the unique tail of Nr ¼ 2
hyperedges, and can measure the aggregated state of groups
of hc ¼ 4 nodes. In our analysis, we vary r between 0.01
(the leader measures the aggregated state of all followers)
and 1 (the standard leader-follower strategy where the
leader measures the state of each follower). For

intermediate values of r, we consider 100 alternative
selections of the control hyperedges by partitioning the
followers in Nr groups of cardinality hc.
We compare control performance for different resolutions

in terms of the Λmax computed on the enlarged network that
includes the leader. Figure 4(b) illustrates a paradigmatic
instance for one of the 100 considered hypergraphs where,
compared to standard leader-follower control (r ¼ 1), Λmax
decreases for any resolution r < 1 and any selection of the
control hyperedges. Note that the same result is obtained for
96 of the 100 considered hypergraphs, whereas for all
topologies it is always possible to find resolutions r < 1
that yield smallerΛmax compared to that obtained for r ¼ 1.
From condition (9), the root cause of this apparently

counterintuitive phenomenon can be sought in the effect that
the addition of the control hyperedges has on the spectrumof
L.Whilewith r ¼ 1 the eigenvalues are simply shifted to the
right, the control hyperedges of order larger than 2 affect the
shape of the spectrum, which will be enclosed by a smaller
region of the complex plane, thereby facilitating control.
Indeed, comparing coarser resolutions with r ¼ 1, a
decrease of Λmax is associated with a smaller rectangle
enclosing the spectrum of L, except of λ1 ¼ 0 (Pearson
correlation coefficient r ¼ 0.93, p-value < 0.001).
To assess how these findings generalize with network

connectivity, we have analyzed the ER hypergraphs with p
varied between 0.01 and 0.1 from the synchronization
study above; see Supplemental Material, Table S3 [20]. We
found that when the followers’ signed network has a DST, a
low resolution control can outperform the standard leader-
follower control. In the absence of a DST, instead, the
uncontrolled network has one or more zero eigenvalues
other than λ1, that are less likely to change with lower
resolutions. This result goes beyond the specific dynamics
of the Rössler systems, and applies to all coupled systems
characterized by a MSF with a bounded stability region.
Conclusions.—In this Letter, we propose a novel and

natural generalization of the classical model of diffusive

FIG. 4. Panel (a) illustrates the control strategy for N ¼ 8
follower nodes and a resolution r ¼ 0.25: the leader (node 9)
measures the average state of two disjoint groups of hc ¼ 4
nodes. Panel (b) reports a box plot of Λmax as a function of rwhen
controlling a sample network of N ¼ 100 Rössler systems: any
resolution r < 1 yields lower values of Λmax compared to r ¼ 1.
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interactions on digraphs to the case of multibody inter-
actions of any order. Upon this model, we establish a
powerful analogy with signed graphs, and derive a metho-
dology to study the spontaneous or controlled emergence of
synchronization. Through our analysis, we provide a
method to discriminate whether the higher-order interaction
is beneficial or detrimental for group coordination.
We have illustrated the potential of our methodology on

two relevant instances of collective behavior. In synchro-
nization problems, our analogy with signed graphs allows
us to explain that higher-order interactions foster co-
ordination, whereby they favor the formation a directed
spanning tree. In leader-follower problems, our formalism
proves to be the natural way of studying and representing
the measurement constraints that often appear in control of
emergent behaviors. In this type of problem, we observe a
nontrivial phenomenon, whereby the lack of measurement
resolution does not necessarily hinder network control. On
the contrary, we have shown that, when the MSF has a
bounded stability region and the signed graph associated
with the follower’s hypergraph has a directed spanning tree,
lower measurement resolutions enhance our ability to
control the network.
Our work paves the way for further studies on the

interactions taking place on hypergraphs. As for the
classical model (1), also the properties of the proposed
hyperdiffusive model (3) should be tested when its under-
lying assumptions are not met. For instance, individual
differences between nodes should be properly accounted
for, and different, nondiffusive types of interaction should
be explored. Further, while the methodology has been
demonstrated on synthetic data, its use is envisaged in
other, more detailed models of collective behavior [30], as
well as experimental observations on animal groups, from
insect swarms to bird flocks, fish schools, and human
crowds.

This work was supported by the Research Project PRIN
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