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High harmonic generation (HHG) has become a core pillar of attosecond science. Traditionally
described with field-based models, HHG can also be viewed in a parametric picture, which predicts all
properties of the emitted photons, but not the nonperturbative efficiency of the process. Driving HHG with
two noncollinear beams and deriving analytically the corresponding yield scaling laws for any intensity
ratio, we herein reconcile the two interpretations, introducing a generalized photonic description of HHG. It
is in full agreement with field-based simulations and experimental data, opening the route to smart
engineering of HHG with multiple driving beams.
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Attosecond science is currently building on evermore
specialized light sources based on gas-phase high harmonic
generation (HHG), an extremely nonlinear process in
which an intense infrared laser is coherently up-converted
into higher-order harmonics of its own frequency [1].
It provides extreme ultraviolet (XUV) or soft x-ray radi-
ation [2–4] bunching as trains or isolated attosecond pulses,
which can be utilized for the study of nuclear and electron
dynamics with attosecond time resolution [5,6]. In addition,
the ultrabroad coherent HHG spectrum carries information
about the underlying dynamical nonlinear response of the
medium on an attosecond timescale [4,7–9]. The current
understanding of HHG relies on the solution of the time-
dependent Schrödinger equation [10–15]. Upon simplify-
ing assumptions, it leads to the strong field approximation
(SFA). The latter directly matches the classical three-step
model, wherein, driven by the laser electric field, an
outermost electron of the atom is tunnel ionized, accel-
erated in the continuum, and finally recombined with
the ionic core, emitting its excess of energy as an XUV
photon [16–19]. All three steps depend nonlinearly on the
exact waveform of the driving field [18,20]. Nevertheless,
HHG in a gas jet can be approximated using a simple
empirical treatment often referred to as the thin-slab model
(TSM) [21,22], or active grating model [23]. Neglecting
longitudinal phase-matching effects, HHG is approximated
as happening in a single plane, in which the electric
field of harmonic q scales as jEjqeff , and has a phase
q arg½E� þ αatjEj2, where E is the electric field of the
driving laser, and qeff and αat being two constants depend-
ing on the species and wavelength. This model has been
extremely successful in a great variety of experimental
conditions [24–26]. Importantly, qeff ≠ q reflects the non-
perturbative nature of HHG: Although the properties
(energy, linear, and angular momenta) of the harmonic

photons can be perfectly understood as originating from the
addition of q photons from the driving field, the harmonic
yield does not scale as jEjq as in perturbative nonlinear
optics phenomena [27]. Indeed, one of the most distinctive
feature of HHG is the formation of a spectral plateau,
over which the efficiency varies moderately with the
harmonic order.
A special case of HHG which has drawn increasing

attention in both fundamental studies and applications is
the so-called noncollinear HHG (NCHHG), wherein two
beams crossing with an angle at focus are used. In this
geometry, each harmonic is angularly split into several
beamlets [21,28,29], whose properties can be different and
finely controlled by modifying the two driving beams.
For instance, beamlets with varying spin [30,31] and
orbital [32,33] angular momenta were observed, opening
the road to applications [34,35]. The properties of each
beamlet can be easily understood within the parametric
picture: Conservation laws require that a photon in beamlet
p of harmonic q results from the absorption of (q − p)
photons from the first beam, and p from the second,
summing their momenta and energies. Although the photon
picture fails to predict the general nonperturbative yield of
HHG, Bertrand et al. [29] have shown experimentally that
in the case of NCHHG with a very weak secondary beam,
the intensity of beamlet p obeys a perturbative scaling law
Ip ∝ ðI2Þp, with I2 the intensity of the second beam. This
yield law was later refined by Li et al. [36] using a quantum
optical model to describe the saturation observed as the
intensity in the secondary beam is increased. These
descriptions, however, remain limited to a narrow range
of intensity ratios: As soon as the yields start to deviate
from the perturbative behavior, the exact form of the yield
law is no longer known, and the intuitive interpretation in
terms of perturbative photon channels is lost. It is puzzling
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that the photon model is able to predict the yield of
individual beamlets in NCHHG over a narrow range of
intensities, but fails beyond or in regular collinear HHG,
while still predicting other properties of the harmonic beams
in all these situations. This asks for more experimental
investigations of the yield laws in NCHHG, which are fairly
scarce to date, and for a unifying framework that could
conciliate both field-based and photon-based approaches.
In this Letter, we use an analytical expansion of the TSM

to derive the yield laws of NCHHG beamlets for any
intensity ratio of the two beams. We are able to readily
interpret the form of these laws in terms of competing
photon channels, in full compatibility with previous inter-
pretations. We compare this model to experiments covering
the complete range of ratios, and to numerical simulations
based on the SFA including phase matching. This paper is
accompanied by a joint publication [37], in which we
demonstrate that the scaling laws derived here can be
visually deduced from the spatial profile of the harmonic
beamlets when driving NCHHG with structured beams.
The experimental setup is based on a Ti:sapphire femto-

second laser, which delivers pulses of 1.5 mJ energy, 25 fs
FWHM duration, at a repetition rate of 1 kHz [38]. The
beam is split into two using an optical beam splitter. The
main beam carries enough energy to generate harmonics on
its own when focused by a 75 cm focal length lens, with a
cutoff about harmonic 19 corresponding to an intensity of
∼0.5 × 1014 W=cm2. The second beam passes through a
motorized adjustable attenuator enabling the adjustment of
its amplitude before being focused by an identical lens. We
define α as jE2=E1j, the ratio of the amplitudes of the two
beams at focus. The two beams are temporally overlapped
and cross at an adjustable angle at focus, in a jet of argon
gas [Fig. 1(a)]. The experimental parameters are optimized
for short trajectories by adjusting the focusing lens position
and irises [39]. The generated harmonics are then detected
by a photon spectrometer based on a grating and micro-
channel plates equipped with a phosphor screen, finally
imaged on a CCD camera.
Figures 1(b) and 1(c) show typical images recorded by

the camera for different levels of perturbation, showing the
expected series of beamlets for each harmonic order. We
observe nicely round-shaped beamlets, with a cutoff about
harmonic 19, which agrees with the peak intensity esti-
mation, and rules out important plasma-induced effects. As
established in Refs. [21,29,40], the wave vector associated
with the pth beamlet (p ¼ 0 where θx ¼ 0), for harmonic
q, is given by k⃗q;p ¼ ðq − pÞk⃗1 þ pk⃗2, where k⃗1 and k⃗2 are
the wave vectors associated with each beam. For large α,
the p ≥ 0 side is clearly dominating, and the first beamlets
p ¼ 0, 1, 2 start to fade out.
Being able to finely scan the amplitude ratio of the two

beams, we first explored a narrow range of α close to α ¼ 0
to observe a perturbative behavior with respect to beam 2.
The intensity I1 was fixed while I2 was varied such that α

spanned from 0 to 0.15, allowing us to observe beamlets up
to p ¼ 2. The intensity of each beamlet was summed over a
constant-sized box centered on its peak. Basic processing
(Supplemental Material S2 [41]) yields the magnitude of
the electric field jEp

q j displayed in Fig. 2(a) as a function of
α. The fits with the perturbative scaling law jEp

q j ∝ αjpj are
indicated as dot-dashed lines. The trends are the same for
all harmonics (Supplemental Material S2 [41]). We observe
that the fit is only acceptable up to α ¼ 0.05, above which
experimental yields progressively depart from this law, and
we note a saturation followed by a decrease.
To understand these observations, we perform an ana-

lytical development of the TSM. We consider two laser
beams, one propagating in the x-z plane linearly polarized
along x, with wave vector k⃗1 and the other with k⃗2 forming
a small angle θ with the first beam and linearly polarized in
the x-z plane. Although this polarization configuration

FIG. 1. (a) Schematic of the experimental setup. θ is in the x-z
plane. At the bottom are typical images observed on the micro-
channel plate (x-y plane) for (b) low (α ≪ 1) and (c) high (α ≈ 1)
perturbation regimes. The dashed yellow line marks the position
of the zeroth order of diffraction, i.e., the position of the spectrum
generated by beam 1 alone. The angle between the driving beams
is respectively 40 mrad (b) and 28 mrad (c).
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creates a small longitudinal field, and is not ideal for
interferences, it is experimentally favorable for the optics
used, and we have chosen it. In the following, we neglect
the (weak) longitudinal field along z. We write Δk⃗ ¼
k⃗1 − k⃗2 andΔk⊥ the projection ofΔk⃗ along the transverse x
direction. The electric field at location r⃗ reads

Eðr⃗Þ ¼ E0e−ik⃗1·r⃗
�
1þ αeiΔk⃗·r⃗

�
: ð1Þ

In the TSM, we estimate the field of harmonic q as

ENF
q ∝ jEjqeffeiðq arg½E�þφatÞ ¼ ðEÞqþðE�Þq−eiφat ð2Þ

with qeff ≃ 3.5 for our experimental conditions [22,42],
q� ¼ ðqeff � qÞ=2, and φat ≃ αatjEj2 is the atomic phase.
Neglecting the latter (see Supplemental Material S1 [41] for
a brief description, which includes Refs. [43,44]), we apply
the generalized binomial theorem with ascending powers
on α to get, for α < 1,

ENF
q ∝ jE0jqeffeiq arg½E0�

Xþ∞

p¼−∞
eipΔk

⊥x
Xþ∞

n¼0

αjpjþ2nanp

with anp ¼
� qþ

nþ jpjþp
2

�� q−

nþ jpj−p
2

�
: ð3Þ

The anp coefficients are products of two generalized
binomial coefficients. They stem from the expansions of
ðEÞqþ and ðE�Þq− in Eq. (2), which may be associated,
respectively, with absorption and stimulated emission
photonic processes driven by the composite field. Upon
Fourier transform to the far field, Eq. (3) yields a beamlet
for every relative integer p, spreading along the x axis. For
reaching beamlet p, the leading term in the expansion
n ¼ 0 corresponds to the absorption (or emission for
p < 0) of jpj photons in the composite beam, scaling
perturbatively as αjpj, as already inferred in Refs. [29,36].
With α increasing, we predict an infinite number of
additional contributions scaling as αjpjþ2n. We notice that
the exponents in this series are the same as those obtained
by expanding the nonlinear polarization induced by a sum
of two fields in the general case [45]. Following this, we
interpret the higher-order terms as competing photon
pathways, in which n additional pairs of photons are
simultaneously absorbed and emitted [see Fig. 2(c)].
For a given p, all pathways with n ≠ 0 end up on the
same energy level and with the same k⃗q;p wave vector as
the n ¼ 0 one, all adding up coherently and altering the
beamlet yield scaling law. The anp coefficients are the
weights of the corresponding photon pathways and are
fairly intuitive to compute: In their expression nþ ½ðjpj þ
pÞ=2� (resp., nþ ½ðjpj − pÞ=2�) is simply the total number
of photons absorbed (resp., emitted) in the secondary beam.

The field of beamlet p for harmonic q in the far field
therefore scales as

Ep
q ∝ a0pαjpj þ a1pαjpjþ2 þ a2pαjpjþ4 þ… ð4Þ

From this generalized scaling law, we predict that the terms
in higher powers of the perturbation are of the same parity
as the leading one. In the companion paper [37], we
demonstrate that this property is directly imprinted on
the parity of the transverse profile of the beamlets when
driving NCHHG with structured beams.
To test this scaling law, we fit the experimental yields of

Fig. 2(a) with an increasing number of terms (see
Supplemental Material S2 [41] for other harmonic orders).
The dot-dashed lines are obtained with the leading term
only (as already mentioned above), the dashed lines with
two, and the solid lines with three, of the expected parity.
The fit function with three terms is excellent for all sets of
data over this α range. Inspecting the coefficients of
expansion obtained by fitting [Fig. 2(b)], we observe
satisfactory agreement with the analytical values, featuring
a progressive increase of their magnitude with n and,
strikingly, alternating signs. Interestingly, this alternation in
sign implies that the absorption and subsequent emission of
a photon dephases the harmonic emission by π. This is very
reminiscent of the phase difference between adjacent
sidebands in RABBITT [46], or the phase between har-
monics in ATI [47,48]. Furthermore, this result could fuel

FIG. 2. (a) Experimental amplitude of the electric fields of
beamlets p ¼ 0, þ1, and þ2 for harmonic q ¼ 13. These curves
are fitted with one (dot-dashed), two (dashed lines), or three
(solid lines) terms of Eq. (4). (b) Comparing the experimental fit
coefficients (filled bars) to the analytical anp coefficients (square
markers, signs were adjusted to have the first coefficient be
positive). The signs of the first few successive coefficients are
seen to alternate. (c) Illustration of the photon pathways con-
tributing to beamlets p ¼ 0 and 1, for q ¼ 3.
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the current discussion about the phase of stimulated
emission [49].
We further tested our analytical model by extending the

experiment to a broader range of α values, reaching up to
α ¼ 1 for which the two beams have equal intensities. We
report in Fig. 3(a) the experimental yields of each beamlet
of harmonic q ¼ 15 against α (see Supplemental Material
S3 [41] for other harmonic orders). Again, we kept the
intensity of the main beam constant and increased that of
the second beam. Even though the total intensity increases
with α, each beamlet reaches a maximum at a given value of
α, and eventually fades out. We compared this behavior to
full numerical simulations based on the solution of the
nonadiabatic, three-dimensional paraxial wave equation
(PWE) performed in Cartesian geometry, in which the

source term in the PWE is given by the solution of the
Schrödinger equation in the SFA. The results of this model,
valid for high enough harmonic orders, are displayed in
Fig. 3(b) for harmonic q ¼ 15. We find excellent agreement
with the experimental result. Finally, we computed the
yields analytically with Eq. (3), limiting it to n ≤ 15
[Fig. 3(c)]. The agreement is remarkably good for such
a simple model. As highlighted in the insets for p ¼ 1, the
general shape of the yield as a function of α is nicely
reproduced, including the main Gaussian-like peak fol-
lowed by a smaller secondary peak. These unexpected
secondary maxima tend to fade out for higher p in the
experiment, numerical, and analytical models. Our inter-
pretation of HHG in terms of interfering photon pathways
perfectly suits these observations: As the intensity of the
second beam increases, more and more photon pathways
contribute to the total yield, and since successive channels
are essentially π out of phase, they may form interference
structures. When there are just a few contributing pathways
(that is, for low-p beamlets that are bright near α ¼ 0),
these interferences result in sharp and identifiable secon-
dary peaks.
Taking our analytical development in the collinear limit

Δk⊥ → 0, all p terms in Eq. (3) are summed to form the
harmonic field, and we recover a series of αm terms with
coefficients ðqeffm Þ, as expected from directly applying the
binomial theorem to the collinear case (Supplemental
Material S1 [41]). However, the direct interpretation of
this series in terms of photonic processes is much less
straightforward, as all channels add up to form a single
harmonic beam. Through our noncollinear geometry, we
could identify the photon pathways underlying this for-
mula, in a way that is consistent with the observations that
the properties of beamlet p result from the net absorption of
p photons from the secondary beam. One may ask why, in
our extended parametric picture, extra photons only seem
to be exchanged with beam 2 [Fig. 2(c)]. In fact, the
additional pathways involving photons from beam 1 are
hidden in the global jE0jqeff factor in Eq. (3), which
effectively describes single-beam HHG and thus cannot,
as we have seen, be trivially rewritten as a sum of photon
pathways. In this work, adding a second beam and
factorizing out the single-beam physics was the key to
revealing yield laws that suggest a photon-based explan-
ation to the nonperturbative efficiency of HHG.
We note that our results would have been very different

for a perturbative qeff ¼ q power law, in which case q− ¼ 0
and Eq. (3) reduces to a single sum, such that a single
photonic process scaling as αp contributes to beamlet p.
Investigating the yields of HHG in a noncollinear scheme
thus unveils the multiple pathways that interfere with one
another and govern the nonperturbative yield of HHG.
Negative p beamlets, which involve stimulated emission of
photons, would also be missing if the physics of HHG was
perturbative (Supplemental Material S1 [41]). Furthermore,

FIG. 3. Experimental (a), numerical (SFA) (b), and analytical
(c) field amplitude of the beamlets of harmonic q ¼ 15 as a
function of the amplitude ratio α of the two driving beams. The
amplitudes were normalized by the maximum for each column to
optimize readability over the whole α range. For the analytical
plot, values of n up to 15 were used in Eq. (3). The insets in the
corners are lineouts of the field amplitude of order p ¼ 1
normalized to take into account the changing total field intensity
as α is increased.
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it should be noted that the value of qeff rules the
thickness and width of the yield curves (Supplemental
Material S1 [41]), which could give an access door to the
precise determination of its experimental value.
In conclusion, with an analytical development of the

thin-slab model and extensive experimental data, we were
able to bridge the gap between field-based and photon-
based interpretations of NCHHG for any intensity ratio of
the beams. Our analysis unveiled, contrary to previous
interpretations, that successive higher-order terms involv-
ing a series of absorption and stimulated emission of
photon pairs play the main role, leading to polynomial
yield laws with exponents of given parities, giving rise to an
unexpectedly rich structure of secondary maxima in the
beamlet yields. This photon-pathway formalism is remi-
niscent of Feynman diagrams in quantum field theory. It
renews our parametric understanding of HHG, as a coher-
ent combination of several “higher than qth-order” photon
channels. We note that such approaches were earlier
promoted for perturbative nonlinear optics [50–52], though
never unveiled experimentally in HHG. We also note that a
consistent quantum field theory of HHG should be able to
retrieve the anp coefficients of Eq. (3) for the amplitude of
each photon pathway.
These results set a reference framework for the design of

new HHG-based attosecond sources in noncollinear geom-
etry, whether they be in cavities or not. Even though the
experimental results presented here are for two Gaussian
beams with the same central wavelength, the same model
could also be applied to cases in which beams have different
spatial profiles (carrying orbital angular momentum, for
instance), as well as different wavelengths. They could also
be used to reexamine NCHHG experiments with smaller
crossing angles, casting new light on the interpretation of the
results in relation to the perturbation levels [8,53–56]. Also,
we have not exploited the results to get insights into the
spectroscopic peculiarities of the processes, but it has the
prospect of becoming a unique analysis tool. Finally, it
should be noted that we have deliberately ignored phase-
matching effects [31,57,58] that should be included in future
work. As a first extension, in the companion paper [37], we
examine the case of two spatially structured driving beams,
which highlights in a very visual way the transition from
perturbative to nonperturbative scaling laws in NCHHG.
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