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Superfluidity is a well-characterized quantum phenomenon which entails frictionless motion of
mesoscopic particles through a superfluid, such as 4He or dilute atomic gases at very low temperatures.
As shown by Landau, the incompatibility between energy and momentum conservation, which ultimately
stems from the spectrum of the elementary excitations of the superfluid, forbids quantum scattering
between the superfluid and the moving mesoscopic particle, below a critical speed threshold. Here, we
predict that frictionless motion can also occur in the absence of a standard superfluid, i.e., when a He atom
travels through a narrow (5,5) carbon nanotube (CNT). Because of the quasilinear dispersion of the
plasmon and phonon modes that could interact with He, the (5,5) CNT embodies a solid-state analog of the
superfluid, thereby enabling straightforward transfer of Landau’s criterion of superfluidity. As a result,
Landau’s equations acquire broader generality and may be applicable to other nanoscale friction
phenomena, whose description has been so far purely classical.
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Superfluidity [1–3] is a well-characterized physical
phenomenon, which enables frictionless flow of a meso-
scopic particle through a superfluid medium, such as 4He or
dilute atomic gases at very low temperatures. When the
elementary excitations of the superfluid exhibit a quasi-
linear spectrum, twofold conservation of energy and
momentum interdicts quantum-mechanical scattering, as
long as the mesoscopic particle does not exceed a critical
velocity threshold. Below the critical velocity, the quasi-
free-particle spectrum of the mesoscopic body—which is
quadratic in momentum—is incompatible with the spec-
trum of the superfluid, which is instead quasilinear at small
momenta. Most notably, while spectral incompatibility is
pivotal to superfluidity, Landau’s theory [4] does not
invoke particular assumptions about the nature of the
medium, as long as a free particle can pass through. It
is, thus, conceivable that seemingly disparate systems may
eventually lead to analogous frictionless flow, implying
nontrivial transferability of Landau’s criterion of super-
fluidity. Known extensions of the standard mechanism
contemplate, for instance, supersolidity [5,6] or even
exciton condensation [7–10] in two-dimensional solid
nanostructures. However, one could question the existence
of generalized-superfluid mechanisms even in the normal
state—i.e., in the absence of Bose-Einstein condensation—
as long as the essential requirements are met.
To prove this idea true, in this Letter, we consider a 4He

atom moving through a (5,5) carbon nanotube (CNT) [11]
—which can be regarded as a closed, cylindrical-shaped

graphene [12] tube (see Fig. 1), characterized by a radius of
3.41 Å and longitudinal metallicity. Scattering rates will be
derived from scratch, without relying on assumptions
adopted in standard superfluidity (no ultracold gas is
demanded). A single He atom can fit in the center of the
(5,5) CNT section, and it can easily move along the
longitudinal axis. The dispersion of the relevant low-energy

FIG. 1. Potential VHe computed as a function of xHe (He
displacement) within the (5,5) CNT unit cell. C atoms are fixed
in the equilibrium position, in the absence of electronic displace-
ments. The geometry of the He atom confined in the (5,5) CNT
8 × 1 × 1 supercell is illustrated for reference in the upper panel.
The red segment visually indicates the longitudinal size (L) of the
CNT unit cell.
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quasiparticles of the CNT, i.e., plasmon and phonon
excitations, bears formal analogies with the quasilinear
Bogoliubov spectrum, so that the (5,5) CNT could act as an
effective superfluid medium, providing on equal footing a
viable channel for He transport. We note in passing that
low-dimensional nanostructures readily attracted scientific
interest in relation to superfluidity [13,14], although the
presence of actual ultracold gases was so far always
invoked. On the other hand, the evidence of ballistic
electron transport [15,16] in CNTs adds even more appeal
to these systems, also in view of their availability as C
allotropes with outstanding mechanical resistance and
chemical inertness.
Hereafter, we build a quantum-mechanical model, based

on first-principle density functional theory (DFT) simu-
lations, relying on semilocal [17] exchange correlation and
including dispersion [18,19] corrections within Grimme’s
D2 [20] prescription. The approximations adopted are
listed and discussed in detail in Supplemental Material
[21]. The QUANTUM ESPRESSO [30] simulation package is
exploited, in combination with ultrasoft pseudopotentials
and an energy cutoff of 35 Ry for the plane-wave expansion
of the electronic wave functions. Since we are primarily
interested in the flow of a single He atom, periodic DFT
simulations will minimize the interaction with periodic
replicas by adoption of a long supercell (eight unit cell
replicas along the CNT axis, with a total length of 19.7 Å)
and setting the transversal cell size to 15 Å. The
Hamiltonian describing the one-dimensional (1D) motion
of a He monomer along the CNT axis (indicated as x̂—
atomic units are adopted hereafter) is

HHe ¼ −
∂
2
xHe

2mHe
þ VHeðxHe;Rion; δρelÞ; ð1Þ

where Rion are the ionic coordinates and δρel the electronic
charge displacements in the CNT. To investigate the
problem within a perturbative framework, we initially
assume that all C atoms are fixed in the equilibrium
configuration and that no electronic displacement takes
place. In physical terms, this corresponds to the Born-
Oppenheimer (BO) approximation, in combination with the
electronic ground state. Under these assumptions, the
potential energy VHe experienced by a single He molecule
traveling along the (5,5) CNT is computed by DFT.
Transversal (ŷ − ẑ) He motion can be approximated by a
2D quantum harmonic oscillator model, whose frequency
(estimated by DFT) ωHe is ∼8 meV. As from Fig. 1, VHe is
a sinusoidal function of xHe (phases can be absorbed by
rigid translation): VHeðxHeÞ ∼ V sinð2QxHeÞ, where Q ¼
2π=L and L is the CNT unit cell length (i.e., 2.46 Å). The
magnitude of the oscillations amounts to V ∼ 0.035 meV
(and undergoes limited change when exact exchange is
included—see Ref. [21]). Dispersion interactions contrib-
ute to V with only ∼3 × 10−4 meV and can, thus, be

neglected. Notably, V is about 200 times smaller than ωHe;
one accordingly expects that, for sufficiently slow He,
transversal excitations can be factorized from longitudinal
translations. The motion of He is, thus, effectively reduced
to 1D.
The He spectrum relative to longitudinal motion is

obtained diagonalizing the Hamiltonian Eq. (1), and it is
hardly distinguishable from the free-particle dispersion
EfreeðkÞ ¼ k2=ð2mHeÞ, where k is the (1D) x̂ momentum
(parallel to the CNT longitudinal axis). As from Fig. 2,
largest deviations are found at the Brillouin-zone edges,
where small band splittings emerge due to the He-CNT
coupling VHe. Because of the similarity between the free
and interacting He spectra, one can estimate the atomic
velocity as vHe ≃ q=mHe, while single plane waves provide
a good approximation for He eigenstates.
Both He-phonon and He-plasmon couplings provide

possible channels for the He-CNT scattering. Clearly, the
spectra of the available (phononic and plasmonic) excita-
tions play a major role in this respect, eventually determin-
ing the admitted transitions. Given the small energy scales
observed so far, one can assume that the lowest-frequency
modes will be most relevant. Concerning phonon excita-
tions, the (5,5) CNT is characterized by four acoustic
modes [11,31] whose frequency vanishes in the q → 0
limit, according to a linear dispersion ωjðqÞ ¼ vjjqj. The
index j runs over two degenerate transverse-acoustic modes
(TA) with vTA ¼ 4.5 × 10−3 a:u:, a twist mode (TW) with
vTW ¼ 6.9 × 10−3 a:u:, and longitudinal-acoustic mode
(LA) with vLA ¼ 9.7 × 10−3 a:u:, according to existing
[11,31] literature. A longitudinal plasmon with vanishing
frequency at q → 0 also exists, while transversal plasmon
modes are gapped. Given the longitudinal metallicity of the
(5,5) CNT, nearly 1D plasmons exhibit [32] quasilinear
dispersion (up to logarithmic corrections—see Ref. [21]) in

FIG. 2. Spectrum of a single He atom (longitudinal modes),
subject to the potential VHe, as reported in Fig. 1. Since the
periodicity of VHe corresponds to half unit cell (i.e., L=2), the size
of the first Brillouin zone is rescaled correspondingly. Inset: detail
of a band edge, where VHe induces small splitting.
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the long-wavelength limit, and a tight-binding approach
(see the full derivation in Ref. [33]) predicts typical
plasmon velocities of the order of ∼1 a:u.
To address now the friction mechanism experienced by

He in the CNT, we consider that a traveling He atom can
scatter against the CNT, transferring part of its energy either
to CNT phonon modes or to plasmons. When scattering
takes place, the kinetic energy of the He atom decreases,
and this is traduced into an affective friction force. To

describe this process, one needs to explicitly treat both
ionic (Rion) and electronic (δρel) degrees of freedom,
overcoming the BO approximation. One accordingly
expands the potential energy VHe to first order in both
fluctuations, starting from equilibrium geometry (R̄ion) and
zero charge displacements (δρel ¼ 0). Ionic displacements
are defined as δRion ¼ Rion − R̄ion, and the expanded
potential reads

VHeðxHe;Rion; δρelÞ ¼ VHeðxHe; R̄ion; δρel ¼ 0Þ þ
X

i

∂Ri;ion
VHeðxHe;Rion; δρel ¼ 0ÞjRion¼R̄ion

δRi;ion

þ
X

i

∂δρel;iVHeðxHe; R̄ion; δρelÞjδρel¼0δρel;i þ � � � : ð2Þ

This expression can be physically interpreted noting that
the derivatives of VHe with respect to the ionic coordinates
relate to ionic forces: ∂Ri;ion

VHe ¼ −Fi;ion. Instead, the
derivative with respect to the ith charge ∂ρel;i corresponds
to an effective potential ṽi acting on site i. Equation (2) can,
thus, be expressed in compact form as −Fi;ionδRi;ionþ
ṽiδρel;i. Repeated indices are contracted for compactness,
and the same notation will be adopted hereafter. In Eq. (2),
ionic and electron-charge motions are treated as 3D, at
variance with He, and they naturally account for the quasi-
1D geometry of the CNT.
Both ionic and electronic-charge displacements are

connected to quantum-mechanical excitation modes of
the CNT, i.e., phonons and plasmons. In the case of
phonons, there exists a unitary transformation that allows
one to express the geometry of the jth collective vibrational
modes with (1D) wave number q [i.e., δR̃jðqÞ] in terms of
the ionic coordinates. The transformation is δR̃jðqÞ ¼
ð1= ffiffiffiffi

N
p ÞS†j;neiqlcLδRlc;n;ion, where the overall atomic index

is now split into a cell index (lc) and reduced atomic index
(n), belonging to the unit cell. Here, Sj;n is a unitary matrix
that determines the geometry of the jth phonon.Calculations
are formally performed in a box with finite length Λ,
containing N replicas of the unit cell. The limit Λ → ∞
is eventually taken, keeping the N=Λ unvaried. Then, by
defining F̃jðxHe; qÞ ¼ ð1= ffiffiffiffi

N
p ÞS†j;neiqlcLFlc;n;ionðxHeÞ, the

term −Fi;ionδRi;ion is recast in the following form:

XN−1

q¼0

F̃jðxHe; qÞδR̃jð−qÞ: ð3Þ

Upon quantization of the normal vibrationalmodes based on
quantum harmonic oscillators (QHOs), Eq. (3) is expressed
in terms of construction and annihilation operators (ã†j;q;ion,
ãj;q;ion) such that

δR̃jðqÞ ¼ ðãj;q;ion þ ã†j;q;ionÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mCωjðqÞ

q
: ð4Þ

Here, ωjðqÞ is the frequency of the jth phonon at wave
number q, and mC is the mass of a single C atom.
Equation (3) provides a coupling between He and CNT
phonons and can lead to scattering processes. Analogous
considerations can be extended to charge displacements;
hence, the He-plasmon coupling term turns out to share the
same architecture as Eq. (3), although involving the specific
geometry and energy spectrum of the plasmonmodes (these
can also be associated to QHOs, via analogous creation and
annihilation operators).
We now estimate He-phonon scattering rates by Fermi’s

golden rule. We assume that a He atom with initial (1D)
wave number kHe;i interacts with CNT phonons via Eq. (2),
ending up in the final wave number kHe;f. If the CNT
initially occupies the vibrational ground state, the transition
rate is

Γph
i−f ¼ 2πjhkHe;fj − F†

i;ionjkHe;iih1j;qjδRi;ionj0j;qij2
× δ½Ei;He − Ef;He − ωjðqÞ�; ð5Þ

where j0j;qi and j1j;qi are the ground state and first excited
state, respectively, for the jth phonon at q. The delta
function enforces energy conservation: In fact, the energy
lost by He (Ei;He − Ef;He) must be converted into phonon
excitation [ωjðqÞ]. We also note that occupation of the
vibrational ground state implies a T ¼ 0 description.
However, QHO excitation energies do not depend on the
initial state.
We now make use of Eqs. (3) and (4) and consider that

excitation of the jth phonon with wave number q gives
h1j;qjã†j;qj0j;qi ¼ 1. We also define ΔkHe ¼ ki;He − kf;He
and note that q must be compatible with the CNT unit cell.
Recalling that N unit-cell replicas are present in Λ, we
facilitate normalization also assuming a finite He density;
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namely, N0 atoms (having the same momentum for sim-
plicity) should be present in the adopted supercell. We also
note that ionic forces can be Fourier transformed as
Flc;n;ionðxHeÞ ¼ ð1=2πÞ R dqf̃nðqÞeiqðxHe−lcLÞ. After integra-
tion, Eq. (5) finally reduces to

Γph
i−f ¼ 2π

N0

NL2

����f̃nðΔkHeÞSn;j
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωjðΔkHe þmQÞmC

p
����
2

× δ½Ei;He − Ef;He − ωjðqÞ�: ð6Þ

In the Λ → ∞ limit, the ratios N=Λ and N0=N are kept
constant in order to avoid normalization issues. When
deriving the above equation, one finds that, in addition to
energy conservation, crystal momentum is also conserved:
In practice, one obtains the relation ki;He ¼ kf;Heþ
qþmQ, where m is an integer number that accounts for
umklapp processes; in practice, momentum is conserved up
to integer multiples of the CNT lattice momentum Q. This
property stems from the discrete translational symmetry of
the CNT.
As in conventional superfluids, conservation of energy

and momentum is traduced into a selection rule. At low
ki;He, it is possible to adopt a free-particle dispersion for He
(as justified above). Hence, conservation of crystal momen-
tum and energy is expressed as

k2i;He − k2f;He
2mHe

¼ −ðqþmQÞ2 þ 2ki;HeðqþmQÞ
2mHe

¼ ωjðqÞ:

ð7Þ

Equation (7) provides a generalization (due to umklapp
processes) of the familiar Landau’s criterion [4] of super-
fluidity, which gives the critical velocity below which the
elastic collision is forbidden and the mesoscopic particle
flows without friction. According to Eq. (7), only a limited
number of ki;He values are compatible with the excitation of
the jth phonon at momentum q:

ki;He ¼
ωjðqÞmHe

qþmQ
þ qþmQ

2
: ð8Þ

Recalling the linear phonon dispersion in the relevant low-
momentum regime ωjðqÞ ¼ vjjqj, one can examine how
the solutions depend on the integer umklapp parameter m,
with the aid of Fig. 3. At m ¼ 0, one has conservation of
the total momentum, as in conventional superfluid regimes,
and the admitted interval for the initial (positive) He
momenta is ki;He ∈ ½vjmHe; vjmHe þQ=2�. Because of
large phonon velocities, very high ki;He is obtained.
However, umklapp processes significantly alter this
picture, as a consequence of the CNT periodicity. At
m ¼ 1, the allowed momentum interval becomes
ki;He ∈ ½Q=2; vjmHe=2þQ�, and the lower extreme touches

here the minimum admitted value (q is varied between
0 and Q). As a consequence, no scattering is possible for
ki;He < Q=2 (see Fig. 3); below this threshold, friction
forces are expected to vanish, in close analogy to standard
superfluidity. The associated speed threshold for He
superflow in the (5,5) CNT is, thus, v�He ¼ Q=ð2mHeÞ ∼
9.2 × 10−5 a:u: (i.e., ∼200 m=s). Conversely, friction
forces are restored beyond v�He. Taking ki;He above the
threshold, multiple solutions (corresponding to differentm)
can be found. However, one expects that large momentum
transfer would be eventually associated to small scattering
rates, since the Fourier-transformed ionic forces f̃n should
decay at large momenta.
At variance with standard superfluidity, here the critical

velocity is independent from the excitation spectrum, due
to umklapp. Coming to plasmon excitations, analogous
conclusions are drawn by approximating the spectrum as a
linear function. Even accounting for the logarithmic cor-
rections to linearity expected in 1D metals, no solution is
possible below v�He; this unique critical velocity is sufficient
to discriminate the generalized-superfluid regime.
By the equipartition theorem, the He kinetic energy

associated to the 1D critical velocity v�He is traduced into a
temperature of about 20 K; this suggests that direct
injection of sufficiently slow He atoms into the CNT from
a reservoir could be nontrivial. Nonetheless, major energy
losses are expected when He leaves the bulk, entering the
CNT edge (due to the suppression of He-He interactions

FIG. 3. Graphical representation of the solutions Eq. (8) relative
to the scattering between helium and the TA phonon—analogous
solutions are found for the other excitation modes that characte-
rize the CNT. ki;He is the wave number of He in the initial state
(before the scattering takes place), and it is taken as positive. Each
red segment indicates the range of ki;He values compatible with
the He-phonon scattering at a given value of the integer parameter
m. When m ¼ 0 (standard solution), one has exact momentum
conservation (ki;He − kf;He ¼ q), whereas m ≠ 0 implies occur-
rence of umklapp phenomena (ki;He − kf;He ¼ qþmQ). We
recall that q is restricted to the Brillouin zone. In the area
delimited by dashed blue lines (colored in light blue), corre-
sponding to ki;He < Q=2, no solution is found and the scattering
is forbidden.
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and collisions with the CNT edge); He atoms in the CNT
should, thus, be slower than expected from naive consid-
erations. In conventional superfluidity, thermal occupation
of the available excitations introduces a normal component
of the fluid, which can cause scattering and finite friction.
Computation of the normal component for CNT phonons
and plasmon modes (see Ref. [21]) indicates that this does
not exceed ∼0.1% of the total available modes up to 300 K.
The stability of the generalized-superfluidity mechanism is
unparalleled and descends from the high phonon and
plasmon velocities.
In summary, quantum-mechanical analysis of a He atom

flowing through a subnanometer (5,5) CNT leads to a
theoretical description which is formally similar (yet not
identical) to Landau’s superfluidity criterion. The spectrum
of the CNT low-lying quasiparticle excitations (i.e., phonon
and plasmon modes) is quasilinear with respect to momen-
tum, although no Bose-Einstein condensation is assumed.
This implies the existence of a critical speed v�He ≃ 200 m=s,
below which He atoms cannot scatter against the CNT,
thereby encountering no friction. Remarkably, in the CNT,
v�He does not depend on the excitation spectrum, as a
consequence of lattice periodicity and umklapp. Indeed,
we have found that v�He ¼ Q=ð2mHeÞ, where Q ¼ 2π=L is
the lattice momentum of the CNTand L its unit-cell length.
While this Letter specifically addresses He flow, we expect
that other rare-gas atoms (or possibly other chemical
moieties) could equally move through the CNT with
vanishing friction, as long as their interaction with the
CNT walls is small enough to produce only weak geomet-
rical perturbations. Analogous generalized superfluidity is
expected in metallic and finite-gap CNTs with comparable
radii. Experimental validation by means of nanofluidic
techniques should be viable (see Ref. [21]) due to the
simplicity and stability of the mechanism with respect to
thermal excitations and due to the relatively high v�He value.
This Letter provides the first prediction of superfluidlike

mass transport in a standard solid system and complements
the ballistic electron transport already detected in CNTs. No
ultracold gas is introduced here, spectral linearity is not
strictly demanded at low momentum, and continuous trans-
lational invariance is not enforced. Extremely high perme-
abilities [34,35] (3–4 orders ofmagnitude larger than no-slip
hydrodynamic predictions—see Ref. [21]) experimentally
reported for water flow through nanoscale CNTs appear
qualitatively compatible with the present findings; in fact,
such measurements imply drastic suppression of friction
forces (by orders of magnitude) in the limit of small CNT
radii and could not be reproduced [36,37] by semiclassical
models. In spite of the higher complexity of water, a
generalized superfluidity mechanism may be responsible
for the observed friction suppression. We add that enhanced
nanofluidic flowwas also confirmed in activated [38] carbon
channels, and high osmotic flowwas found in double-walled
[39] CNTs. Extension of our quantum-mechanical theory

may also interest alternative nanoscale friction [40,41]
phenomena, involving, for instance, 1D and 2D hetero-
structures and interfaces, so that the boundary between
classical and quantum-mechanical friction mechanisms
should be revisited. This Letter finally opens new perspec-
tives for nanofluidics devices, suggesting, among others,
energy-efficient quantum-mechanical sieving, or nonde-
structive injection through cellular membranes.
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