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The recent discovery of the extraordinary-log (E-Log) criticality is a celebrated achievement in modern
critical theory and calls for generalization. Using large-scale Monte Carlo simulations, we study the critical
phenomena of plane defects in three- and four-dimensional OðnÞ critical systems. In three dimensions, we
provide the first numerical proof for the E-Log criticality of plane defects. In particular, for n ¼ 2, the critical
exponent q̂ of two-point correlation and the renormalization-group parameter α of helicity modulus conform
to the scaling relation q̂ ¼ ðn − 1Þ=ð2παÞ, whereas the results for n ≥ 3 violate this scaling relation. In four
dimensions, it is strikingly found that the E-Log criticality also emerges in the plane defect. These findings
have numerous potential realizations and would boost the ongoing advancement of conformal field theory.
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Introduction.—In the standard scenario of critical phe-
nomena, the two-point correlation asymptotically decays as
gðrÞ ∼ r−ðd−2þηÞ with spatial distance r, where d and η are
spatial and anomalous dimensions, respectively [1].
Recently, a very unusual type of critical phenomena

was unveiled in the context of surface critical behavior
(SCB) [2]. Consider the OðnÞmodel of pairwise-interacting
unit-vector spins. The cases n ¼ 1, 2, and 3, respectively,
correspond to the Ising, XY, and Heisenberg models. In
two dimensions, the Mermin-Wagner theorem prohibits
spontaneous symmetry breaking for any finite temperature
T > 0 with n ≥ 2. Specifically, as T decreases, the XY
model enters a quasi-long-range ordered phase via the
Berezinskii-Kosterlitz-Thouless (BKT) transition [3–6],
while the system with n > 2 remains disordered for all
T > 0. However, the open surfaces of the critical three-
dimensional (3D) OðnÞ models, with n ¼ 2, 3, and 4, were
observed to undergo a so-called special phase transition and
enter the extraordinary phase, as the surface coupling
strength is enhanced [7,8]. The nature of the extraordinary
phase remained a long-standing puzzle until a recent
renormalization-group study [2], which revealed the
extraordinary-log (E-Log) critical phase for 2 ≤ n < nc,
with nc an upper bound.
In the E-Log critical phase, the correlation function

decays as a power law of distance logarithm,
gðrÞ ∼ ðln rÞ−ðq̂þ1Þ, with q̂þ 1 a critical exponent [2],
which is extremely slowly in comparison with r−ðd−2þηÞ
for the standard scenario. Moreover, for a finite 3D lattice
of side length L, gðr; LÞ was numerically observed to
exhibit a two-distance scaling behavior as
gðr; LÞ ∼ c1ðln rÞ−ðq̂þ1Þ þ c2ðlnLÞ−q̂, with c1 and c2 being
constants [9]. In other words, the correlation function

decays algebraically with the distance logarithm and then
enters into a L-dependent plateau, of which the height
decreases algebraically with the side-length logarithm (with
exponent q̂). On the other hand, the helicity modulus ϒ,
characterizing the response against a twist in boundary
conditions [10], scales as ϒL ∼ 2αðlnLÞ, with α a renorm-
alization-group parameter. A scaling relation reads [2,9]

q̂ ¼ n − 1

2πα
; ð1Þ

while the original formula means q̂þ 1 ¼ ½ðn − 1Þ=2πα�
[2]. The E-Log criticality and scaling relation (1) were first
verified at n ¼ 3 [11]. For the XY model, the universality of
q̂ and α was confirmed in the E-Log critical regime [9].
Shortly afterwards, consistent estimates of q̂ and α were
obtained for n ¼ 2 from different realizations of O(2)
criticality [12–17] (Table I).
Since the E-Log criticality has been found merely for the

SCB of 3D systems, a generalization is essential. Using
large-scale Monte Carlo simulations, we provide smoking-
gun evidence of the E-Log criticality in the plane defects
sitting inside critical 3D Villain, XY, Heisenberg, and O(6)
vector models. The emergence of the E-Log criticality is
consistent with a very recent field-theoretic result [18].
Furthermore, we find that, while the values of q̂ and α for
n ¼ 2 are compatible with scaling relation (1), violations of
this well-established scaling relation are found for n ≥ 3.
Another important generalization is to the 4D XY model.
Despite the trivial mean-field critical behavior in the bulk,
we find that the plane defect can enter the E-Log critical
phase via an exotic transition. Note that the OðnÞ spin
model is perhaps the most important class of models in
statistical mechanics and has broad application in
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condensed-matter physics. In particular, we expect that the
E-Log universality in the plane defects would find
numerous realizations in the line defects of 2D and 3D
quantum models for superfluidity, superconductivity,
magnetism, etc.
E-Log universality in 3D plane-defect Villain model.—

We consider a plane-defect Villain model on the simple-
cubic lattice with Hamiltonian H ¼ 1

2

P
hrr0iðJ 2

rr0=Crr0 Þ,
where J rr0 ∈ f0;�1;�2;…g represents directed flows
along the bonds between the nearest neighbors r and r0,
and Crr0 controls their relative weights. As in the standard
Villain model [19–24], the flows are nondivergent and
constitute closed directed loops. Periodic boundary con-
ditions are imposed in each of the [100] (x), [010] (y), and
[001] (z) directions. To involve a plane defect, we specify
a plane that is perpendicular to the z direction [Fig. 1(a)].
If r and r0 are both in the plane defect, we set Crr0 ¼ W;
otherwise, we let Crr0 ¼ K. The bulk critical point Kc was
located at K ¼ 0.333 067 04ð7Þ with W ¼ K [25] and falls
into 3D O(2) universality class.
We formulate a variant of Prokof’ev-Svistunov worm

Monte Carlo algorithm that has two update schemes,
respectively, for entire lattice and plane defect, and is very
convenient for the measurements of correlation function
and susceptibility in the plane defect; see the Supplemental
Material [26] (which includes [27] and [25,28,29]).
In Fig. 1(b), we map out a phase diagram. When the bulk

is critical (K ¼ Kc), a plane-defect transition occurs atW ¼
Kc as W is varied and has the effective thermodynamic
renormalization exponent yt ¼ 1=ν3xy − 1 ≈ 0.4885, with
ν3xy ¼ 0.671 83ð18Þ [25] the correlation length exponent of
3D O(2) bulk criticality. This transition differs from the

special transition for open surfaces in O(2) systems, which
has yt ¼ 0.58ð1Þ [7,16]. Additionally, we confirm the field-
theoretic prediction [30] of ordinary critical phase for W <
Kc at K ¼ Kc and the BKT-like transition with K < Kc.
The BKT-like transition arises from the essential 2D critical
behavior of plane defect in a disordered bulk [30]. For these
plane-defect critical phenomena, Monte Carlo results are
presented in the Supplemental Material [26].
We then explore the strong-W regime with K ¼ Kc.

Extensive worm-algorithm simulations are performed at
W ¼ 0.5, 1, 3 and 7, with L ranging from 4 to 128. At
L ¼ 128, the total number of generated closed loops for a
specified W reaches 2.9 × 1010. If the E-Log criticality
happens, a fitting Ansatz of the large-distance correlation G
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FIG. 1. A 3D lattice with a plane defect (a) and the phase
diagram for the plane defect in 3D Villain model (b). W and K
represent the interactions inside and outside the plane defect,
respectively. There are quasi-long-range ordered, ordered, and
disordered phases. The plane-defect critical phenomena include
the ordinary, 3D O(2) and E-Log criticality at the bulk critical
point Kc as well as the BKT-like transition for K < Kc.

TABLE I. E-Log critical phases of OðnÞ systems. “BU” denotes bulk universality, and ▵ (▴) represents the
conformity (inconformity) with scaling relation (1).

Surface critical phenomena

BU Model q̂ α ▵=▴ year

3D O(3)
O(3) ϕ4 [11] 2.1(2) 0.15(2) ▵ 2020
O(3) ϕ4 [12] 0.190(4) 2021

3D O(2)

XY [9] 0.59(2) 0.27(2) ▵ 2021
O(2) ϕ4 [12] 0.300(5) 2021
Potts [13] 0.60(2) 2022
clock [14] 0.59(1) 0.26(2) ▵ 2022
Villain [16] 0.58(2) 0.28(1) ▵ 2022
Potts [17] 0.59(3) 2023

Plane-defect critical phenomena

BU Model q̂ α ▵=▴ year

3D O(2)
field theory [18] 0.600(10) 2023

Villain, XY 0.29(2) 0.56(3) ▵ present

3D O(3)
field theory [18] 0.540(8) 2023

Heisenberg 0.63(3) 0.33(2) ▴ present
4D O(2) XY 0.09(2) 0.97(7) present
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in the plane defect is G ¼ a0½lnðL=l0Þ�−q̂, with a0 a
nonuniversal constant and l0 a reference length.
Generally speaking, numerical analyses of finite-size scal-
ing (FSS) involving lnL are challenging. Such a difficulty
can be alleviated at the cost of systematic fits. Throughout
this Letter, we test the scaling Ansatz against data by least-
squares fits. We monitor the evolution of χ2 by changing
the minimum size Lmin involved. In principle, one searches
for the smallest Lmin relating to the χ2 per degree of
freedom (DOF) χ2=DOF ¼ Oð1Þ, which does not decrease
drastically upon further increasing Lmin. Practically one
prefers the fits with χ2=DOF ≈ 1. We should not trust any
single fit and conclusions will be made by comparing
preferred fits. For each W, we find that the estimate of q̂
extrapolates to q̂ ≈ 0.29. More precisely, forW ¼ 0.5, 1, 3,
and 7, we obtain q̂ ¼ 0.308ð2Þ, 0.301(2), 0.289(5), and
0.28(1) as well as χ2=DOF ≈ 2.8, 0.1, 2.8, and 1.5,
respectively, with Lmin ¼ 16. Based on these observations,
by fixing q̂ ¼ 0.29, we obtain l0 ¼ 3.15ð2Þ, 0.684(2),
0.0153(2), and 0.0000100(3) as well as χ2=DOF ≈ 2.4,
1.4, 0.8, and 0.7, with Lmin ¼ 48, 32, 64, and 48, for
W ¼ 0.5, 1, 3, and 7, respectively. Details of fits are given
in the Supplemental Material [26]. The consistent estimates
of q̂ from variousW indicate the uniqueness of logarithmic
scaling and critical exponent.
Borrowing the insights into FSS from the E-Log criti-

cality of SCB, we obtain the FSS χs ¼ a1L2½lnðL=l0Þ�−q̂ of
the plane-defect susceptibility χs, with a1 a nonuniversal
constant. For W ¼ 0.5, the fit with Lmin ¼ 16 yields q̂ ¼
0.322ð1Þ and has a huge χ2=DOF (χ2=DOF ≈ 7.0), which
reduces to χ2=DOF ≈ 2.7 at Lmin ¼ 32 with q̂ ¼ 0.309ð3Þ.
For W ¼ 1, 3, and 7, we obtain q̂ ¼ 0.310ð1Þ, 0.295(3),
and 0.29(1) as well as χ2=DOF ≈ 1.7, 3.2, and 3.0,
respectively. When q̂ ¼ 0.29 is fixed, we obtain l0 ¼
4.08ð3Þ (W ¼ 0.5), 0.866(3) (W ¼ 1), 0.01909(9)
(W ¼ 3), and 0.0000119(3) (W ¼ 7) with 0.3 ⪅
χ2=DOF ⪅ 1.4. Hence, the estimates of q̂ are close to
those from G.
From the FSS analyses of G and χs, we estimate

q̂ ¼ 0.29ð2Þ. In Figs. 2(a) and 2(b), by plotting G and

χsL−2 versus lnðL=l0Þ, where the values of l0 are from fits,
the mutually consistent scaling formulae and critical
exponent are illustrated.
We analyze the helicity modulus ϒ, which is defined

through the fluctuations of winding numberWx of directed
flows along a periodic direction (say x direction), namely,
ϒ ¼ hW2

xi=L. For the E-Log criticality in a 3D system, ϒ
scales as ϒL ∼ lnL. This behavior is roughly illustrated
by the data in Fig. 2(c). We perform least-squares fits to
ϒL ¼ αðlnLÞ þ bþ cL−ω, where α can be universal, ω
denotes the exponent of leading finite-size corrections,
whereas b and c are nonuniversal. Unlike the scaling form
ϒL ¼ 2αðlnLÞ þ bþ cL−ω that applies to SCB involving
two open surfaces, the prefactor is α due to the uniqueness
of plane defect. We look into the fits using ω ¼ 0.789
[31,32] or ω ¼ 1, and find that the inclusion of a correction
term stabilizes fits. For W ¼ 0.5, 1, 3, and 7, we obtain
α ¼ 0.555ð3Þ, 0.562(4), 0.580(6), and 0.57(1) as well as
χ2=DOF ≈ 0.2, 0.7, 2.0, and 2.2, respectively, with
Lmin ¼ 16. Comparing all preferred fits (Supplemental
Material [26]), we estimate α ¼ 0.56ð3Þ.
The universal results of q̂ and α from different W prove

the universality of the E-Log criticality. Furthermore, the
values of q̂ and α cannot be related to any known E-Log
criticality, indicating a new universality class. In the
Supplemental Material [26], it is demonstrated that q̂
and α from direct fits are consistent with those from the
conversions according to Eq. (1), and such consistency is
even more obvious at χ2=DOF ≈ 1. Thus, scaling relation
(1) is validated for the present E-Log universality.
E-Log criticality in 3D plane-defect OðnÞ vector

models.—We consider the plane-defect OðnÞ vector models
with Hamiltonian H ¼ −

P
hrr0i Crr0 S⃗r · S⃗r0 , where S⃗r rep-

resents n-component unit-vector spins. Using the
Wolff cluster Monte Carlo algorithm [33], we sample the

helicity modulus ϒ ¼ ð1=LdÞfð2=nÞhEi − ½2=nðn −
1Þ�Pa<bhðTða;bÞ

ex Þ2ig with E ¼ P
r CrðrþexÞS⃗r · S⃗rþex and

Tða;bÞ
ex ¼ P

r CrðrþexÞðSarSbrþex − SbrSarþexÞ, where (Sar , Sbr )

represents pairs of components of S⃗r, as well as the
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FIG. 2. The two-point correlation G (a), the scaled susceptibility χsL−2 (b) and the scaled helicity modulus ϒL (c) for the E-Log
critical phase of the 3D plane-defect Villain model. In panels (a) and (b), the horizontal coordinates are set as lnðL=l0Þ, where the values
of l0 are from least-squares fits, and the plots are further made on log-log scales. The slopes −0.29 and 0.56 of dashed lines stand for −q̂
and α, respectively.
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two-point correlation G ¼ hS⃗r · S⃗r0 i with r0 − r ¼ ðL=2; 0Þ
in the plane defect.
We consider the n ¼ 2 (XY) case on the simple-cubic

lattice with K ¼ Kc ¼ 1=2.201 844 1, where Kc is the bulk
critical point [25], and simulate at W ¼ 1, 3, and 7. For G
and ϒ, we perform FSS analyses using the scaling Ansatz
for the E-Log criticality. In the Supplemental Material [26],
using a specially designed χ2 test, we confirm that q̂ and α
agree with those from the plane-defect Villain model. Thus
far, all uncovered E-Log critical phenomena conform to
scaling relation (1).
We now study the E-Log universality for the n ¼ 3

(Heisenberg) case on the simple-cubic lattice. We start by
simulating the W ¼ K case up to L ¼ 384 and obtain
Kc ≈ 0.693 002 88, which surpasses the most accurate
resultKc ¼ 0.693 003ð2Þ in literature [7]. We then simulate
atW ¼ 2, 3, and 7 with K ¼ 0.693 002 88, and confirm the
existence of E-Log criticality (Supplemental Material [26]).
Furthermore, we find the universality of q̂ and α with

q̂ ¼ 0.63ð3Þ and α ¼ 0.33ð2Þ, which violate scaling rela-
tion (1). With the estimated q̂ and α, the FSS ofG andϒ are
displayed in Figs. 3(a) and 3(b), respectively.
Because of the upper bound nc ≈ 5, the E-Log criticality

does not exist for n > 5 in the open surfaces of 3D systems
[34]. By contrast, for the plane-defect O(6) vector model,
we find the E-Log criticality with q̂ ¼ 2.3ð1Þ and α ¼
0.10ð1Þ at K ¼ Kc ¼ 1.428 653 [35] andW ¼ 3 [Figs. 3(c)
and 3(d)], which again violates scaling relation (1).
Exotic plane-defect transition and E-Log universality in

4D XY model.—The E-Log criticality has merely been
found in the plane defects and open surfaces of 3D systems.
Is there an E-Log universality class for any other spatial
dimension? We consider the plane-defect XY model on 4D
hypercubic lattices [Fig. 4(a)] with K ¼ Kc, for which one
has Kc ¼ 1=3.314 437 [36].
At W ¼ Kc, the effective plane-defect thermodynamic

renormalization exponent yt vanishes, since yt ¼ 1=ν4xy −
2 and ν4xy ¼ 1=2 apply, and the interaction enhancement
can be exactly marginal, marginally relevant or marginally
irrelevant. The scaled second-moment correlation length
ξ=L indicates a transition at Wc ≈ 0.41 by the deviation
from scale invariance for W > Wc [Fig. 4(b)]. In the
Supplemental Material [26], we perform systematic FSS
analyses using various scaling Ansätze: a standard scaling
with Lyt (with or without logarithmic corrections) and
a scaling with yt ¼ 0 but involving lnL. The estimates of
Wc from preferred least-squares fits are compatible with
Wc ¼ 0.41ð2Þ. Hence, our results reveal a transition atWc,
which is compatible with the marginally irrelevant scenario,
sinceWc is significantly larger than Kc. Similar to the FSS
at W ¼ Kc, G scales as G ∼ L−2 at W ¼ 0.1, indicating a
critical behavior for W < Wc governed by the Gaussian
fixed point.
For W > Wc, we find the E-Log criticality. Figure 4(c)

shows, for W ¼ 1, 3, and 6, that G scales as G ∼
½lnðL=l0Þ�−q̂ with the universal exponent q̂ ¼ 0.09ð2Þ.
Divergence of ϒL2 upon increasing L is inferred from
Fig. 4(d). Using least-squares fits, we find that ϒ scales as

FIG. 3. Same as Figs. 2(a) and 2(c) but for the E-Log critical
phases of the 3D plane-defect Heisenberg and O(6) vector
models.
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FIG. 4. Plane-defect criticality of 4D XY model at K ¼ Kc. (a) A 4D hypercubic lattice with a plane defect. (b) The scaled second-
moment correlation length ξ=L versusW. Inset: log-log plot ofG versus L atW ¼ 0.1. (c) Log-log plot ofG versus lnðL=l0Þ forW ¼ 1,
3, and 6, where the values of l0 are from least-squares fits. The slope −0.09 of dashed lines stands for −q̂. (d) ϒL2 versus lnL. The
dashed lines stand for ϒL2 ¼ 0.97ðlnLÞ3=2 þ bðlnLÞ1=2 þ c, where b and c are from least-squares fits.
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ϒL2½lnðL=l0Þ�−1=2 ∼ α lnðL=l0Þ with the universal param-
eter α ¼ 0.97ð7Þ. In this FSS formula, the left-hand side
relates to the FSS ϒ4D ∼ L−4ðξ4DÞ2 ∼ L−2½lnðL=l0Þ�1=2 of
4D bulk criticality with the exponents −2 and 1=2 for
leading scaling and logarithmic correction respectively
[36], whereas the E-Log universality accounts for
α lnðL=l0Þ in the right-hand side.
Summary and discussions.—We study the plane-defect

criticality of the OðnÞ model with n ¼ 2, 3, and 6 in three
dimensions and n ¼ 2 in four dimensions, and obtain
convincing evidence of the E-Log criticality for each
situation. In three dimensions, the E-Log criticality for
n ≥ 3 violates scaling relation (1), which holds for n ¼ 2.
For a plane defect in the critical 4D XY system, the
presence of E-Log universality and exotic transition is also
evidenced. These findings significantly expand the current
understanding of E-Log criticality.
The study for 3D and 4D plane-defect systems is a

remarkable step toward exploring E-Log criticality in
generic OðnÞ systems with effective interactions. The hints
for such a generalization also come from the logarithmic
forms of correlators in certain 2DOðnÞ loopmodels [37,38].
Our findings can be realized with emergent OðnÞ

symmetry or OðnÞ-symmetric Hamiltonian with n ≥ 2.
Because of classical-quantum correspondence, our results
further indicate the E-Log universality for the line defects in
2D and 3D quantum OðnÞ systems [39–44]. Besides, the
conformal field theory of plane-defect criticality is cur-
rently a subject of intensive research [45–48].
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