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The lack of ability to determine and implement accurately quantum optimal control is a strong limitation
to the development of quantum technologies. We propose a digital procedure based on a series of pulses
where their amplitudes and (static) phases are designed from an optimal continuous-time protocol for given
type and degree of robustness, determined from a geometric analysis. This digitalization combines the ease
of implementation of composite pulses with the potential to achieve global optimality, i.e., to operate at the
ultimate speed limit, even for a moderate number of control parameters. We demonstrate the protocol on
IBM’s quantum computers for a single qubit, obtaining a robust transfer with a series of Gaussian or square
pulses in a time T ¼ 382 ns for a moderate amplitude. We find that the digital solution is practically as fast
as the continuous one for square subpulses with the same peak amplitudes.
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Introduction.—Operating quantum technologies requires
fast and accurate control of quantum systems [1,2]. Optimal
control allows one to drive in principle the dynamics at the
quantum speed limit [3]. In a two-level system, one can
show that it coincides with a resonant square π pulse [4].
However, the final result depends on the quality of the
pulse: for instance deviations of the amplitude (or of the
time of interaction), referred to as pulse inhomogeneities, of
order ε leads to an error of the same order for quantum gate.
Improving robustness is thus vital to implement effective
quantum information processing.
Adiabatic passage technique allows such robustness but

at the cost of slow and inexact dynamics [5–7]. Composite
pulse (CP) techniques, made of a π-pulse sequence with
individual phases [8–14] or frequencies [15] as control
parameters, are a powerful and simple tool for robust
control. However, they are not optimal.
Optimal robust control aims at operating at the ultimate

bounds (in time or energy) for given robustness criteria
(pulse inhomogeneities, inhomogeneous broadening, etc.).
The control pulses have thus the power to be resilient against
fluctuations and uncertainties in the most optimal way with
respect to a given cost (typically time of operation, area, or
energy of the pulse). They have been derived using gradient-
based algorithms (such as gradient ascent pulse engineering
(GRAPE) [16,17]) or analytically from the Pontryagin’s
maximum principle [18,19]. Alternative methods based on
inverse engineering geometric control have been also
recently proposed [20,21]: the controls are determined from
trajectories, devised from variational principles, in the
dynamical parameter space. The latter, referred to as robust
inverse optimization (RIO) [21–23], can be seen as an

optimal shortcut to adiabaticity technique [24–26]. It com-
bines thus the robustness of composite pulses, formulated as
constraint integrals for a given order, with time, area, or
energy optimality. In the case of pulse inhomogeneities, the
control features a constant amplitude and a time-continuous
phase modulation.
Robustness to variations in system parameters is not the

only key limitation to the experimental implementation of
control protocols. Another hurdle relates to the ability of
pulse-shaping devices to generate efficiently the theoreti-
cally designed driving process. With the notable exception
of composite pulses, the majority of studies has assumed
that the amplitude and phase of the control can vary
continuously over time. This procedure is, however, prob-
lematic when the hardware is limited to a finite number of
control parameters. Starting from the most general piece-
wise pulse shape and optimizing the corresponding free
parameters present the difficulty of increasing the number
of traps for a smaller number of parameters in the control
landscape [27–29].
We propose in this Letter a digital optimal control to

alleviate these limitations, where a digitalization, featuring
a moderate number of parameters as amplitudes and static
phases, has the power to mimic continuous controls and to
explore the control landscape in a much simpler way. It is
demonstrated in the case of qubit optimal robust control, for
which the continuous analytic solution is known [22]. We
consider specifically a digital version of RIO technique,
referred to as DRIO, on IBM’s quantum computers [30],
based on superconducting transmon qubits [31].
Digital control has been originally proposed and

explored in the context of adiabatic passage with a series
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of femtosecond pulses [32] and in the context of stimulated
Raman techniques [33–35]. A practical implementation of
pulse trains driving a superconducting transmon has been
investigated in [36]. This digitalization shares the ease of
implementation of composite pulses (see, for instance, its
recent implementation on IBM’s computers [14]), but with
the important difference that one uses subpulses of small
area (much smaller than π) that allows a broader explora-
tion of the control landscape in a way very close to the ideal
optimal control functions.
Theory of digital control.—We consider a two-state

system driven by a train of resonant subpulses, where each
individual subpulse n, of duration τ, features the same
shape 0 ≤ ΛðtÞ ≤ 1, but has arbitrary phase φn and peak
amplitude Ωn. The digital Hamiltonian reads in the rotating
wave approximation (in units such that ℏ ¼ 1)

ĤðtÞ ¼ 1

2

X
n

Ωn1nðtÞΛðt − tnÞ
�

0 e−iφn

eiφn 0

�
; ð1Þ

where the subpulse labeled n is centered at tn ¼ nτ. We
denote the indicator function on the interval In: 1nðtÞ ¼ 1 if
t∈ In ≡ ½tn−1

2
; tnþ1

2
½; 0 otherwise. The label n runs in

principle from −∞ to þ∞, i.e., n ¼ 0 corresponds to
the central pulse. We can consider Gaussian subpulses
ΛðtÞ ¼ e−ðt=σÞ2 , that do not overlap, σ ≪ τ, typically of
duration τ ¼ 6σ. Any other nonoverlapping pulse shape
can be used since we show below that only the pulse area
matters for the digitalization. In that situation, one can
safely omit the indicator function from Hamiltonian (1) to
which we associate the propagator Ûðt; tiÞ (with ti the
initial time).
The peak Rabi frequency of the subpulse n can be

sampled from a continuous pulse of shape 0 ≤ ΠðtÞ ≤ 1
and duration T

Ωn ¼ Ω0ΠðtnÞ: ð2Þ

The phases φn form a piecewise constant function whose
value varies from subpulse to subpulse that we want to
sample from a continuous function: φn ¼ φðtnÞ.
We show below that the digital model (1) can be made

approximately equivalent to the effective continuous
Hamiltonian (12). The general strategy is to derive the
controls Ωn, φn from the analysis of the continuous model
(12), and to implement the digital control (1) efficiently
with a number N of subpulses as low as possible.
Since the phase is constant for each subpulse, one can

alternatively consider the Hamiltonian

ĤδðtÞ ¼
1

2

X
n

Anδðt − tnÞ
�

0 e−iφn

eiφn 0

�
; ð3Þ

associated to the propagator Ûδðt; tiÞ, where the subpulse

area An ¼ Ωn

R tnþ1
2

tn−1
2

dtΛðt − tnÞ ¼ Ωn

R
dtΛðtÞ between

tn�1
2
¼ ðn� 1

2
Þτ is concentrated into a Dirac δ pulse. One

can indeed identify this propagator with the one of the
original problem:

Ûðtnþ1
2
; tn−1

2
Þ ¼ Ûδðtnþ1

2
; tn−1

2
Þ ¼ Ûδðtþn ; t−n Þ ð4aÞ

¼
�

cosðAn=2Þ −ie−iφn sinðAn=2Þ
−ieiφn sinðAn=2Þ cosðAn=2Þ

�
; ð4bÞ

with t�n denoting times immediately before and after
tn ¼ nτ, respectively. We highlight the fact that there is
no additional phase coming from the time shifts tnþ1

2
→

tþn and tn−1
2
→ t−n since the diagonal elements of the

Hamiltonian are zero.
In the next step, we incorporate the phases in the wave

function applying the piecewise constant transformation

TðtÞ ¼ diag½e−i
P

n
1nðtÞφn=2; ei

P
n
1nðtÞφn=2�:

Hδ ≡ T†ðtÞĤδTðtÞ − iT†ðtÞ dT
dt

¼ 1

2

X
n

�−δðt − tn−1
2
ÞΔφn δðt − tnÞAn

δðt − tnÞAn δðt − tn−1
2
ÞΔφn

�
ð5Þ

with

Δφn ¼ φn − φn−1: ð6Þ

The corresponding propagator Uδðt; tiÞ leads to the sol-
ution ϕðtÞ ¼ Uδðt; tiÞϕðtiÞ ¼ T†ðtÞΦðtÞ withΦðtÞ the state
solution of the original problem (but with the Dirac δ
pulses): Φðtþn Þ ¼ Ûδðtþn ; t−n ÞΦðt−n Þ, i.e.,

ΦðtÞ ¼ Ûδðt; tiÞΦðtiÞ ¼ TðtÞUδðt; tiÞT†ðtiÞΦðtiÞ: ð7Þ
The Hamiltonian (5) is characterized by the superposition
of two alternating trains of coupling and detuning terms, of
total pulse area

P
n An.

When Ωn ≡Ω0 and φn ≡ φ0 are constant for any n, i.e.,
Δφn ¼ 0, the interaction is strictly periodic if one considers
an infinite number of pulses and the Hamiltonian reads

Hδ ¼
A0

2τ

�
0 1

1 0

�X
k

eikγt ð8Þ

with the frequency of the pulse repetition γ ¼ 2π=τ. We
have here used the Poisson formula for the Dirac distri-
bution leading to the spectral representation of the Dirac
comb,

P
n δðt − nτÞ ¼ ð1=τÞPk e

ikγt. When Ωn and φn
vary as functions of n, one can use the sampling property,P

n fðnτÞδðt − nτÞ ¼ fðtÞPn δðt − nτÞ, for a function
fðtÞ, which leads to the Hamiltonian
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Hδ ¼
1

2τ

X
k

�
−eiπkΔφðtÞ AðtÞ

AðtÞ eiπkΔφðtÞ

�
eikγt ð9Þ

such that Δφðtn−1
2
Þ ¼ Δφn, AðtnÞ ¼ An. If one considers

piecewise constant Rabi frequencies of the form (2), one
can define the function describing the instantaneous sub-
pulse area

AðtÞ ¼ Ω0ΠðtÞ
Z

dsΛðsÞ; ð10Þ

i.e., AðtÞ ¼ ffiffiffi
π

p
σΩ0ΠðtÞ for Gaussian subpulses or AðtÞ ¼

Ω0τΠðtÞ for square subpulses.
For the detuning, one can determine a continuous function

from backward and forward Taylor expansions of the phase
at time tn−1

2
: φn¼φðtnÞ¼φðtn−1

2
Þþðτ=2Þφ0ðtn−1

2
Þþ �� �,

φn−1 ¼ φðtn−1Þ ¼ φðtn−1
2
Þ − ðτ=2Þφ0ðtn−1

2
Þ þ � � �, i.e.,

Δφðtn−1
2
Þ ¼ τφ0ðtn−1

2
Þþ 1

3

�
τ

2

�
3

φ000ðtn−1
2
Þþ � � �

þ 2

ð2pþ 1Þ!
�
τ

2

�
2pþ1

φð2pþ1Þðtn−1
2
Þþ � � � ; ð11Þ

where p ≥ 0 is an integer and extended at all times. At this
stage, no approximation has been made in Hamiltonian (9)
when one considers an infinite number of pulses, i.e.,T ≫ τ.
The Hamiltonian (9) is not piecewise anymore, but it

contains an infinite number ofmodeswith the sameamplitude
AðtÞ=2τ.Themodek ¼ 0 isnear resonantwhile theotherones
can be considered as perturbation in the weak-field limit. At
the lowest approximation, one only takes into account the
resonant term k ¼ 0, that we refer to as the second rotating
wave approximation. This leads to the resonant effective
Hamiltonian, including a correcting (second order) Stark
shift (in units of 2τ) S ¼ 1

2

P
k≠0½A2=ðΔφ − 2πkÞ�≈

−ðA2=4π2ÞΔφP
k≥1ð1=k2Þ ¼ −ðA2=24ÞΔφ, which we

identify with the continuous model according to

Hδ;0 ¼
1

2τ

�−ðΔφþ SÞ A

A Δφþ S

�
≡ 1

2

�−Δ Ω
Ω Δ

�
: ð12Þ

The above effective Hamiltonian becomes a good approxi-
mation when S ≪ A, i.e.,

AðtÞ ≪ j2π − ΔφðtÞj; ð13Þ

corresponding to aweak area of each subpulse,which is better
satisfied for a larger numberN of subpulses (for a given total
pulse area). One can then identify an effective detuning Δ≡
Δφ=τ (omitting the Stark shift) and an effective Rabi
frequency corresponding to the subpulse area divided by τ,
Ω≡ AðtÞ=τ. The effective (continuous)Hamiltonian (12) can
be analyzed with standard techniques.

Digital robust inverse optimization.—We consider
robust inverse optimization, where robustness is imposed
with respect to pulse inhomogeneities (i.e., amplitude and/
or width) and optimization with respect to pulse duration,
i.e., in minimum time (for a given pulse peak). At third
order, the solution is a constant pulse of amplitude Ω,
duration T ¼ 1.86π=Ω, and a detuning of Jacobi elliptic
cosine form [21,22]

Δ¼Δ0cnðωðt− tiÞþKðmÞ;mÞ; t∈ ½ti; tiþT�; ð14Þ

with m ¼ 0.235, ω ¼ 1.149 Ω, and Δ0 ¼ 1.114 Ω for the
problem of complete population transfer.
The peak amplitudes of the subpulses are constant

Ωn ¼ Ω0, since given by (2) where ΠðtÞ ¼ 1, with the
Rabi coupling Ω0 given by (10). We consider N subpulses,
of areaAn ¼ A0 ¼ TΩ=N, giving the total durationT ¼ Nτ.
Assuming a phase variation of the order of π, one can
reduce condition (13) to TΩ ≪ πN for considering the
sole k ¼ 0 mode. This is in practice very well satisfied
for N of the order of 10 as numerically determined. The
phase φðtÞ is solution of (11), extended at all times:
Δ ¼ φ0 þ ðτ2=24Þφ000 þ � � �. It is next digitalized at times
tn when the subpulses reach their peak value.
Figure 1 shows the dynamics of the continuous and

digital RIO for N ¼ 15 Gaussian or square subpulses.
DRIO achieves a very good accuracy with an error in
population transfer less than 10−4 when the approximation
Δ ¼ φ0 is considered from (11). A time-optimal protocol of
fifth-order robustness with respect to pulse inhomogene-
ities can be derived by following the techniques described
in Ref. [21]. It gives a constant pulse of amplitude Ω and
duration T ¼ 2.71π=Ω. The pulses and dynamics are
shown in Fig. 2. Numerical studies show that, when we
include the third-order derivative of (11), DRIO is much
superior to a standard numerical time-discretization sam-
pling by 1 order of magnitude for the same number N of
samplings, allowing an approximation with an error less
than 10−4 for a number of subpulses as low as N ¼ 9.
Demonstration on IBM’s quantum computer.—We per-

formed the demonstration of the robustness profiles using
IBM Quantum Experience [30]. It is built with super-
conducting transmon qubits, which can be controlled by
microwave pulses. We used the low-level quantum com-
puting QISKIT PULSE [37], as a module of the open-source
framework QISKIT [38]. The processor used is ibmq_manila,
which is one of the IBM five-qubit Falcon processors
(Falcon r5.11L).
The parameters of the qubit, calibrated at the time of the

experiment, are qubit transition frequency of 4.971 GHz,
anharmonicity of -0.343 78 GHz, T1 and T2 coherence
times of 153.89 μs and 46.19 μs, respectively, and readout
error of 3%. We performed each experiment applying a
sequence of Gaussian subpulses with the appropriate phase
shifts, according to Figs. 1 and 2, respectively, where each
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single pulse has a duration of σ ¼ 3 ×
ffiffiffi
2

p
ns. The total

duration of the full process is T ¼ 382 ns in both cases.
In Fig. 3, we have plotted the transition probability as a

function of the deviation −1 ≤ α ≤ 1 from the theoretical
optimal value, Ω → Ωð1þ αÞ, with Ω ¼ 1.86π=T (i.e.,
15.3 MHz) andΩ ¼ 2.71π=T (i.e., 22.3 MHz) for the third-
order and fifth-order robustness, respectively. Each point
corresponds to an experiment repeated 8096 times, where
its value is averaged over the possible outputs 0 (ground)
or 1 (excited state).
The experimental profiles of the single (square) Rabi

pulse and of third- and fifth-order DRIO are compared with

the theoretical ones in Fig. 3. The small discrepancy,
identical for DRIO and π-pulse excitations, amounts to
approximately 3%, which corresponds to the systematic
readout error. Apart this error, the experimental profiles fit
remarkably well the theoretical predictions as shown by the
profiles including 3% correction. We conclude that the
DRIO protocol in principle features the same high-fidelity
efficiency of the π-pulse method, but on a much broader
interval.
Conclusions and discussion.—We demonstrated a digital

optimal control procedure for realizing a robust one-qubit
state-to-state transfer. It features a series of pulses, similarly
to composite techniques, but where the control parameters
are designed from a continuous-time control and has the
potential to achieve global optimality. This approach has
the decisive advantage of being able to account for the
limitations of pulse-shaping devices using a moderate
number of pulse parameters.
The demonstration is here provided for population

transfer due to its simplicity (in particular from an exper-
imental point of view). This can be directly applied for
more complex processes such as quantum gate since, as we

FIG. 2. Same as Fig. 1, but for the fifth-order RIO and DRIO, of
total pulse area 2.71π.

FIG. 1. Digital and continuous third-order RIO with N ¼ 15
Gaussian-shaped or square subpulses. Upper frame: Rabi fre-
quency pulse series n ¼ −7;…; 7 with Gaussian-shaped (red
line) or square subpulses (peak: horizontal blue line, delimited by
dashed vertical lines) of individual duration τ and full duration
T ¼ Nτ; corresponding continuous constant Rabi frequency
(horizontal blue line). Middle frame: detuning Δ and the
corresponding digital (piecewise) phases φn ¼ φðtnÞ from
Δ ¼ φ0. Lower frame: Population dynamics from the effective
continuous model (12) (full line) and after each subpulse of the
digital model (1) (circles), showing complete population transfers
(exactly for continuous RIO, and with an error of less than 10−4

for DRIO). The total pulse area is 1.86π for both models.
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have shown, the theoretical continuous form (provided in
[22]) suffices to construct the digital procedure.
The applicability of the present digital robust control

method on complex systems [39] depends on our ability
(i) to generate the dynamical invariants allowing the
construction of the state and propagator parametrization
[40], from which one can implement the inverse engineer-
ing technique [see [41] for SU(2) symmetry] and (ii) to find
the underlying Lagrangian multipliers (LMs) [21,23]. The
dynamical invariants have been derived for SU(4) sym-
metry with interactions of the form σi ⊗ σi, 1 ⊗ σi,
σi ⊗ 1, i ¼ x, y, z [42], which covers most of the practical
applications of quantum computation involving two-qubit
operations. One can reduce the dimensions using specific
symmetries [43]. For instance, one can compensate the
error in the phase of a two-qubit controlled-PHASE
gate using SU(2)-symmetry interactions T1 ≡ 1

2
σx ⊗ σx,

T2 ≡ 1
2
σx ⊗ σy, and T3 ≡ 1

2
1 ⊗ σz [44]. An obstruction

can arise when too many LMs are to be determined,
typically more than 10. Robustness with respect to field
inhomogeneities or inhomogeneous broadening requires
(i) two LMs for population transfer and three LMs for
single-qubit gate at third order; (ii) four LMs for complete
(or partial) population transfer and six LMs for single-qubit
gate (if we consider the trace fidelity) at fifth order. If one
considers robustness against both amplitude and detuning,
the number of LMs is doubled.
The performances of CPs are relatively close to the

optimal ones for complete population transfer (third- and
fifth-order robustness requiring 2π [22] and 3π [14] pulse
areas, to be compared to the optimal 1.86π and 2.71π pulse

areas, respectively). However, RIO operates in a much
faster way than CPs (with the same efficiency) for more
complicated transfers or gates [22].
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