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We conducted quantum simulations of strongly correlated systems using the quantum flow (QFlow)
approach, which enables sampling large subspaces of the Hilbert space through coupled variational
problems in reduced dimensionality active spaces. Our QFlow algorithms significantly reduce circuit
complexity and pave the way for scalable and constant-circuit-depth quantum computing. Our simulations
show that QFlow can optimize the collective number of wave function parameters without increasing the
required qubits using active spaces having an order of magnitude fewer number of parameters.
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Introduction.—The development of quantum computing
has grabbed the attention of the many-body chemistry and
physics communities with the promise to provide exponen-
tial speed-ups over traditional computing for problems such
as solving the electronic Schrödinger equation for ground
and excited states or the time-dependent equation for
studying dynamics. For the electronic problem, the two
salient quantum algorithms for determining energetics with
the electronic Hamiltonian are quantum phase estimation
(QPE) [1–6] and variational quantum eigensolver (VQE)
[7–18]. Both algorithms are seized by complexities that
prevent routine calculations of meaningful problems that
plague traditional computing. These complexities result
from the inherently large dimensionality needed to provide
accurate and reliable results. For QPE, this manifests in
circuit depths far beyond what is achievable in the noisy
intermediate-scale quantum (NISQ) device era of quantum
computing. For VQE, a measure of complexity is the
number of parameters from a given ansatz currently opti-
mized using traditional computing algorithms. The progress
in enabling quantum computing technologies is contingent
not only on the advances in the design of quantummaterials
but also on the ability to adapt to new methodological
advances in the theory of correlated many-body systems.
The reduction of dimensionality and compression of

quantum Hamiltonians has become a crucial area of focus
in the realm of quantum computing. In light of this, it is of
utmost importance to develop methodologies that aim to
compress the correlation effects in smaller spaces that can
be handled by current quantum computing resources [19–
21]. As such, the authors have devised a coupled cluster
(CC)-based downfolding formalism that enables the incor-
poration of dynamical correlation effects from large Hilbert
spaces into manageable effective Hamiltonians for a
smaller subspace of the original problem [22]. This
Letter describes and provides numerical evidence for a
new dimensionality-reducing technique called the quantum
flow (QFlow) approach. The QFlow algorithm integrates

the reduced-dimensionality active space variational prob-
lems to approximate the ground-state energy of the
Hamiltonian operator within a larger subspace of Hilbert
space [23].
Within the framework of QFlow formalism, the highest

demand for qubits is linked to the number of qubits
necessary for the representation of the quantum problem
that corresponds to the largest active space incorporated in
the flow. Using modest-size active spaces, we demonstrate
that QFlow can efficiently recover the corresponding ener-
getics of the full problem. It is a flexible workflow that we
expected to play a pivotal role in performing quantum
simulations on quantum computers during the transition
fromNISQ devices to fully fledged error-corrected quantum
computing.
CC theory and quantum flows.—The CC theory [24–31]

has evolved into a one of the most prominent formalisms to
describe correlated systems. In the single-reference variant
(SR-CC), the ground-state wave function jΨi is defined by
the exponential ansatz

jΨi ¼ eT jΦi; ð1Þ

T ¼
XNA

k¼1

1

ðk!Þ2
X

i1;…;ik
a1;…;ak

ta1…ak
i1…ik

a†a1…a†akaik…ai1 ; ð2Þ

where T and jΦi represent the cluster operator and
reference function. The T operator is defined by the maxi-
mum excitation level (NA), cluster amplitudes ta1…ak

i1…ik
, and

creation/annihilation operators a†p=aq where p, q stand for
the general spin-orbital indices. The indices ij (aj) stand for
occupied (unoccupied) spin orbitals in the reference
function jΦi. Standard CC equations are given by the
equations
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Qe−THeT jΦi ¼ 0; ð3Þ

hΦje−THeT jΦi ¼ E; ð4Þ
where Q is a projection operator onto excited Slater
determinants generated by acting with T on jΦi (the
projection onto the reference function is denoted as P).
Recently, it has been demonstrated that CC energies can be
calculated by diagonalizing effective Hamiltonians in a
class of complete active spaces (CASs) that are specific to
the approximation of the T operator [23,32,33]. If, in the
particle-hole formalism, CAS is generated by the excitation
subalgebra (h), and the cluster operator T can be partitioned
into internal [T intðhÞ; producing excitation within CAS]
and external [TextðhÞ; producing excitation outside of CAS]
parts and eT intðhÞjΦi represents an exact-type expansion in
the CAS, then the CC energy can be obtained as

HeffðhÞeT intðhÞjΦi ¼ EeT intðhÞjΦi; ð5Þ

HeffðhÞ ¼ ½PþQintðhÞ�e−TextðhÞHeTextðhÞ½PþQintðhÞ�; ð6Þ

where QintðhÞ is a projection onto excited (with respect to
jΦi) configurations in the CAS. The above property of the
CC formalism (referred to as the CC downfolding) is valid
for any type of subalgebra h [henceforth referred to as the
subsystem embedding subalgebras (SES)] described above.
The partitioning of the cluster operator into internal and
external parts has been originally introduced in the context
of the state-selective multireference CC formalism in
Refs. [34–37]. Although the SES theorem [Eq. (5)] and
equivalence theorem (see below) are based on the decom-
position of cluster operator into internal or external parts,
the possibility of calculating CC energies in an alternative
way and integrating various active-space problems were
proposed only recently [23,32]. The invariance of the CC
energy with respect to the choice of SES led to the concept
of quantum flow and equivalence theorem [23,38], which
states that when several SES problems represented by (6)
are coupled into the flow, i.e.,

HeffðhiÞeT intðhiÞjΦi ¼ EeT intðhiÞjΦiði ¼ 1;…;MÞ ð7Þ
(M stands for the number of CASs included in the flow),
the corresponding solution is equivalent to the standard
representation of the CC theory given by Eqs. (3) and (4)
with the T operator defined as a combination of all nonre-
petitive excitations included in T intðhiÞði ¼ 1;…;MÞ oper-
ators, symbolically denoted as

T ¼
X̃M

i¼1
T intðhiÞ: ð8Þ

An important consequence of the equivalence theorem is
the fact that for some choices of cluster operator, Eq. (8),
high-dimensionality problem, Eqs. (3) and (4) can be
replaced by a flow composed of reduced dimensionality

non-Hermitian eigenvalue problems. For each subalgebra
hi in the eigenvalue problem of Eq. (7), the effective
Hamiltonian HeffðhiÞ follows Eq. (6), where the external
cluster operators TextðhiÞ are the collection of operators
excluding T intðhiÞ,

TextðhiÞ ¼ T − T intðhiÞ: ð9Þ

The T operator defined by Eq. (8) does not correspond, in
general, to a typical rank-truncated cluster operator. For
example, for all possible (4e,4o)-type active spaces, the T
operator encompasses all single and double excitations as
well as subsets of triple and quadruple. A version of the
equivalence theorem holds for truncated forms of T intðhiÞ
operators, which leads to the recovery of standard rank-
defined CC approximations. However, in this case, the
active-space problems cannot be represented in an elegant
form involving effective Hamiltonian language.
To extend the SR-CC flows to the Hermitian case, in

contrast to previous analysis [23], we will employ varia-
tional principle using functional

E ¼ hΦje−σHeσjΦi; ð10Þ

where a general-type anti-Hermitian cluster operator
σ (σ ¼ PNA

k¼1½1=ðk!Þ2�
P

p1 ;…;pk
q1 ;…;qk

σq1…qk
p1…pka

†
q1…a†qkapk

…ap1
,

σ† ¼ −σ) includes all excitations needed to generate space
that is too large to be handled by available quantum
computers. To tackle the problem using limited quantum
resources, let us assume that the σ operator can be
approximated by amplitudes included in anti-Hermitian
operators σintðhiÞði ¼ 1;…;MÞ, producing excitations
within corresponding active spaces [ASðiÞ] generated by
subalgebras hi

σ ≃
X̃M

i¼1
σintðhiÞ: ð11Þ

In the next step, we will look at the problem (10) from
the point of view of ith active space and decompose σ
operator as

σ ≃ σintðhiÞ þ σextðhiÞ; ð12Þ

and

E ¼ hΦje−σintðhiÞ−σextðhiÞHeσintðhiÞþσextðhiÞjΦi: ð13Þ

Next, we will utilize the order-N active-space-specific
Trotter formula (in analogy to Ref. [23]) to expand
exponents, which introduce active-space-specific EðhiÞ
approximation to energy E:

EðhiÞ ¼ hΨintðhi; NÞjHeffðhi; NÞjΨintðhi; NÞi; ð14Þ
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where

Heffðhi; NÞ ¼ ½PþQintðhiÞ�½GðNÞ
i �−1HGðNÞ

i ½PþQintðhiÞ�
ð15Þ

GðNÞ
i ¼ ðeσextðhiÞ=NeσintðhiÞ=NÞN−1eσextðhiÞ=N ð16Þ

and

jΨintðhi; NÞi ¼ eσintðhiÞ=N jΦi: ð17Þ

The coupled variational problems (14) for i ¼ 1;…;M
define the QFlow algorithm. As in the non-Hermitian case,
the total pool of amplitudes optimized in the QFlow
corresponds to all nonrepetitive amplitudes for active
spaces included in the flow. As a consequence of the
noncommutativity of operators defining σ operators and the
need to use Trotter approximations, the energy values in
(14) may be, in general different. For this purpose, we
introduce physically motivated ordering of the active
spaces [the first (last), or primary active space contains
the most (the least) important part of correlation effects]
based, for example, on the orbital energy criteria and use
the energy [Eðh1Þ] to probe the energy in the QFlow
procedure. The advantage of the quantum version of the
QFlow algorithm stems from the fact that the qubits
requirement is associated with the qubits requirement of
the largest active space in the flow. In this Letter, we will
mainly focus our attention on the simplest N ¼ 1 case
where sets of amplitudes defining effective Hamiltonian
and jΨintðhi; N ¼ 1Þi≡ jΨintðhiÞi are disjoint.
Numerical implementation.—The QFlow algorithm has

never been validated numerically. To fill this gap, we
developed QFlow implementation for the first-order
Trotterization approximation (N ¼ 1) based on the
stringMB code—an occupation number representation-
based emulator of quantum computing [33]. Our QFlow
implementation, which emulates a VQE solver for each
CAS involved in the flow, is schematically shown in Fig. 1
and uses conventional computers to store a global pool of
amplitudes and prepare effective Hamiltonian for each
cycle. When representing the flow in the form of coupled
eigenvalue problems, one has the flexibility in defining the
active spaces, which can include those that overlap with
each other and share common parameters. For the hi
computational block we partition the set of variational
parameters θðhiÞ into subset θCPðhiÞ that refers to common
pool of amplitudes determined in preceding steps [say, for
hjðj ¼ 1;…; i − 1Þ] and subset θXðhiÞ that is uniquely
determined in the hi minimization step for EðhiÞ, i.e.,

min
θXðhiÞ

hΨintðθXðhiÞ; θCPðhiÞÞjHeffðhiÞjΨintðθXðhiÞ; θCPðhiÞÞi;

ði ¼ 1;…;MÞ; ð18Þ

whereHeffðhiÞ≡Heffðhi;N¼1Þ and jΨintðθXðhiÞ;θCPðhiÞÞi
(chosen in the form of unitary CC (UCC) Ansatz [39–41])
approximates jΨintðhiÞi ¼ eσintðhiÞjΦi in Eq. (17). When
combined with a simple form of the gradients estimates on
the quantum computers [14]

∂EðhiÞ
∂θXðhiÞk

≃ hΨintðhiÞj½HeffðhiÞ; τXk ðiÞ�jΨintðhiÞi; ð19Þ

where τXk ðiÞ is a corresponding combination of the strings
of a creation/annihilation operators associated with the
θXðhiÞk amplitude in the σintðhiÞ operator. Instead of
performing full optimization for each active space included
in the QFlow, we perform only one optimization step based
on the gradient (19). We also employ UCC-type repre-
sentation for each σextðhiÞ needed to construct HeffðhiÞ
operator in Eq. (15).
Results.—As test systems to demonstrate the perfor-

mance of the QFlow techniques, we chose the Hn linear
chains of the hydrogen atoms: H6 and H8 models in small
STO-3G basis set [42], where one can vary the complexity
of the ground-state wave function by changing the H-H
distances (RH−H) between adjacent atoms. For example,
while for RH−H ¼ 2.0 a:u:, one deals with the weakly
correlated case, for RH−H ¼ 3.0 a:u:, the system is strongly
correlated and all Hartree-Fock orbitals used in simulations
are non-negligible. This means that one cannot define a
single small-dimensionality active space to capture all
needed correlation effects for the RH−H ¼ 3.0 a:u: case.
Recently, the Hn models have been used for validation of
cutting-edge many-body numerical methodologies for
treating correlated quantum systems [43–47].

FIG. 1. Schematic representation of the QFlow algorithms. All
cluster amplitudes [global pool of CC amplitudes; (GPA)] are
residing on classical computers. The effective Hamiltonians are
formed on classical computers using GPA and encoded on
quantum computers (light blue arrows). Quantum computers
use these Hamiltonians to optimize internal excitations for a
given active space and are used to update GPAs (dark blue lines).
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We summarized QFlow results in Table I and in Figs. 2
and 3. For both systems, the QFlow included all active
spaces defined by arbitrary two occupied active and two
virtual active orbitals and four active electrons [the QFlow
(4e,4o) model]. For H6 and H8 systems QFlow integrates 9
and 36 active spaces, respectively. In Table I, the QFlow
(4e,4o) results are compared against exact diagonalization
(ED) in the full space, in the primary active space (CAS-ED)
consisting of the two highest energy occupied orbitals and
two lowest energy unoccupied orbitals, and typical CC
approximations including excitations from singles to qua-
druples (CCSD, CCSDT, and CCSDTQ) [31]. It is evident
that the QFlow algorithm significantly reduces errors of the
CAS-ED method—a prevailing model for performing
quantum simulations on NISQ-type devices. In the extreme
case, the error of CAS-ED amounting to 279 mHartree
for the H8 3.0 a.u. system is reduced by QFlow to
12.4 mHartree. Additionally, it should be noticed that for
the H6 and H8 RH−H ¼ 3.0 a:u: models, the CCSD and
CCSDT formulations experience variational collapse
placing the ground-state energies significantly below the
ED ones. For weakly correlated H6 and H8 models
(RH−H ¼ 2.0 a:u), the QFlow results are within chemical
accuracy error bars (less than 1.59 mHartree). In Fig. 2, we
show energies [EðhiÞ] calculated in the first four QFlow
cycles for two geometries of H8. In both cases, we can
observe that energies obtained in the first non-trivial cycle
(second cycle) are considerably better than the CAS-ED
energy for the primary active spaces (targeted in typical
VQE simulations).
In Fig. 3, we discuss the discrepancies between the

minimum and maximum values of EðhiÞ for each cycle for
H8 3.0 a.u. model. Despite the fact that in cycles two and
three these discrepancies are substantial, in the following
iterations, these discrepancies significantly decrease. For
20th cycle, the discrepancy is less than 2.0 mHartree, which
indicates that despite approximations associated with the

non-commutative characters of cluster operators in QFlow,
the energy invariance of the SR-CC flow (7) at the solution
is approximately satisfied. This discrepancy is further

TABLE I. Converged QFlow energies (in Hartree) for H6 and
H8 benchmark systems at RH−H ¼ 2.0 and RH−H ¼ 3.0 a:u:
corresponding to weakly and strongly correlated regimes,
respectively.

Method
H6

(2.0 a.u.)
H6

(3.0 a.u.)
H8

(2.0 a.u.)
H8

(3.0 a.u.)

HF −3.1059 −2.6754 −4.1382 −3.5723
CAS-ED −3.1669 −2.8021 −4.1906 −3.6656
CCSD −3.2173 −2.9673 −4.2848 −3.9727
CCSDT −3.2180 −2.9692 −4.2867 −3.9784
CCSDTQ −3.2177 −2.9574 −4.2860 −3.9439
QFlow(4e,4o)a −3.2173 −2.9521 −4.2847 −3.9322
ED −3.2177 −2.9576 −4.2860 −3.9447

aQFlow energies are reported from the primary active space
consisting of the two highest energy occupied orbitals and two
lowest energy unoccupied orbitals.

FIG. 2. Energy evaluations (for all active spaces) in the
QFlow for STO-3G H8 model: (a) RH−H ¼ 2.0, blue circles,
(b) RH−H ¼ 3.0 a:u:, red circles. The dotted and solid horizontal
black lines correspond to the active-space and full-space exact
diagonalizations, respectively. We report the energies of all active
space problems for the first four cycles, where the start of each
cycle is indicated by the green vertical lines. To initiate the
optimization process, we utilized a zero vector as the initial guess
for all active spaces. The optimization process is based on the
gradients (19), and the update of the parameter pool starts from
the second cycle. Thus, all energies in the first cycle correspond
to HF energies.

FIG. 3. The minimum and maximum values of EðhiÞ at the
beginning of each QFlow cycle of the STO-3G H8 RH−H ¼
3.0 a:u: model.
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reduced to the 0.2 mHartree by order-3 (N ¼ 3) Trotter
expansion for the effective Hamiltonians (15) [at the same
time order-3 expansion reduces order-1 QFlow(4e,4o) error
of 12.5 mHartree for H8 3 a.u. model to 9.7 mHartree]. In
the QFlow simulations for the H8 system, we optimized
684 parameters using coupled computational blocks cor-
responding to active space eigenvalue problems that opti-
mize at most 35 parameters. Concurrently, the number of
QFlow optimized amplitudes is considerably lower than
that of CCSDTQ ones. For instance, QFlow optimizes only
36 quadruply excited amplitudes, while the CCSDTQ
approach utilizes 1810 of them (with no spatial symmetry
invoked in both techniques).
While the STO-3G basis set is useful for validating the

QFlow algorithm, in practical applications, larger basis sets
that properly capture short-range dynamical correlation
effects are required. To address this challenge, we have
implemented a two-step strategy, referred to as the DUCC-
QFlow approach described in Ref. [23]. This approach
utilizes (i) classical computers and a simplified down-
folding technique to evaluate an approximate form of the
effective Hamiltonian (A) for active spaces that are too large
for current quantum hardware, and (ii) quantum computers
to solve the problem described by Eq. (10) withH replaced
by A using the QFlow algorithm. We illustrate the fea-
sibility of the DUCC-QFlow algorithm in handling larger
basis sets on the challenging example of H6 for RH−H ¼
3 a:u: for cc-pVDZ basis set [48] and active orbitals
defined by six [DUCC(6act)-QFlow(4e,4o)] and seven
[DUCC(7act)-QFlow(4e,4o)] lowest Hartree-Fock orbitals.
As a downfolding procedure for the first step, we adopted
the A(7) approximation for the downfolding technique of
Ref. [49]. The DUCC-QFlow results shown in Table II
indicate that while DUCC(6act)-QFlow(4e,4o) provides
accuracies of the CCSD energies, the DUCC(7act)-
QFlow(4e,4o) furnishes energies in a good agreement with
the CCSDTQ or ED results.
Summary.—We provided numerical evidence that the

QFlow algorithm can efficiently sample large subspaces of
the Hilbert space through coupled variational problems in
reduced dimensionality active spaces. Using very modest
active space sizes, we illustrated the utility of the QFlow
procedure with the STO-3G H6 and H8 hydrogen chains in
weakly and strongly correlated regimes with errors within

chemical accuracy for weakly correlated systems and
relatively small errors for the strongly correlated systems.
For the strongly correlated H8 model, we recover nearly
97% of the correlation using active spaces containing small
number of optimized parameters compared to the exact
diagonalization. Additionally, the application of the two-
step DUCC-QFlow protocol successfully accounted for
correlation effects in the highly correlated version of the
H6 molecule utilizing a larger cc-pVDZ basis set. Our
expectations are that the DUCC-QFlow algorithm will
facilitate the seamless integration of classical and quantum
computational resources.
The examples in this Letter are very conservative estimates

of the dimensionality reduction that can be achieved with the
QFlow algorithm. As quantum technology evolves and we
transition from the noisy intermediate-scale quantum devices
era to fully fledged error-corrected quantum computing, the
ability to adapt to new methodological advances and effi-
ciently utilize hybrid computational resources is ever impor-
tant. An intriguing aspect of QFlow, to be explored in
forthcoming studies is the possibility to (i) employ the local
character of correlation effects, and (ii) construct adaptive
QFlow approaches involving a preselected set of various-size
active spaces relevant to the problem of interest [50–54]. This
has the potential to overcome the limitations of models based
on all possible fixed-size active spaces for large-scale
applications. Moreover, preliminary tests suggest that modi-
fying the QFlow by optimizing all active space problems
simultaneously, rather than using a serial-type algorithm,
produces equivalent optimized energy and comparable con-
vergence patterns, enabling the development of efficient
parallel or distributed QFlow algorithms. The authors expect
that theQFlowalgorithmdemonstrated in thisLetterwill play
an important role in pushing the envelope of many-body
applications as quantum computing continues to evolve.
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