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Competing short- and long-range interactions represent distinguished ingredients for the formation of
complex quantum many-body phases. Their study is hard to realize with conventional quantum simulators.
In this regard, Rydberg atoms provide an exception as their excited manifold of states have both density-
density and exchange interactions whose strength and range can vary considerably. Focusing on one-
dimensional systems, we leverage the Van der Waals and dipole-dipole interactions of the Rydberg atoms to
obtain the zero-temperature phase diagram for a uniform chain and a dimer model. For the uniform chain,
we can influence the boundaries between ordered phases and a Luttinger liquid phase. For the dimerized
case, a new type of bond-order-density-wave phase is identified. This demonstrates the versatility of the
Rydberg platform in studying physics involving short- and long-ranged interactions simultaneously.
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Introduction.—The interplay of short- and long-range
interactions gives rise to diverse phenomena with impli-
cations in different areas such as study of electronic
dynamics and stability in proteins [1–4], self-assembly
in polymers [5], and exotic quantum phases in condensed
matter physics [6–10]. However, the study of these phe-
nomena in the natural biochemical and solid-state setups
are challenging due to the limited control and the finite
temperature environments. This has led to a rapid growth in
the use of ultracold systems for quantum simulation of
many-body problems [11–13]. These include the highly
tunable short-range interactions with atoms in optical
lattices [14,15] to long-range interacting dipolar gases
[16,17], polar molecules [18–21], and trapped ions
[22–24]. Realizing interactions with different scaling is
of great interest not only to the broader condensed matter
community, but also from a different viewpoint, it opens
avenues for simulating chemical and biological processes
that involve short- and long-range physics [1–5]. This is
particularly challenging since it requires implementing
different power-law interactions simultaneously, where
other quantum simulating platforms such as trapped ions
have limited utility.
Platforms based on neutral Rydberg atoms have proven to

be highly practical quantum simulators [25–29] as their
large dipole moments provide tunable strong interactions
that range from dipole-dipole (1=r3 scaling) to Van der
Waals (1=r6 scaling). Rydberg dressing [30,31] allows for a
certain flexibility in controlling short- and long-range
interactions simultaneously with applications in many-body
physics [32,33], but they can be experimentally challenging
to realize [34,35]. Currently, the most common approach

adopted in the context of quantum simulation with Rydberg
atoms is to focus either on short-range (VdW) [36–43] or
long-range (dipolar) interactions [44–47], but rarely both
[48]. In the past, theoretical studies [49,50] were motivated
by the limitations of the experiments to focus on either
regime but never both. Only recently, experiments were
performed with a pair of Rydberg states that potentially
allow both ranges of interactions [44,51] but were never
comprehensively exploited.
In this Letter, we propose an alternative approach to

study short- and long-range physics by combining the
effects of Van der Waals and dipole-dipole interactions of
Rydberg atoms. Using the one-dimensional (1D) uniform
and dimerized lattices, we study the ground state phase
diagram and unveil the flexibility in accessing different
regimes of the ordered and liquid phases. For the uniform
chain, the competition between the interactions is reflected
in the competing boundaries between the gapless Luttinger
liquid (LL) and the gapped density-wave (DW) ordered
phases. In the dimerized chain, apart from realizing the
individual phases of bond-order (BO) and DW, we find
unique bond-order-density-wave (BODW) phase that has
not been previously explored using conventional dimerized
model [52,53].
Model and Hamiltonian.—We discuss the Rydberg setup

and its mapping to extended Bose-Hubbard model that
distinguishes itself from existing bosonic models
[42,43,54,55]. The uniform and dimerized lattices are
considered where the latter is known for rich physics
involving topological and insulating phases [53,56–60].
As illustrated in Fig. 1, the setup consists of a linear

chain of trapped atoms that could either have uniform or
dimerized lattice configurations. Each atom is a two-level
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system made of jnsi and jn0pi Rydberg states, where n, n0
are principal quantum numbers. Unlike most Rydberg
simulators with one ground state and a Rydberg level,
the pair of Rydberg states considered here allows the
system to have two types of interactions that differ in
range and character: (i) the short-range Van der Waals
(VdW) interactions between the ns − ns and n0p − n0p and
(ii) the long-range dipolar interaction that causes a state
exchange between atoms in different Rydberg levels
ns − n0p. The Rydberg interactions along with the micro-
wave laser coupling between jnsi and jn0pi levels are all
schematically shown in Fig. 1(a). The corresponding
atomic Hamiltonian describing the full setup with uniform
lattice spacing a is given as

ĤA ¼
X

i

�
Ωμw

2
ðσ̂spi þ σ̂psi Þ − Δμwσ̂

pp
i

�
þ Vp

X

i<j

σ̂ppi σ̂ppj
ji − jj6

þ Vs
X

i<j

σ̂ssi σ̂
ss
j

ji − jj6 þ Vsp
X

i<j

�
σ̂spi σ̂psj
ji − jj3 þ H:c:

�
: ð1Þ

Here, σ̂αβi ¼ jαiihβj is the projection operator to the relevant
atomic state with α; β∈ fjnsi; jn0pig at site i. Vp ¼ Cp

6=a
6

and Vs ¼ Cs
6=a

6 are the strength of VdW interactions,
where Cs

6 and Cp
6 are the dispersion coefficients. Vsp ¼

C3=a3 is the dipole-dipole interaction strength with C3 as

the exchange coefficient. There are experimental realiza-
tions of the above Hamiltonian [44,51].
In order to represent Eq. (1) in the Bose-Hubbard picture,

the occupation of state jn0pi at site i is associated with the
presence of a boson at that site and denoted by j●ii while
j○ii means the absence of a boson that implies the
occupation of state jnsi. With these definitions, an arbitrary
state jns n0pn0pns…i is written as j○ ● ● ○…i. Since each
atom cannot have more than one excitation jn0pi, having
two particles at the same site is prohibited, which imposes a
hard-core constraint. Defining the b̂†ðb̂Þ as the bosonic
creation (annihilation) operator, ĤA is rewritten as follows:

ĤeBH ¼
X

i<j

tijðb̂†i b̂j þ H:c:Þ þ
X

i<j

Vijn̂in̂j

−
X

i

ðΔμw þ I iÞn̂i þ
Ωμw

2

X

i

ðb̂†i þ b̂iÞ; ð2Þ

where we used the mapping σ̂ps → b̂†, σ̂pp → n̂ ¼ b̂†b̂,
and σ̂ss → 1 − n̂ with ðb̂†i Þ2 ¼ 0. The first term in Eq. (2) is
the long-range hopping tij ¼ Vsp=ji − jj3 that is encoded
by the dipolar exchange interaction. Vij ¼ V=ji − jj6 is
the repulsive off-site density interaction, where V ¼ Vs þ
Vp ¼ C6=a6 and C6 ¼ Cs

6 þ Cp
6 is the combined

dispersion coefficient. The chemical potential ðΔμw þ I iÞ
determines the density of excitations jn0pi (number of
bosons) in a lattice. The site-dependent contribution I i ¼P

i≠jðVs=ji − jj6Þ is an energy offset for a fixed value of
the chemical potential and can be ignored in the bulk, thus
μi → μ ¼ Δμw. The ĤeBH differs from other extended
Bose-Hubbard models [42,43,54,55] in several aspects:
(i) the existence of longer-range hopping and interactions
and (ii) the last term in ĤeBH breaks the global U(1)
symmetry causing the number of bosons to be a non-
conserved quantity. These aspects will play a role in the
phase diagrams obtained later.
Figure 1(b) depicts the dimerized configuration formed

by two sublattices with alternating lattice constants a1 and
a2. The dimerized version of Eq. (2) is provided in [61],
whose many-body energy spectrum for Ωμw ¼ 0 comprises
many distinct manifolds, each of which is characterized by
a fixed number of bosons. For large negative values of the
microwave detuning Δμw, one obtains a completely empty
lattice (all atoms in jnsi state). As Δμw increases, the
number of bosons added to the lattice also increases.
Similar to experiment [44], an adiabatic sweep through
the parameters ½ΩμwðtÞ;ΔμwðtÞ� can take the lattice system
of size L from one manifold with zero bosons to another
manifold of N bosons giving a filling ρ ¼ N=L. After
reaching a given filling ρ, the microwave laser is switched
off and the following Hamiltonian is written as

(a)

(b)

FIG. 1. (a) Diagram depicting a uniform lattice of neutral atoms
treated as two-level systems consisting of highly excited Rydberg
states. Microwave laser with Rabi frequency Ωμw and detuning
Δμw couples the levels. Atoms in the same Rydberg state
experience VdW interactions with strengths Vs

ij, Vp
ij, while

Vsp
ij tunes the dipolar exchange interaction between different

levels. The two-level system encodes the presence (absence) of a
boson at a given site defined by b̂†ðb̂Þ. (b) Dimerized chain with
alternating intracell a1 and intercell a2 lattice constants with
corresponding hopping ðt; tαÞ and off-site interactions ðV; Vα2Þ.
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Ĥdim ¼ t
X

i∈ odd

ðb̂†i b̂iþ1 þ H:c:Þ þ tα
X

i∈ even

ðb̂†i b̂iþ1 þ H:c:Þ

þ V
X

i∈ odd

n̂in̂iþ1 þ Vα2
X

i∈ even

n̂in̂iþ1 þ ĤLR: ð3Þ

The even and odd sums represent the intra- and intercell
terms, respectively, and the dimerization constant α ¼
ða1=a2Þ3 controls the degree of dimerization in the lattice.
t ¼ −C3=a31 and V ¼ C6=a61 are the intracell hopping and
off-site interaction strengths, respectively, with C6; C3 > 0.
Ĥdim deviates from existing dimer models [53,58–60] in the
sense that it has both local as well as long-range hopping
and off-site interaction defined under ĤLR (explicitly given
in [61]). The fact that it has dimerization in interaction and
not just in hopping will play a crucial role in the phase
diagrams.
Results.—Figures 2 and 3 are the ground state phase

diagrams for ĤeBH and Ĥdim obtained using finite-size
density matrix renormalization group (DMRG) [70,71].
More details about numerics are in [61]. In earlier works for
a uniform lattice [36,49,50,72], one finds the LL phase to
be always dominated by the ordered phases for the entire
region of allowed laser parameters. In contrast, here we
show that the boundaries between ordered and LL phases
are easily adjustable, and find scenarios where LL even
dominates. This is possible due to the competition of VdW
and dipolar exchange terms. The same flexibility in the
boundaries of the BODW phases are seen in the dimerized
case. Moreover, the existence of BODW phase for ρ ¼ 1=3
filling is shown, which does not occur in conventional
models [52,53].

In Figs. 2(a)–2(c), we compute the half-chain bipartite
entanglement entropy SvN ≡ −Trðρr ln ρrÞ of the ground
state over the parameter space ðΩμw;ΔμwÞ for fixed hopping
t, where ρr is the reduced density matrix of half of the
chain. This has been performed for a varying relative
strength of the hopping t as shown in Figs. 2(a)–2(c).
DWs are many-body ground states that are ordered (crys-
talline) and are characterized with unit cell p=q where p
denotes the number of bosons and q is the size of the unit
cell. For example, the circle markers in Figs. 2(a)–(c)
correspond to phases that break Z2 translational symmetry
with p=q ¼ 1=2. Z2 phase is described by the state
j● ○ ● …● ○ ●i, which is a product state and thus possesses
a vanishing SvN . Similarly, higher period DW phases
(Zq¼3;4) are also shown in Figs. 2(a) and 2(b).
Although both the hopping term t and Rabi couplingΩμw

introduce quantum fluctuations to the system, they have
different effects on the ordered states. For example, if
Ωμw ≫ t, then one obtains a disordered state. However,
when Ωμw becomes comparable to t, then we have either an
ordered phase or a LL phase depending on the value ofΔμw.
Close to the classical regime (Ωμw ¼ t ≃ 0), the range of the
ordered phase Zq in terms of the detuning is given as
δΔμw ∼ Vi;iþq−1 þOðVi;iþqÞ [50,73]. Thus, for low values
of ðt;ΩμwÞ, one finds a host of ordered phases Zq¼2;3;4 as
seen in Fig. 2(a). As t increases such that t ≥ Vi;iþq−1, then
ordered phases with unit cells larger than q get washed out
and instead the LL phase takes over as seen in Figs. 2(b)
and 2(c). This condition is satisfied as the VdW interaction
has the combined effect of ns and n0p states for different n
and n0 [61]. Universal properties of the LL phase such as

FIG. 2. Phase diagrams showing the ground state entanglement entropy SvN of ĤeBH in the ðΔμw;ΩμwÞ parameter space for system size
L ¼ 121 with varying t=V in (a)–(c), respectively. The dark-shaded blue lobes in the top left part of the phase diagrams represent
vanishing SvN that correspond to different gapped ordered phases Zq¼2;3;4. The yellow-green regions represent finite SvN corresponding
to the gapless Luttinger liquid (LL) phase. For large values of Ωμw, one obtains the disordered phase, which is shown as light-shaded
blue. Verification of the individual phases is provided in [61].
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power-law decay of correlations and the central charge
c ¼ 1 [74,75] have been verified [61].
Figure 3(a) is obtained by determining the single-particle

excitation gap δLðα; VÞ ¼ μþðα; VÞ − μ−ðα; VÞ as a func-
tion of α with fixed V. Thus, the extent of the gapped
phases in the phase diagram scales as δL. Here, μþ ¼
EðN þ 1Þ − EðNÞ and μ− ¼ EðNÞ − EðN − 1Þ are the
chemical potentials that define the boundaries of the
gapped phases for a given filling ρ and EðNÞ is the ground
state energy for a system of N bosons defined by Ĥdim. In
Fig. 3(a), four types of gapped phases (DW, BO, BODW1,
BODW2) are obtained for different values of filling ρ in the
ðα; μÞ parameter space with constant V. DWs are the
ordered phases as discussed before while the BO phase
is a product of independent dimers that is represented as

, where each dimer

corresponds to two sites sharing a single delocalized boson
( ). Bond-order-density-wave (BODW) has the charac-
teristic of both bond ordering and density wave ordering.
Numerical verification of the individual phases is provided
in [61].
In Fig. 3(a), at ρ ¼ 1=2, the gap remains open for all

values of α and hosts two different ordered phases, BO and
DW. Low values of α is indicative of a highly dimerized
lattice where the nearest-neighbor processes within a unit
cell dominates over long-range processes such as intercell
hopping and extended off-site interactions. At ρ ¼ 1=2
filling, this means significant energy costs in adding or
removing bosons that leads to a region of energy gap

corresponding to the BO phase as seen in Fig. 3(a). As α is
increased, the long-range effects of hopping and interaction
become relevant. But if V=t is sufficiently large, which is
the case in Fig. 3(a), then the repulsive VdW interaction
leads to a DW phase for the ρ ¼ 1=2 filling.
For any other filling ρ ≠ 1=2, the gap closes as α → 0 as

seen in Fig. 3(a), which implies that there is no energy cost
in adding or removing bosons and allowing free movement
of bosons across the lattice (LL phase) is favored over the
BO phase as seen for ρ ¼ 1=4; 1=3 fillings. As α increases,
long-range processes become dominant and for sufficiently
large V=t, BODW phases are obtained for ρ ¼ 1=4; 1=3
fillings in contrast to the DW phase that we get for ρ ¼ 1=2
filling. BODW phases arise from the cumulative effect of
dominant long-range repulsive interactions at large
values of α and the constraint of sharing certain number
of bosons among the lattice due to the fixed filling fraction.
However, it is sufficient to have nearest-neighbor inter-
actions to stabilize the BODW1 phase [53], which
consists of dimers in every alternating unit cell. Thus,
the BODW1 phase can be described by a product state

to a good

approximation. Unlike BODW1, long-range interactions
are needed to stabilize the BODW2 phase. Therefore, it
cannot be described with independent dimers but rather is
depicted as , where a pair of dimers is shared
between three sites. The latter BODW2 phase has not been
explored before.
In Figs. 3(b) and 3(c), the characterization of the

BODW phase at ρ ¼ 1=3 is shown [61]. The BO nature

FIG. 3. (a) Gapped phases of Ĥdim are shown as a function of α with fixed V=t ¼ 200 for system size L ¼ 240. The red dashed-dotted
line defines the lower boundary at ρ ¼ 1=2 with the vertical dashed black line that separates the BO and DW regions. The green dotted
and the blue dashed lines determine the boundaries of the BODW phases at ρ ¼ 1=3 and ρ ¼ 1=4, respectively. Density and bond
formation in each phase are symbolically represented with partially filled circles (superposition of ns and n0p states) and curved lines
between sites, respectively. (b) Expectation values of the bond energy (red, diamond) and density (blue, square) operators for the BODW
phase at ρ ¼ 1=3 for α ¼ 0.4 and V=t ¼ 200 is displayed. The corresponding structure factors are shown in (c). (d),(e) Figure comparing
the gap δL for BODW phases at filling ρ ¼ 1=4 and ρ ¼ 1=3 is shown with different types of couplings in Eq. (3). The gap δL is plotted
as a function of V=t with fixed α and system size L ¼ 240. Cases with (squares) and without (circles) dimerization in the interaction are
considered for different range of interactions: nearest neighbor (dashed line with NN) and long range (solid line with LR).
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is probed with the bond order structure factor
SBOðkÞ ¼ ð1=L2ÞPi;j e

ikrhB̂iB̂ji, where B̂i ¼ b̂†i b̂iþ1 þ
H:c: is the bond energy operator, while the density-wave
structure factor is SDWðkÞ ¼ ð1=L2ÞPi;j e

ikrhn̂in̂ji. In
Fig. 3(b), oscillations in n̂i imply that the bosons primarily
occupy every third site on the chain (analogous to Zq¼3),
thus giving the DW character of the phase. BO oscillations
point to a state with p ¼ 2 bonds for a unit cell of size
q ¼ 3 as two bonds form among three sites. These findings
are also reflected in the peaks of the structure factors
SDWðkÞ and SBOðkÞ at k ¼ 2π=3 as shown in Fig. 3(c).
Figure 3(d) shows the gap δL for the BODW1 phase as a
function V=t with fixed dimerization α ¼ 0.4 for different
cases. One finds large energy gaps for the model with
dimerized long-range interactions when compared to the
almost vanishing gap for the nondimerized and nearest-
neighbor dimerized interacting models. A similar analysis
applies to BODW2 in Fig. 3(e). The key feature that is
required to obtain the BODW2 phase is the necessity of
beyond nearest-neighbor contributions along with dimeri-
zation in the interaction. However, the stability of the
phases and thus their boundaries depend on the scaling of
the interactions with distance. This highlights the key
merits of our setup when compared to existing dimer
models where only the hopping term is dimerized
[53,57–60].
For the Rydberg states considered in this work, we have

a lifetime of few hundreds of microseconds. This implies
that for a chain of 10–20 atoms, the system lifetime is on
the order of few tens of microseconds, which is sufficient
for the phases to be experimentally realized while taking
into account the relevant dissipative processes. A detailed
analysis on the experimental feasibility is provided in [61].
Conclusion and outlook.—Many-body systems with

interactions operating over different length scales host a
wide range of phenomena in nature. This work promotes
the quantum simulation of such phenomena using Rydberg
atoms where the interplay between VdW and dipolar
interactions provide a long-range dimerized Hubbard
model. The ground state phase diagram of this model in
1D is characteristically distinct from conventional models
in two key aspects: larger tunability for the LL phase in the
uniform case and the existence of a novel BODW phase in
the dimerized case. Future works will include the inves-
tigation of higher dimensional lattices, different geom-
etries, and out-of-equilibrium dynamics with the recently
developed multilayer multiconfigurational approach for
spin systems [76].
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