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The control of guided water wave propagation based on the Autler-Townes splitting resonance concept is
demonstrated experimentally, numerically, and theoretically. Complete wave absorption is achieved using
an asymmetric pointlike scatterer made of two closely spaced resonant side channels connected to a guide
and designed so that its energy leakage is in perfect balance with the inherent viscous losses in the system.
We demonstrate that the nature of the resonators and guide junction completely controls the positions of the
wave numbers at the reflection and transmission zeros on the real axis; the asymmetry of the resonators
completely controls their positions on the imaginary axis. Thus, by adjusting these two independent
parameters, we obtain a zero reflection and transmission.
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Wave phenomena being ubiquitous, the control of waves
is an ever-changing field of study, as displayed, for instance,
in the last decades by the strong activity in metamaterials
[1,2]. Among the many wave controls that can be imagined,
absorption is of particular interest since it is able to lead to
energy harvesting or noise cancellation. The perfect absorp-
tion (PA) of waves by compact devices poses a scientific
and technological challenge that has attracted increasing
interest in recent years, in optics [3–6], acoustics [7–12],
and water waves [13–15]; in the latter context, this is
motivated by the need to reduce the reflection of waves in
harbors and basins [16,17]. Achieving PA for reflective
systems (one-port systems) is relatively easy as a single
scattering coefficient, in reflection, is involved. It can be
canceled by using a scatterer whose resonance is critically
coupled to the system [3,6,8,13]. However, if transmission
is allowed (two-port systems), obtaining perfect absorption
becomes challenging because it requires the cancellation of
both the reflection and transmission coefficients at the same
frequency. A neat trick to get around this problem is to use
two incident waves, one on each port, with a specific
combination of incident amplitudes. A type of perfect
absorption, called coherent perfect absorption, is thus
obtained by reproducing the sum of two independent critical
coupling problems [18,19]. When waves are incident from
one side, more sophisticated strategies have been devised
using scatterers supporting two resonances. One strategy is
to reduce the problem, in a nonsymmetrical way, to a one-
port problem with a resonator acting as a mirror over a
certain frequency range [20–22]. Another strategy consists
of activating, at the same frequency, two symmetric and
antisymmetric resonances critically coupled to the system

(degenerate resonances) [5,23]. Coupled resonators result-
ing in electromagnetic induced transparency (EIT) in the
lossless case have also been shown to produce enhanced
absorption [10].
In this Letter, we propose a new route to perfect absorption

that is based on the Autler-Townes splitting (ATS) concept.
The ATS, like the EIT, originates from quantum physics.
They correspond to limiting cases of strong orweak pumping
in a three-level atomic system [24,25], and their classical
analogs have been analyzed [26–29]. In [30–32], it has been
shown that two identical and closely spaced resonators
attached to a guide behave as a point scatterer with monop-
olar and dipolar resonances leading to rapid variations in
transmission and reflection. The appearance of ATS (two
transmission zeros at separate, either real or complex con-
jugate, wave numbers) has been analyzed for an increasing
coupling between the resonators fostered by a strong
evanescent field; for the classical EIT, in contrast, the
interaction is made possible by the interference of waves
propagating between two resonators separated by a distance
for which the evanescent coupling is negligible.
We consider two closely spaced resonant side channels

connected to a waveguide in which water waves propagate
(Fig. 1). When the water depth h is constant, a variation
cosh kðzþ hÞ in the depth coordinate z can be factorized
from field variables and the resulting problem for the
free surface elevation ηðx; yÞ becomes analogous to two-
dimensional acoustics satisfying

∇2ηþ k2η ¼ 0; ð1Þ
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with dispersion ω2 ¼ gk tanh kh (where k is the wave
number at frequency ω and g is the gravitational constant).
In the following, the PA is going to be achieved by
analyzing the wave numbers at the zeros of transmission
and reflection in the lossless case, which we want to drive
to the same complex value, with the imaginary part exactly
compensating the viscous losses induced by friction on the
bottom and on the walls. To do this, we rely on the long-
wavelength model of [32], which provides explicit expres-
sions for the reflection and transmission coefficients. This
allows us to interrogate the qualitative structure of the wave
response and reveals the existence and nature of the ATS,
thus providing an explicit recipe for tuning the system for
PA. In parallel, we perform direct numerical calculations of
the solution (i.e., without making any assumptions about
long wavelengths, see Appendix A for details) and compare
the results with experiments.
Analysis and experimental evidence of ATS.—To dem-

onstrate the ATS mechanism, that is to say, the strong
evanescent coupling between the two resonators leading to
two distinct zeros of transmission, we begin with the
problem of a symmetric scatterer (two identical resonant
side channels with heights b ¼ b1 ¼ b2 in Fig. 1), whose
features will provide an important guide for the discussion
of asymmetric scatterers (detuned side channels with
b1 ≠ b2). Note that evanescent coupling can be tuned by
varying the ratio dþ=d, see Appendix B. The analysis that
follows is made on the assumption of long waves equiv-
alent to a low frequency approximation. Thus, in the guide,
only the plane mode propagates and far enough away from
the scattering region at x ¼ 0, ηðx; yÞ ≃ ηðxÞ. For an
incoming wave from the left with wave number k and
complex amplitude Ainc, the free surface elevation is ηðxÞ ¼
Aincðeikx þ R0e−ikxÞ, x < 0, and ηðxÞ ¼ AincT0eikx, x > 0,

with the time dependence convention e−iωt and with
ðR0; T0Þ as the complex-valued reflection and transmission
coefficients. Following [32], the effect of the scatterer is
replaced by jump conditions, at x ¼ 0, on η and its
derivative with respect to x; these jumps involve four real
dimensionless parameters ðδa; δs; δ0; δÞ that depend only on
the geometry of the junction d=a [32], with d as the guide
width and a as the channel width, see Fig. 1; see also Sec. I
of the Supplemental Material [33].
Close to the resonance frequency that occurs at

kb ∼ π=2, ðR0; T0Þ can then be written as

R0¼−i
a
db

ðk−κ0Þ
ðk−kþ0 Þðk−k−0 Þ

; T0¼
ðk−κþ0 Þðk−κ−0 Þ
ðk−kþ0 Þðk−k−0 Þ

; ð2Þ

where κ0, κ�0 are the zeros of R0 and T0 and k�0 are the poles
of the scattering matrix, which take the form

κ0 ¼
π

2b
−

a
b2

δa; κ�0 ¼ π

2b
−

a
b2

ðδ0 ∓
ffiffiffiffiffiffi
Δ0

p
Þ;

k−0 ¼ π

2b
−

a
b2

δs−
ia
db

; kþ0 ¼ π

2b
−

a
b2

δa −
iad
b3

δ2; ð3Þ

with Δ0 ¼ ðδ0 − δaÞ2 − δ2. It can be remarked that the
wave number κ0 corresponding to zero reflection is always
real, resulting in a transparent window in the transmission
spectrum. In contrast, the wave numbers κ�0 at the two
transmission zeros experience a transition [34] from com-
plex conjugates (Δ0 < 0) to purely real (Δ0 > 0) when
increasing d=a. This is confirmed in Fig. 2 where we report
results from direct numerics in the two-dimensional setting
varying d=a and b=a at given a. We show the critical curve
ðd=aÞc above which the wave numbers at the zeros of T0

are real. The insets (a)–(c) show typical profiles of jR0j and
jT0j against wave number k, revealing the characteristic

FIG. 1. (a) Conceptual view of the setting made of two closely
spaced resonant channels (acting as a scatterer) connected to a
guide where water waves propagate; the insets show pictures of
the junctions made by 3D printing (b) a symmetric scatterer with
b1 ¼ b2 and (c) an asymmetric scatterer (b1 ≠ b2) used for
perfect absorption.

FIG. 2. Critical curve ðd=aÞc against b=a from direct numerics.
(a)–(c) typical variations of (R0, T0) vs wave number k with two
perfect transmission zeros at real wave numbers κ�0 for d=a >
ðd=aÞc and weak transmission dips for d=a < ðd=aÞc. (d) Trans-
mission spectrum for b=a ¼ 4=3 as used in the ATS experiment.
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splitting of the two transmission zeros at real wave numbers
κ�0 as d=a is increased beyond ðd=aÞc. Note that the model
predicts that the critical curve ðd=aÞc (Δ0 ¼ 0) is indepen-
dent of the channel length b; numerically, we observe a
dependence (albeit quite weak) with b that is not accounted
for in the model [the model provides the asymptote
ðd=aÞc ¼ 1.8 for large b=a].
In the experiment, we use d ¼ 6, b ¼ 4, and a ¼ 3 cm

with a 140 cm long guide and a water depth h ¼ 5 cm.
Waves at frequencies f∈ ð2.3; 3.7Þ Hz are generated using
a plunging-type wave maker guided by a linear motor and
placed at the left end of the guide (typical wavelength is
20 cm). We benefit from space-time resolved measure-
ments from which, for each frequency, the complex field
ηðx; yÞ can be deduced by Fourier transform of real time
signals [35–37]; see Appendix C for details. An example
of such a field is shown in Fig. 3(a) for f ¼ 3.3 Hz
(kb ¼ 0.55π). At this frequency, only the plane mode is
propagating and, in the experiment, we observe that
ηðx; yÞ ≃ ηðxÞ in reflection and transmission except in
the vicinity of x ¼ 0. Here, the field is two-dimensional
due to the presence of the evanescent field triggered by the
junction. Therefore, we identify the complex incident
amplitude Ainc and the scattering coefficients ðR0; T0Þ by
taking measurements far enough from this region [and, in
practice, ηðxÞ is obtained by averaging ηðx; yÞ over y]. We
also measure the complex amplitudes A1 and A2 on the end
walls of the channels. Figure 3(b) shows the field radiated,
or emitted, by the scatterer ηradðxÞ ¼ ½ηðxÞ − ηincðxÞ�=Ainc

where ηincðxÞ ¼ Ainceikx. We observe a symmetrical,
monopolar emission up to f ≃ 3.1 Hz, then a progressive
phase shift of the transmitted wave leads to an asymmet-
rical, dipolar emission. This is confirmed by the symmetric
and antisymmetric amplitudes in the side channels, As ¼
ðA1 þ A2Þ and Aa ¼ ðA1 − A2Þ, whose variations as a

function of f, normalized to A ¼ jA1j þ jA2j, are reported
in Fig. 3(c). We observe that jAsj=A ≃ 1 when the monop-
olar resonance is dominant (A1 ≃ A2 are in phase) and that
jAaj=A ≃ 1 when the dipolar resonance is dominant
(A1 ≃ −A2 are out of phase).
The scattering coefficients ðjR0j; jT0jÞ as a function of

frequency are shown in Fig. 4, highlighting the ATS with
two dips in transmission (zero transmission in the lossless
case). The monopolar resonance (kb ¼ 0.40π) is very
weakly affected by the losses, which leads to an almost
zero transmission in good agreement with the direct
numerics (dashed lines in the lossless case); on the other
hand, the dipole resonance is significantly weakened with a
transmission dip at kb ≃ 0.55π which does not go to zero.
In the model, the frequencies at monopole resonance
(κ−0 b ¼ 0.44π) and at dipole resonance (κþ0 b ¼ 0.56π)
are consistent with our measurements and each is asso-
ciated with a near pole k�0 [with k−0 b ¼ ð0.46 − 0.16iÞπ and
kþ0 b ¼ ð0.57 − 0.01iÞπ]. Furthermore, the leakage of the
two resonances given by the imaginary parts of k�0 differ by
a factor of 16, which is what we see in the experiment
(when measuring for the two resonances, the ratio of the
half-value widths or the absorption α ¼ 1 − jR0j2 − jT0j2)
and what we used for the direct numerics in the lossy case
shown by plain lines in Fig. 4. In doing so, however, we
note mismatches between experiments and direct numerical
calculations, which are partly attributable to imperfect
modeling of the frequency dependence of losses in the
experiments and partly to unaccounted-for effects such as
the nonlinearities inherent in the experiments.
Analysis and experimental realization of PA.—The PA is

obtained by analyzing the wave numbers associated with
zero transmission and zero reflection in the lossless case,
which we want to bring to the same complex value; this
complex value will be compensated by the losses afterward
in the experiments [38]. According to what we have seen
previously, this is not possible using a symmetrical scatterer
because the wave number at zero reflection is always
real. We will see that this is no longer the case for a

FIG. 4. Scattering coefficients vs nondimensional wave num-
ber, experiments (symbols), and numerics (lossy case, plain
line; lossless case, dashed lines). The insets show Re½ηðx; yÞ�
at f ¼ 2.7 and f ¼ 3.3 Hz (arrows).

FIG. 3. Experimental ATS; monopolar and dipolar resonances.
(a) Re½ηðx; yÞ�, the real part of ηðx; yÞ, measured at
f ¼ 3.3 Hz. (b) Real part of the radiated field Re½ηradðxÞ� vs f,
revealing a transition from monopolar to dipolar resonances.
(c) Normalized symmetric As and antisymmetric Aa channel
amplitudes vs f (A ¼ jA1j þ jA2j).
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nonsymmetric scatterer; we now consider an asymmetry
parameter ε defined by b1 ¼ bð1 − εÞ, b2 ¼ bð1þ εÞ, with
jεj < 1 (Fig. 1). Extending the model of [32] for different
channel heights, we obtain near the resonance at kb ≃ π=2
the new form of the scattering coefficients,

R¼−i
a
db

ðk− κÞ
ðk−kþÞðk−k−Þ ; T ¼ ðk− κþÞðk− κ−Þ

ðk−kþÞðk−k−Þ ; ð4Þ

with

κ¼ κ0þ i
πd
b2

δε; κ� ¼ π

2b
−

a
b2

ðδ0∓
ffiffiffiffi
Δ

p
Þ; ð5Þ

and Δ ¼ Δ0 þ ðπb=2aÞ2ε2 (see Sec. I of the Supplemental
Material [33]). Compared to (3), we notice that the
asymmetry shifts the wave numbers at zero transmission;
as we will consider a reference case with Δ0 < 0, it only
affects the imaginary part of κ�. In parallel, the wave
number at zero reflection acquires a complex value propor-
tional to ε. We are now able to move to the PAwithout the
need for a complex optimization process by performing
κ ¼ κþ (the zero of transmission with positive imaginary
value) with two very simple steps: in step 1 we will first
ensure equal real parts and, subsequently, in step 2 we will
achieve equal imaginary parts.
Step 1: ReðκÞ ¼ ReðκþÞ—if Δ < 0 (which implies

Δ0 < 0); this condition is the same as Reðκ0Þ ¼ Reðκþ0 Þ
since the wave numbers have a real part independent of ε.
According to (3) and (5) this condition is realized when

δ0 ¼ δa: ð6Þ

Step 2: ImðκÞ ¼ ImðκþÞ. This equality requires

�
1þ

�
2δd
b

�
2
�
ε2 ¼

�
2δ

π

a
b

�
2

: ð7Þ

If we add the condition (6) on d=a, the above condition
provides a one-to-one correspondence between (b=d) and
ε ¼ εPA realizing κ ¼ κþ, which is necessary to achieve
perfect absorption when losses are taken into account.
To design our experimental setup, we followed the above

procedure to obtain an initial guess and then used an
iterative test on experimental measurements, which allows
us to eventually find the values a ¼ 2.63, b1 ¼ 3.24, and
b2 ¼ 3.64 cm (ε ¼ 0.058), which fall very close to our
prediction (see Appendix B). The PA is demonstrated and
analyzed in Figs. 5 and 6. We first plot the field ηðx; yÞ
measured at f ¼ 2.9 Hz and the corresponding profile ηðxÞ
averaged along y in the guide and normalized to the
incident amplitude, see Fig. 5(a), where negligible trans-
mission and reflection are realized. This is confirmed in
Fig. 6(a) where we plot the variations of the ðR; TÞ
measured experimentally vs kb=π; these variations are

well reproduced by direct numerics using constant losses
ki ¼ 0.023 cm−1.
Perfect absorption is obtained because the scatterer is

able to radiate strongly anisotropically (toward x < 0 and
x > 0) in phase, which was already the case in the
symmetric case but here also in amplitude. In Fig. 5(b),
we have plotted ηincðxÞ and ηradðxÞ as functions of f, as in
Fig. 3(a). The anisotropy is clearly visible and the con-
ditions ηradðx < 0Þ ≃ 0 and ηradðx > 0Þ ≃ −ηincðx > 0Þ are
satisfied. This nonsymmetric emission is made possible by
a balance between the amplitudes A1 and A2 in the side
channels, resulting in a balance between the symmetric As
and antisymmetric Aa amplitudes shown in Fig. 6(b). We
observe that these contributions are 90° out of phase with a

FIG. 5. Experimental measurements of the wave field for the
perfect absorption. (a) 2D field of the surface elevation ηðx; yÞ
and mean profile ηðxÞ (real part and amplitude) at f ¼ 2.9 Hz
with no reflection [no beating of jηjðxÞ for x < 0] and no
transmission [ηðxÞ ¼ 0 for x > 0]. (b) Profiles of the incident
ηincðxÞ and radiated ηradðxÞ waves vs frequency.

FIG. 6. Experimental PA. (a) Reflection jRj2, transmission jTj2,
and absorption α against nondimensional frequency kb=π.
(b) modulus and phase of As=Aa.
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ratio As=Aa ∼ 0.5 at the PA. Interestingly, this relationship
is consistent with a calculation in which the two channels
are replaced by two point sources separated by a distance
a=2 and imposing amplitudes (A1, A2) with A1 ¼ −A2eika

(see Sec. II of the Supplemental Material [33]).
In conclusion, we have demonstrated, experimentally

and theoretically, the Autler-Townes splitting for a sym-
metric scatterer interacting with waves propagating in a
guide. By extending the model to the case of nonsymmetric
scatterers, we have obtained a simple procedure to achieve
perfect absorption by shifting, in the complex plane, the
wave numbers producing the transmission and reflection
zeros to exactly the same value, chosen in such a way as to
compensate exactly the inherent losses in the system. The
approach we are following and the resulting phenomenol-
ogy are not restricted to water waves, and thus, our findings
could find applications to all domains of wave physics,
from matter to electromagnetic and optical waves. We
foresee that the proposed strategy, using asymmetric
configuration of evanescently coupled resonators, opens
new directions to achieve perfect subwavelength absorp-
tion; in particular, it would be interesting to extend our
analysis to the case of a scatterer formed by N > 2
resonators with N governing the number of resonances.

The authors acknowledge the support of the ANR under
Grants No. 243560 CoProMM and No. ANR-19-CE08-
0006, and of the Agence de l’Innovation de Défense from
DGA under Grant No. 2019 65 0070.

Appendix A: Numerical method.—Direct numerical
calculations were performed by solving (1) using a
multimodal method as in [32]. This consists of writing
the two-dimensional field in each domain of constant
width dðjÞ ¼ ðd; ðdþ b1Þ; dþ; ðdþ b2Þ; dÞ, j ¼ 1;…; 5
in the form

ηðjÞðx; yÞ ¼
X∞
n¼0

ðanðjÞeiknðjÞx þ bnðjÞe−ikðjÞnxÞEðjÞnðyÞ;

ðA1Þ

with the EnðjÞðyÞ ¼ cosðnπy=dðjÞÞ forming a basis of
transverse functions satisfying the boundary conditions at

y ¼ 0 and dðjÞ and kðjÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ðnπ=dðjÞÞ2

q
forming the

wave numbers along x. The problem is then solved
classically by projecting the continuity conditions of η
and ∂xη onto the transverse functions at each width
discontinuity. The resulting system, after truncation of the
series in (A1), is then inverted to obtain the reflection

coefficients Rn ¼ bð1Þn (the incident wave being associated

with að1Þn ¼ 1), the transmission coefficients Tn ¼ að5Þn

(with bð5Þn ¼ 0, which takes into account the radiation

condition), and the amplitudes ðaðjÞn ; bðjÞn Þ, j ¼ 2, 3, 4,
hence the whole complex field ηðx; yÞ. In the lossy

case, we simply consider k¼krþ iki. For Fig. 4, we
used kib¼ 0.01π expf−½ðkb−0.57πÞ=0.03b�2g, which
produces the expected losses ki ≃ 10−3 cm−1 in the
vicinity of the resonance at kr ¼ 0.57π=b. For Fig. 6, we
simply used constant ki given by the imaginary part of κ.

Appendix B: Additional information on the ATS and
PA experiments.—The ATS experiment aims to
demonstrate, for b1 ¼ b2, the realization of two distinct
transmission dips at two real wave numbers (in the
lossless case, two perfect transmission zeros). To do this,
we used a junction region that fosters evanescent
coupling between the side channels; specifically,
communication between them was made easier by
shifting the position of the partition wall, dþ > d as
shown in the inset of Fig. 1(a) (we used d ¼ 6, dþ ¼
8 cm for a ¼ 3 cm). The resulting effective parameters
ðδa; δs; δ0; δÞ, which are independent of b and frequency,
are for this “junction 1”: δa ¼ −0.2831, δs ¼ 0.1501,
δ0 ¼ −0.0069, δ ¼ 0.1420, resulting in Δ ¼ Δ0 ¼
0.056 > 0, according to the numerical results of Fig. 1,
slightly above the critical value ðd=aÞc ∼ 1.6 realizing
Δ0 ¼ 0 (in the model, this value is independent of b=a,
while the numerics show a variation for small b=a
values).
In the PA experiments, we want complex wave numbers

at the transmission zeros, which, from (5), requires Δ0 < 0.
As this condition implies small (d=a), which would
increase losses due to viscous effects in the waveguide,
we move to a junction (named junction 2) for which the
partition wall is flush with the guide wall (dþ ¼ d). The
numerically determined resulting critical curve ðd=aÞc is

FIG. 7. Critical curves ðd=aÞc for junction 1 (ATS exp) and for
junction 2 (PA exp) obtained from direct numerics. (a) The
transmission spectrum for b=a ¼ 4=3 as used in the ATS
experiment. (b) The transmission spectrum for b=a ¼ 1.31 as
used in the PA experiment. (a),(b) We report the geometry of the
junctions; d=a ¼ 3 and dþ=a ¼ 4 for junction 1, d=a ¼ 2 for
junction 2. The arrows show the values of d=a in the experiments.
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significantly shifted toward higher d=a values compared to
that of junction 1, as shown in Fig. 7 [and, as for junction 1,
we observe a dependence of ðd=aÞc on b=a, whereas the
model only provides the asymptotic value ðd=aÞc ¼ 3.7 for
large b=a, see Ref. [32] ].
To design our experimental setup, we start by following

the two-step procedure [(6) and (7)] corresponding to the
theoretical conditions of the PA. In the first step, (6)
requires that δ0 ¼ δa (which depends only on d=a, the
junction geometry). We find that this condition is met for
d=a ¼ 3.0, which fixes the values of the four parameters;
namely, we have for this “junction 2” δa ¼ δ0 ¼ 0.6812,
δs ¼ 0.6498, and δ ¼ 0.2476.
With ðd=aÞ ¼ 3.0 from the previous step, (7) provides a

simple condition between b=d and ε only. The resulting
curve ε ¼ εPA against b=d is shown in Fig. 8 (red dotted
line). For completeness, we also show the shaded region
(obtained numerically) within which the ATS with two
distinct complex transmission zeros is observed. By con-
struction, each pair (b=d, ε) realizes κþ ¼ κ, and we want
now their imaginary part (in the lossless case) to be exactly
compensated by the viscous losses. In our experiments, we
expect the losses to be well described by a wave number
whose imaginary part is ki ∈ ð0.02; 0.03Þ cm−1. From (5),
this reduces the allowable ranges along the ε ¼ εPA curve to
b=d∈ ð0.55; 0.65Þ and ε∈ ð6.3; 6.9Þ × 10−2. The inset in
Fig. 8 shows the PA obtained numerically for a particular
point of this curve for ki ¼ 0.026 cm−1 (the lossless case is
shown for comparison) with an absorption reaching
α ¼ 1 − jRj2 − jTj2 ≃ 1. As mentioned earlier, this analysis
was used as a starting point in the experiments. The PA
observed in Fig. 8 provides, if we use a waveguide with
d ¼ 6 cm, the values of a ¼ 2.0, b1 ¼ 3.21, and
b2 ¼ 3.67 cm. We found that a ¼ 2.63, b1 ¼ 3.24, and
b2 ¼ 3.64 cm produce higher absorption, as demonstrated

in the main text (the square in Fig. 8 which is close to the
theoretical curve).

Appendix C: Experimental FTP measurement.—This
measurement technique is based on the analysis of local
displacements of fringes projected onto the free surface at
rest and disturbed by wave propagation, which allows a
measurement of the real-valued free surface elevation
ηtðx; y; tÞ recorded by a high speed camera. The complex-
valued free surface elevation ηðx; yÞ is then obtained by
Fourier transform ηðx; yÞ ¼ R tf

0 ηtðx; y; tÞeiωtdt, with ω the
working frequency imposed by the wave generator and tf
corresponding to several 2π=ω periods [35–37]. We use a
camera with 1936 × 1216 pixels, which gives a spatial
resolution δx ¼ δy ¼ 0.4 mm=pixel on a 75 cm wide
region of the guide (including the height of the guide and
channels) and a temporal resolution given by the camera
acquisition speed δt ¼ 50 ms.
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