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Traditional photonuclear reactions primarily excite giant dipole resonances, making the measurement of
isovector giant resonances with higher multipolarities a great challenge. In this Letter, the manipulation of
collective excitations of different multipole transitions in even-even nuclei via vortex γ photons is
investigated. We develop the calculation method for photonuclear cross sections induced by the vortex γ
photon beam using the fully self-consistent random-phase approximation plus particle-vibration coupling
(RPAþ PVC) model based on Skyrme density functional. We find that the electromagnetic transitions with
multipolarity J < jmγj are forbidden for vortex γ photons due to the angular momentum conservation, with
mγ being the projection of total angular momentum of γ photon on its propagation direction. For instance,
this allows for probing the isovector giant quadrupole resonance without interference from dipole
transitions using vortex γ photons with mγ ¼ 2. Furthermore, the electromagnetic transition with
J ¼ jmγj þ 1 vanishes at a specific polar angle. Therefore, the giant resonances with specific multipolarity
can be extracted via vortex γ photons. Moreover, the vortex properties of γ photons can be meticulously
diagnosed by measuring the nuclear photon-absorption cross section. Our method opens new avenues for
photonuclear excitations, generation of coherent γ photon laser and precise detection of vortex particles,
and consequently, has significant impact on nuclear physics, nuclear astrophysics and strong laser physics.
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The collective excitation modes of quantum many-body
systems are pervasive in a diversity of physics subdisci-
plines [1], such as condensed matter physics [2,3],
atomic physics [4–6], nuclear physics [7–10], and particle
physics [11,12]. In atomic nuclei, the giant resonances
(GRs) appear to be a global feature of nuclei arising from
the collective motion of the nucleons within the nucleus [7].
GRs not only play a fundamental role in nuclear structure
research, but also serve as a means of constraining the
nuclear equation of state [13], which is crucial for under-
standing a host of astrophysical phenomena [14–17], such
as supernova explosions [17] and the structure of neutron
stars [14,16].
GRs have been found to exist in the energy range of

approximately 10–30 MeV, and their modes are charac-
terized by the quantum numbers related to multipolarity,
spin, and isospin [7]. The isovector giant dipole resonance,
in which neutrons oscillate against protons [7], was first
discovered in 1937 via photonuclear reaction [18,19].
While photons can provide transition strengths in a

model-independent way, owing to the well-known excita-
tion mechanism of electromagnetic force, they generate
primarily the giant dipole resonance (GDR) [20]. The giant
quadrupole resonance (GQR), in which the nucleons
undergo quadrupole deformation [21], was the next fun-
damental mode discovered in the 1970s [22–25]. It has
been systematically studied over the nuclear chart using
inelastic scattering of charged particles [26]; however, these
probes, such as alpha particles, protons, and 3He, mainly
induce isoscalar excitations [26]. The study of the isovector
giant quadrupole resonance (IVGQR) has always been a
challenge due to the lack of a highly selective experimental
probe. Detailed studies on IVGQR are invaluable for
nuclear structure and nuclear astrophysics, for instance,
to constrain the nuclear effective mass, the isovector
channel of the nuclear effective interaction, the density
dependence of the nuclear symmetry energy [13,27,28],
etc. At present, the main experimental studies are based
on electron scattering, which displays a large spread in
the reported parameters (e.g., transition strengths and

PHYSICAL REVIEW LETTERS 131, 202502 (2023)

0031-9007=23=131(20)=202502(8) 202502-1 © 2023 American Physical Society

https://orcid.org/0000-0002-7304-7083
https://orcid.org/0000-0002-4996-966X
https://orcid.org/0000-0003-1029-1887
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.202502&domain=pdf&date_stamp=2023-11-14
https://doi.org/10.1103/PhysRevLett.131.202502
https://doi.org/10.1103/PhysRevLett.131.202502
https://doi.org/10.1103/PhysRevLett.131.202502
https://doi.org/10.1103/PhysRevLett.131.202502


resonance widths [21,29]) due to the difficulty in disen-
tanglement of different GR modes [7]. In photonuclear
reactions, IVGQR is only a minor component and extracted
by observing the electric dipole (E1)-electric quadrupole
(E2) interference term using the intense, nearly mono-
energetic, ∼100% linearly polarized γ-ray beams [29,30].
These difficulties in detecting IVGQR are attributed to the
preference of E1 excitations over higher multipolarities by
several orders of magnitudes from photon excitations.
Nevertheless, the introduction of nonzero orbital angular
momenta (OAM) to photons could potentially alter the
selection rule and enable the unique extraction of higher
multipole excitations. This would completely broaden the
conventional understanding of photonuclear reactions and
unlock new horizons in nuclear physics [31,32].
Vortex photons, described by wave functions with helical

phases and carrying intrinsic OAM along the propagation
direction [33,34], have given rise to new phenomena in
various fields of physics, such as optical physics [35,36],
astrophysics [37,38], and atomic physics [39,40]. Currently,
vortex photons spanning from visible to x-ray regimes have
been generated experimentally through optical mode con-
version techniques, high harmonic generation, or coherent
radiation in helical undulators and laser facilities [41–46].
With the rapid developments of ultraintense, ultrashort laser
techniques [47,48], the generation of vortex γ photons is
extensively proposed theoretically, where most of the
studies consider Compton scattering to attain high energy
and OAM [32,49–61]. Studies of atomic excitation using
vortex photons [39,40,62–72] have shown that absorption of
photons with nonzero OAM by atoms can excite multipole
transitions that are otherwise suppressed for plane wave
photons, due to modifications of the atomic transition
selection rules on the beam axis. In nuclear physics, cross
sections of deuteron photodisintegration by vortex
photons [73] via 3S1 → 1S0 magnetic dipole (M1) transition
have been compared with those by plane wave photons.
Nonetheless, the excitations of higher multipole transitions
in nuclei via vortex photons are still an open question.
In this Letter, we investigate the collective excitations of

different multipole transitions in even-even nuclei (Ji ¼ 0)
via vortex γ photons. We develop the calculation method
for photonuclear cross sections induced by the vortex γ
photon beam using the fully self-consistent RPAþ PVC
model based on Skyrme density functional [74–77].
According to the interaction scenario illustrated in
Fig. 1, the electromagnetic transitions are unrestricted
for plane wave γ photons since the selection rule of plane
wave is jJi − Jfj⩽J⩽Ji þ Jf,Mf −Mi ¼ Λ. However, for
vortex γ photons, when the nucleus is positioned on the
beam axis, the selection rule is modified to Mf −Mi ¼ mγ

due to the conservation laws of angular momentum, with
mγ being the projection of the total angular momentum
(TAM) of γ photon on its propagation direction. Therefore,
the electromagnetic transitions with multipolarity J < jmγj

are forbidden (indicated as the forbidden transitions).
Because of the dependence on polar angle θk, the electro-
magnetic transition with J ¼ jmγj þ 1 could vanish at a
specific polar angle, thus transitions almost entirely come
from J ¼ jmγj case (indicated as the quasipure transitions).
Manipulating GRs with different multipolarities via vortex
γ photons with different mγ enables investigating isovector
giant resonances of higher multipolarities without interfer-
ence from other transitions, which broadens the research
scope of photonuclear reaction compared with plane wave γ
photons, and provides valuable insights into the nuclear
structure and nuclear astrophysics [17,20,28]. Additionally,
the forbidden and quasipure transitions excited by vortex γ
photons might construct a three-level system for coherent
zeptosecond γ photon laser [78–80].
Meanwhile, exploring the vortex properties of single γ

photon is a fascinating area of research [32,41]. Vortex
photons, ranging from visible to x-ray frequencies, have
been successfully detected through interference with a
reference beam [42–46]. However, detecting the vortex γ
photons remains a challenge. We find that the vortex
properties of γ photons can be determined accurately by
measuring the nuclear photon-absorption cross section.
In the RPAþ PVC model, the coupling of single-

nucleon states to low-lying phonons (1 particle-1 hole-1
phonon configurations) is taken into account. While the
RPA model provides a good description of GRs’ energies,
the PVC effect is crucial for describing the damping width
of GRs [81]. Using the strength function SμJ (electric,
μ ¼ E; magnetic, μ ¼ M) obtained by RPAþ PVC model,
we can derive the nuclear photon-absorption cross section
σðplÞ of a plane wave γ photon beam interacting with
nucleus [see Eq. (8) in Supplemental Material (SM) [82] ].
Different vortex modes exhibit similar characteristics in

the vicinity of beam axis and different asymptotic behavior
in the region far away from the beam axis (see Sec. III of
SM [82]). Take the Bessel mode for example, the nuclear
photon-absorption cross section σðtwÞ of a vortex γ photon
beam, interacting with nucleus, differs from the case of
plane wave due to the vortex state’s vector potential

AðtwÞ
ϰmγkzΛ [34,82] and its ensuing change in the flux density

and transition amplitude. The vortex state can be charac-
terized by a definite transverse momentum ϰ ¼ jk⊥j,
longitudinal momentum kz, mγ , and helicity Λ. In momen-
tum space, the vortex state can be interpreted as a coherent
superposition of plane waves, arranged on a cone defined
by the polar angle θk ¼ arctanðϰ=kzÞ. In general, vortex γ
photon is the superposition of spin eigenstates, thus one can
get ms ¼ 0, �Λ and ml ¼ mγ , mγ ∓ Λ. When θk → 0, the
vortex γ photon is approaching the limit of plane wave γ
photon, and is almost in the spin eigenstate, thus one has
ms ≃ Λ andml ≃mγ − Λ. To normalize the nuclear photon-
absorption cross sections of vortex γ photon to the plane
wave case, we assume that the average flux density of
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vortex γ photons along its propagation direction is equiv-
alent to that of plane wave multiplied by cos θk [70,83]. We
introduce a quantity rðtwÞ, which represents the ratio of
vortex and plane wave cross section for nuclear excitation,
i.e., rðtwÞ ¼ σðtwÞ=σðplÞ,

rðtwÞ ¼
P

MiMf
J2mγþMi−Mf

ðϰbÞjPM0
iM

0
f
dJiMiM0

i
ðθkÞdJfMfM0

f
ðθkÞMðplÞ

M0
iM

0
f
j2

cosθk
P

M0
iM

0
f
jMðplÞ

M0
iM

0
f
j2

:

ð1Þ

The ratio rðtwÞ exhibits two supplementary features being
dependent upon the vortex properties of the incoming γ
photons (i.e., mγ and θk). One is the Bessel function
JmγþMi−Mf

ðϰbÞ (with the impact parameter b) that stems
from the transverse structure of vortex γ photons with a
Bessel mode. The other is the Wigner d function

d
Jf
MfM0

f
ðθkÞ [dJiMiM0

i
ðθkÞ], which arises from the transforma-

tion of the projection of the nuclear TAM from the
propagation axis of vortex γ photon to the orientation of

its plane wave component k, in order to express the
transition amplitude in terms of the plane wave case

MðplÞ
M0

iM
0
f
(with the selection rule M0

f −M0
i ¼ Λ). With the

property of Bessel function [84], the selection rule is
modified as Mf −Mi ¼ mγ on the beam axis, which
indicates that the full projection of the TAM of γ photon
along its propagation direction can be transferred to the
nuclear degrees of freedom. This results in the forbidden
transitions in Fig. 1. For even-even nuclei, the TAM and its
projection are Ji ¼ Mi ¼ M0

i ¼ 0. Because of the selection
rules for vortex and plane wave γ photons mentioned
above, the ratio rðtwÞ on the beam axis (b ¼ 0) becomes

rðtwÞ ¼ jdJfmγΛðθkÞj2= cos θk: ð2Þ

For specific θk with d
Jf
mγΛðθkÞ ¼ 0, the ratio rðtwÞ vanishes,

which results in the quasipure transitions in Fig. 1. In this
Letter, we focus on the interaction between vortex γ photon
beam and a single nucleus, which results in the b

FIG. 1. Scenario of nuclear responses for even-even nuclei excited either by plane wave or vortex γ photons on the beam axis. In the
momentum space, the vortex state consists of multiple plane waves with conically distributed k vectors characterized by the polar angle
θk and the azimuth angle φk. The mutual phases (color coded) of the plane waves in the spectrum increase by 2 πml around the circle,
where ml (ms) is the projection of the OAM (spin) of γ photon on its propagation direction with ml ¼ mγ −ms and the helicity Λ ¼ 1.
Mi (Mf) is the projection of the total angular momentum on the γ photon’s propagation direction for the initial (final) state of the
nucleus. The arrows linking the ground state (GS) to GDR, GQR, and giant octupole resonance (GOR) symbolize electromagnetic
transitions with multipolarities J ¼ 1, 2, 3, respectively. The “Forbidden Transitions” represent that electromagnetic transitions with
J < jmγj are forbidden (for all θk), and the “Quasipure Transitions” indicate electromagnetic transitions predominantly contributed by
J ¼ jmγ j (for specific θk).
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dependence of rðtwÞ, and the realistic feasibility about this
reaction is discussed later. The effects of macroscopic and
mesoscopic target are discussed in Sec. IV of SM [82].
Vortex effects on the nucleus are the same for electric and

magnetic transitions since the ratio rðtwÞ is parity indepen-
dent and angular momentum dependent. For convenience,
we perform calculations of the electric transitions (E1, E2,
and E3) in nucleus 208Pb using both plane wave γ photons
and vortex γ photons with Bessel mode, and the nuclear
photon-absorption cross sections are shown in Fig. 2. We
choose 208Pb due to the availability of experimental data
[85], the large photon-absorption cross section, and
ongoing challenges in IVGQR [29,30]. The excitation of
other even-even nuclei by vortex γ photons is similar, albeit
with changes in the characteristic photon-absorption cross
sections. For plane wave γ photons [Fig. 2(a)], we find that
the theoretical results are in good agreement with the
experiment. It is also found that the E1, E2, and E3 photon-
absorption cross sections of plane wave exhibit character-
istic peaks. Below photon energy 20 MeV, the total cross

section σðplÞtot is dominated by the E1 cross section σðplÞE1 .
While the photon energy Eγ exceeds 20 MeV, the con-

tribution from σðplÞE1 is a bit larger than that of σðplÞE2 . For σðplÞE3 ,
its contribution is always negligible. Thus, studying E2
and E3 cross sections using plane wave γ photons is
challenging.
However, when the nucleus is positioned on the beam

axis (b ¼ 0), the contribution of E2 cross section can be
distinguished by vortex γ photon with mγ ¼ 2 due to the
forbiddance of E1 transition and the dominance of E2

transition, as shown in Fig. 2(b) (θk ¼ 10° as an example)
and corresponding to the forbidden E1 transition in Fig. 1.
Similarly, the contribution of E3 cross section can be
distinguished by vortex γ photon with mγ ¼ 3, as shown in
Fig. 2(c) corresponding to the forbidden E1 and E2
transitions in Fig. 1. As a result, we can find that vortex
γ photons with mγ ¼ 1, mγ ¼ 2, and mγ ¼ 3 are with the
different peak energies of the photon-absorption cross
section corresponding to the peak energies of E1, E2, and
E3 transitions of plane wave, respectively [Figs. 2(b)–(d)].
Thus, the projection of TAM mγ of vortex γ photons can be
determined by the measurement of the peak energy.
Furthermore, the transitions with J ¼ jmγj þ 1 could van-
ish at specific θk (see Fig. 3), so we take these angles to plot
the corresponding cross sections in Figs. 2(d) and (e),
where vortex γ photons with mγ ¼ 1 and mγ ¼ 2 can result
in the occurrence of the quasipure E1 and E2 transitions,
respectively, with a cross section comparable to that of the
plane wave. In principle, the quasipure E3 transition can
also be induced by vortex γ photon with mγ ¼ 3, and
specific θk (Fig. 4 in SM [82]).
In order to understand the occurrence of the quasipure

transition, the ratios rðtwÞE1 , rðtwÞE2 , and rðtwÞE3 on the beam axis
(b ¼ 0) as a function of θk [see Eq. (2)] are shown in Fig. 3.
In Fig. 3(a), E2 transition is forbidden for vortex γ photon
with mγ ¼ 1 at θk ≃ 60.03° [d211ðθkÞ ¼ 0], resulting in a

quasipure E1 cross section and rðtwÞE1 ¼ 1.13, which corre-
sponds to Fig. 2(d). Similarly, in Fig. 3(b), E3 transition is
forbidden for a vortex γ photon with mγ ¼ 2 at θk ≃ 70.56°
[d321ðθkÞ ¼ 0], resulting in a quasipure E2 cross section and

rðtwÞE2 ¼ 1.19, which corresponds to Fig. 2(e). We can see
that in Figs. 3(b),(c),(e),(f), transitions with J < jmγj are
always forbidden independent of θk and Λ due to the
angular momentum selection rule. Besides, rðtwÞ becomes

FIG. 2. (a) The experimental [85] and theoretical photon-
absorption cross sections of 208Pb for plane wave γ photons.
(b)–(e) The theoretical photon-absorption cross sections of
208Pb on the beam axis for vortex γ photons with various mγ

and θk, respectively. Here, Λ ¼ 1, σðplÞtot ¼ σðplÞE1 þ σðplÞE2 þ σðplÞE3 ,

and σðtwÞtot ¼ σðtwÞE1 þ σðtwÞE2 þ σðtwÞE3 .

FIG. 3. The ratio of E1, E2, and E3 transitions (rðtwÞE1 ,

rðtwÞE2 , and rðtwÞE3 ) vs the polar angle θk on the beam axis. (a)–(c):
Λ ¼ 1 with mγ ¼ 1, mγ ¼ 2, mγ ¼ 3, respectively. (d)–(f) are
similar but for Λ ¼ −1.
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extremely large at the large polar angle (near 90°), which is
due to cos θ dependence of the corresponding effective
flux density of vortex γ photon along its propagation
direction. Furthermore, the polar angle θk of vortex γ
photon can be determined by the measurement of rðtwÞ,
and the vortex topological chargeml can be further inferred
as ml ¼ mγ, mγ � Λ with probabilities jd10ΛðθkÞj2,
jd1∓1;ΛðθkÞj2, respectively.
In the region far away from the beam axis (the impact

parameter b ≠ 0), the photon energy Eγ dependence of

σðtwÞtot and the polar angle θk dependence of rðtwÞ are shown
in Fig. 4. There is no specific selection rule since the system
has no axial symmetry, thus there are no forbidden
transitions. Moreover, the 1− (GDR), 2þ (GQR), and 3−

(GOR) states come from the superposition of Mf ¼ 0;�1,
Mf ¼ 0;�1;�2, andMf ¼ 0;�1;�2;�3, respectively. In
contrast, for vortex γ photon at b ¼ 0, Mf ¼ mγ, and for
plane wave γ photon,Mf ¼ Λ. At the small polar angle θk,

σðtwÞE1 , σðtwÞE2 , and σðtwÞE3 are dominated by Mf ¼ Λ, which
returns to the selection rule of plane wave. With increasing
θk, the contributions from Mf ≠ Λ increase (Figs. 5–7 in
SM [82]). From the peak position in Figs. 4(a)–(c) as well
as Fig. 8 in SM [82], one can see the cross section from E1
is dominated, just as the plane wave case. The vortex

photon-absorption cross section σðtwÞ ∝ JðtwÞz [Eq. (17) in

SM [82] ] due to the dominated E1 transition, thus the
dependence of cross section on impact parameter b and mγ

in Fig. 4 follows the behavior of Bessel function

Jmγ−ms
ðϰρÞ in JðtwÞz . We also find that, as the impact

parameter b increases, rðtwÞ decreases. For typical inter-
atomic distances in crystals (0.1 nm), rðtwÞ is ≃10−4 for
vortex state with Bessel mode and ≃0 with Bessel-Gauss
mode (details in Fig. 9 of SM [82]), which means that the
absorption of the vortex beam by other nuclei being offset
(≳0.1 nm) from the vortex beam axis can be neglected.
Furthermore, the superposition of vortex γ photons with
differentmγ could make the vortex photon-absorption cross
sections azimuth-dependent (Figs. 10 and 11 in SM [82]).
In order to selectively observe the quasipure GR tran-

sitions of different multipolarities, the target nuclei should
be located near the beam axis, and there are two possible
options: one involves interacting the vortex beam with a
single, trapped ion [40,62], while the other involves
interaction with a solid target, such as a single crystal.
The former offers the advantage of easier manipulation of
the alignment and offset of the vortex beam with respect to
the nucleus, but it has the disadvantage of low probability,
necessitating the time accumulation and highly brilliant
vortex γ beams, which are promising based on the
interaction of ultraintense lasers with material [86] and
are discussed in Refs. [53,54,56,57,60,87]. The latter offers
the advantage of a relatively large reaction rate, but it
presents the difficulty of achieving synchronous alignment
of the vortex beam axis with the nuclei.
In conclusion, we demonstrate the ability of vortex γ

photons to manipulate the population of giant multipole
resonance, enabling the occurrence of the forbidden and
quasipure transitions and ensuing the extraction of iso-
vector giant resonances with specific multipolarity.
Moreover, measuring nuclear photon-absorption cross
sections can meticulously diagnose the vortex γ photons.
Our findings may have significant implications for the
studies of nuclear physics, nuclear astrophysics, and strong
laser physics. For instance, our method would open a
completely new avenue for experimental nuclear spectros-
copy that makes previously unexplored nuclear high-
energy states measurable in an exclusive way, provide
new opportunities for constraining nuclear equation of
state, enable highly accurate detection for the properties
of vortex particles, unlock new possibilities for designing
coherent γ photon laser, etc.
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beam–plasma interaction, Phys. Plasmas 29, 093106
(2022).

[62] C. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster,
U. G. Poschinger, and F. Schmidt-Kaler, Transfer of optical
orbital angular momentum to a bound electron, Nat.
Commun. 7, 12998 (2016).

[63] A. Afanasev, C. E. Carlson, C. T. Schmiegelow, J. Schulz, F.
Schmidt-Kaler, and M. Solyanik, Experimental verification
of position-dependent angular-momentum selection rules
for absorption of twisted light by a bound electron, New J.
Phys. 20, 023032 (2018).

[64] M. Solyanik-Gorgone, A. Afanasev, C. E. Carlson, C. T.
Schmiegelow, and F. Schmidt-Kaler, Excitation of E1-
forbidden atomic transitions with electric, magnetic, or
mixed multipolarity in light fields carrying orbital and spin
angular momentum, J. Opt. Soc. Am. B 36, 565 (2019).

[65] S.-L. Schulz, S. Fritzsche, R. A. Müller, and A. Surzhykov,
Modification of multipole transitions by twisted light, Phys.
Rev. A 100, 043416 (2019).

[66] Y. Duan, R. A. Müller, and A. Surzhykov, Selection rules for
atomic excitation by twisted light, J. Phys. B 52, 184002
(2019).

[67] S.-L. Schulz, A. A. Peshkov, R. A. Müller, R. Lange, N.
Huntemann, C. Tamm, E. Peik, and A. Surzhykov, Gener-
alized excitation of atomic multipole transitions by twisted
light modes, Phys. Rev. A 102, 012812 (2020).

[68] H. M. Scholz-Marggraf, S. Fritzsche, V. G. Serbo, A.
Afanasev, and A. Surzhykov, Absorption of twisted
light by hydrogenlike atoms, Phys. Rev. A 90, 013425
(2014).

PHYSICAL REVIEW LETTERS 131, 202502 (2023)

202502-7

https://doi.org/10.1086/378623
https://doi.org/10.1038/nphys1907
https://doi.org/10.1038/nphys1907
https://doi.org/10.1088/2040-8986/aaed14
https://doi.org/10.1103/PhysRevLett.129.253901
https://doi.org/10.1016/j.physletb.2021.136779
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1364/OL.27.001752
https://doi.org/10.1364/OL.27.001752
https://doi.org/10.1364/OL.36.004143
https://doi.org/10.1364/OL.36.004143
https://doi.org/10.1103/PhysRevLett.113.153901
https://doi.org/10.1038/nphys2712
https://doi.org/10.1038/nphys2712
https://doi.org/10.1017/hpl.2019.36
https://doi.org/10.1017/hpl.2019.36
https://doi.org/10.1364/OPTICA.420520
https://arXiv.org/abs/2211.05467
https://doi.org/10.1103/PhysRevA.98.052130
https://doi.org/10.1088/1367-2630/aad71a
https://doi.org/10.1088/1367-2630/aad71a
https://doi.org/10.1038/s41598-019-55217-4
https://doi.org/10.1103/PhysRevApplied.14.014094
https://doi.org/10.1063/5.0136143
https://doi.org/10.1063/1.4963396
https://doi.org/10.1063/1.4963396
https://doi.org/10.1017/hpl.2021.29
https://doi.org/10.1364/OL.45.000395
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1103/PhysRevLett.121.074801
https://doi.org/10.1103/PhysRevLett.121.074801
https://doi.org/10.1063/5.0028203
https://doi.org/10.1063/5.0102909
https://doi.org/10.1063/5.0102909
https://doi.org/10.1038/ncomms12998
https://doi.org/10.1038/ncomms12998
https://doi.org/10.1088/1367-2630/aaa63d
https://doi.org/10.1088/1367-2630/aaa63d
https://doi.org/10.1364/JOSAB.36.000565
https://doi.org/10.1103/PhysRevA.100.043416
https://doi.org/10.1103/PhysRevA.100.043416
https://doi.org/10.1088/1361-6455/ab3631
https://doi.org/10.1088/1361-6455/ab3631
https://doi.org/10.1103/PhysRevA.102.012812
https://doi.org/10.1103/PhysRevA.90.013425
https://doi.org/10.1103/PhysRevA.90.013425


[69] A. Surzhykov, D. Seipt, V. G. Serbo, and S. Fritzsche,
Interaction of twisted light with many-electron atoms and
ions, Phys. Rev. A 91, 013403 (2015).

[70] A. Afanasev, C. E. Carlson, and A. Mukherjee, High-
multipole excitations of hydrogen-like atoms by twisted
photons near a phase singularity, J. Opt. 18, 074013 (2016).

[71] A. Peshkov, V. Serbo, S. Fritzsche, and A. Surzhykov,
Absorption of twisted light by a mesoscopic atomic target,
Phys. Scr. 91, 064001 (2016).

[72] A. Afanasev, C. E. Carlson, and A. Mukherjee, Recoil
momentum effects in quantum processes induced by twisted
photons, Phys. Rev. Res. 3, 023097 (2021).

[73] A.Afanasev,V. G. Serbo, andM. Solyanik,Radiative capture
of cold neutrons by protons and deuteron photodisintegration
with twisted beams, J. Phys. G 45, 055102 (2018).

[74] X. Roca-Maza, Y. Niu, G. Colò, and P. Bortignon, Towards
a self-consistent dynamical nuclear model, J. Phys. G 44,
044001 (2017).

[75] S. Shen, G. Colò, and X. Roca-Maza et al., Particle-
vibration coupling for giant resonances beyond the diagonal
approximation, Phys. Rev. C 101, 044316 (2020).

[76] W. L. Lv, Y. F. Niu, and G. Colò et al., Learning about the
structure of giant resonances from their γ decay, Phys. Rev.
C 103, 064321 (2021).

[77] Z. Li, Y. Niu, and G. Colò, Towards a unified description of
isoscalar giant monopole resonances in a self-consistent
quasiparticle-vibration coupling approach, Phys. Rev. Lett.
131, 082501 (2023).

[78] E. V. Tkalya, Proposal for a nuclear gamma-ray laser of
optical range, Phys. Rev. Lett. 106, 162501 (2011).

[79] G. C. Baldwin and J. C. Solem, Recoilless gamma-ray
lasers, Rev. Mod. Phys. 69, 1085 (1997).

[80] H. A. Weidenmüller, Nuclear excitation by a zeptosecond
multi-MeV laser pulse, Phys. Rev. Lett. 106, 122502 (2011).

[81] G. Bertsch, P. F. Bortignon, and R. Broglia, Damping of
nuclear excitations, Rev. Mod. Phys. 55, 287 (1983).

[82] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.131.202502 for more
details on the derivations of the photon-absorption cross
sections for plane wave and vortex γ photons, the impact of
other parameters of γ photons and target on the giant
multipole resonances, and the comprehensive analysis on
the results in the Letter.

[83] V. Ivanov, A. Chaikovskaia, and D. Karlovets, Study of
highly relativistic vortex electron beams by atomic scatter-
ing, arXiv:2305.12419.

[84] F. Bowman, Introduction to Bessel functions (Courier
Corporation, London, 2012).

[85] V. Varlamov, M. Stepanov, and V. Chesnokov, New data on
photoabsorption reaction cross sections, Bull. Russ. Acad.
Sci. Phys. 67, 656 (2003).

[86] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H.
Keitel, Extremely high-intensity laser interactions with
fundamental quantum systems, Rev. Mod. Phys. 84, 1177
(2012).

[87] L. B. Ju, C. T. Zhou, T. W. Huang, K. Jiang, C. N. Wu, T. Y.
Long, L. Li, H. Zhang, M. Y. Yu, and S. C. Ruan et al.,
Generation of collimated bright gamma rays with control-
lable angular momentum using intense Laguerre-Gaussian
laser pulses, Phys. Rev. Appl. 12, 014054 (2019).

PHYSICAL REVIEW LETTERS 131, 202502 (2023)

202502-8

https://doi.org/10.1103/PhysRevA.91.013403
https://doi.org/10.1088/2040-8978/18/7/074013
https://doi.org/10.1088/0031-8949/91/6/064001
https://doi.org/10.1103/PhysRevResearch.3.023097
https://doi.org/10.1088/1361-6471/aab5c5
https://doi.org/10.1088/1361-6471/aa5669
https://doi.org/10.1088/1361-6471/aa5669
https://doi.org/10.1103/PhysRevC.101.044316
https://doi.org/10.1103/PhysRevC.103.064321
https://doi.org/10.1103/PhysRevC.103.064321
https://doi.org/10.1103/PhysRevLett.131.082501
https://doi.org/10.1103/PhysRevLett.131.082501
https://doi.org/10.1103/PhysRevLett.106.162501
https://doi.org/10.1103/RevModPhys.69.1085
https://doi.org/10.1103/PhysRevLett.106.122502
https://doi.org/10.1103/RevModPhys.55.287
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.202502
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.202502
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.202502
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.202502
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.202502
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.202502
http://link.aps.org/supplemental/10.1103/PhysRevLett.131.202502
https://arXiv.org/abs/2305.12419
https://doi.org/10.1134/S1063778819010186
https://doi.org/10.1134/S1063778819010186
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1103/PhysRevApplied.12.014054

