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Energetic coherence is indispensable for various operations, including precise measurement of time and
acceleration of quantum manipulations. Since energetic coherence is fragile, it is essential to understand the
limits in distillation and dilution to restore damage. The resource theory of asymmetry (RTA) provides a
rigorous framework to investigate energetic coherence as a resource to break time-translation symmetry.
Recently, in the independent and identically distributed (i.i.d.) regime where identical copies of a state are
converted into identical copies of another state, it was shown that the convertibility of energetic coherence
is governed by a standard measure of energetic coherence, called the quantum Fisher information (QFI).
This fact means that QFI in the theory of energetic coherence takes the place of entropy in thermodynamics
and entanglement entropy in entanglement theory. However, distillation and dilution in realistic situations
take place in regimes beyond i.i.d., where quantum states often have complex correlations. Unlike
entanglement theory, the conversion theory of energetic coherence in pure states in the non-i.i.d. regime has
been an open problem. In this Letter, we solve this problem by introducing a new technique: an
information-spectrum method for QFI. Two fundamental quantities, coherence cost and distillable
coherence, are shown to be equal to the spectral QFI rates for arbitrary sequences of pure states. As a
consequence, we find that both entanglement theory and RTA in the non-i.i.d. regime are understood in the
information-spectrum method, while they are based on different quantities, i.e., entropy and QFI,
respectively.
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Introduction.—In quantum mechanics, different states
can be superposed. Of vital importance is the superposition
between different energy eigenstates, called energetic
coherence. Energetic coherence is mandatory for creating
accurate clocks [1–6], accelerating quantum operations [7],
and measuring physical quantities noncommutative with
conserved quantities [8–12]. Recently, it was shown that
energetic coherence also plays important roles for gate
implementation in quantum computation [13–17], quantum
measurements [12,17], quantum error correction [16–21],
and black hole physics [16,17].
Energetic coherence and other fundamental properties of

quantum systems are better understood by treating them as
resources for quantum tasks. Quantum resource theories
(QRTs) provide a versatile framework for analyzing seemin-
gly unrelated resources with different origins, including

entanglement [22], athermality [23,24], and energetic coher-
ence [5,25–27]. Unexpected similarities arise in different
branches ofQRTs [28], leading to a unified understanding of
the underlying laws. Since valuable resources are often
fragile, it is fundamental to develop a theoretical under-
standing of the distillation and dilution of resources to
restore their damage. Here, distillation is the operation of
extracting as much resource as possible from a given state,
and dilution is the opposite (Fig. 1).

FIG. 1. Schematic of dilution and distillation. In dilution, a
given state or a given sequence of states (depicted as light blue
liquid) is generated by consuming as little resource (depicted as
dark blue liquid) as possible. In distillation, as much resource as
possible is extracted from a given state or a given sequence of
states.
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Revealing the limits of distillation anddilutionof energetic
coherence is of great importance when assembling multiple
inaccurate clocks into an accurate clock [5]. These limits
have been studied [5,27] in the resource theory of asymmetry
(RTA), a branch of QRTs that analyzes symmetries and
conservation laws [12,14–16,25–27,29–32]. In the indepen-
dent and identically distributed (i.i.d.) regimewhere identical
copies of a pure state are converted to identical copies of
another pure state, the conversion rate is shown to begiven by
the ratio of their quantum Fisher information (QFI), a
quantifier of energetic coherence [27]. In other words,
QFI is in the position of entropy in the second law of
thermodynamics. The same thermodynamic structure is
known to exist in the i.i.d. regime for entanglement entropy
in entanglement theory [33].
Toward practical applications, it is essential to extend the

conversion theory in the i.i.d. regime to the non-i.i.d. setting
because a realistic resource often has complex correlations
while an i.i.d. resource state has no correlation. In entan-
glement theory [34,35] and quantum thermodynamics
[36–38], conversion theories in the non-i.i.d. regime have
been established. However, the counterpart in RTA remains
elusive.
The obstacle to analyzing the non-i.i.d. regime in RTA is

the limitation of the traditional information-spectrum
method. This method gives a universal way of dealing
with entropy-related problems for general states with
arbitrary correlations in classical and quantum information
theory, e.g., source coding, channel coding, and hypothesis
testing [39–43]. Furthermore, entanglement theory and
quantum thermodynamics in the non-i.i.d. regime
[34–38,44] are established with the information-spectrum
method since they are based on entropy. However, a central
measure in converting energetic coherence is QFI, which is
quite different from entropy. Therefore, the non-i.i.d. theory
in RTA has been out of the scope of the information-
spectrum method.
In this Letter, we establish the conversion theory of

energetic coherence in non-i.i.d. pure states by constructing
an information-spectrum approach for QFI. The key
ingredients we introduce here are the following: the spectral
supremum (sup-) and infimum (inf-)QFI rates, the maxi-
mum (max-) and minimum (min-)QFI, and asymmetric
majorization. All of them clarify the correspondence in the
conversion theories of entanglement and energetic coher-
ence in the non-i.i.d. regime, which are characterized by
entropies and QFIs, respectively. First, we prove a general
formula for the coherence cost and the distillable coher-
ence, i.e., the optimal conversion rates of a sequence of
arbitrary pure states from and to a reference state.
Concretely, they are shown to be equal to the spectral
sup- and inf-QFI rates, respectively. This result corresponds
to the general formula in entanglement theory [34,35],
asserting that the entanglement cost and the distillable
entanglement are equal to the spectral sup- and inf-entropy

rates. Second, these spectral QFI rates are constructed as
asymptotic rates of the smooth max- and min-QFIs. Their
construction is parallel to that of spectral entropy rates,
given as the asymptotic rates of the smooth max- and min-
entropies with the smoothing technique [45,46]. Third, the
asymmetric majorization relation between energy distribu-
tion is shown to provide a necessary and sufficient con-
dition for the exact convertibility among pure states in RTA.
This result is the counterpart in RTA to Nielsen’s theorem
[47], which characterizes the pure-state convertibility in
entanglement theory by the majorization relation of the
Schmidt coefficients.
Our findings highlight a clear correspondence in non-

i.i.d. resource conversion in entanglement theory and RTA.
See Figs. 2 and 3. Although they treat quite different
resources, i.e., entanglement and energetic coherence, both
are understood within a unified framework of the informa-
tion-spectrum method for each resource.
Resource theory of asymmetry.—This Letter aims to

construct a general theory of manipulating energetic
coherence. To this end, we begin by identifying states
with and without energetic coherence. Consider a quantum
system S and its Hamiltonian H. Energetic coherence
means superposition between eigenstates of H with differ-
ent eigenvalues. Thus, a state ρ has energetic coherence if
and only if the time evolution e−iHt changes it. Conversely,
a state without energetic coherence is symmetric under time
evolution, i.e., e−iHtρeiHt ¼ ρ for any t∈R. From these
facts, we call a state without energetic coherence symmetric
and a state with energetic coherence asymmetric. By
definition, a state ρ is symmetric if and only if ½ρ; H� ¼ 0.
We next consider transformations of states to manipulate

energetic coherence. A basic element is an operation which
does not create energetic coherence in the sense that it
transforms a symmetric state to a symmetric state. This
condition is satisfied if the operation is described by a
completely positive trace-preserving map E satisfying [59]

Eðe−iHtρeiHtÞ ¼ e−iHtEðρÞeiHt; ∀ ρ; ∀ t∈R: ð1Þ

A channel E satisfying Eq. (1) is called covariant (under
time evolution e−iHt).
Based on these ideas, RTA is constructed as a resource

theory of energetic coherence. The framework of a resource
theory is determined by defining “free states” that can be
freely prepared and “free operations” that can be freely
performed. In RTA, symmetric states are free states, and
covariant operations are free operations. With these defi-
nitions, energetic coherence in asymmetric states becomes
a resource. This structure in RTA is the same as in
entanglement theory, where entanglement becomes a re-
source by defining separable states and local operations and
classical communication (LOCC) as free states and free
operations.
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By adopting the above resource-theoretic perspective,
coherence is quantified by resource measures, which
monotonically decrease under covariant operations. A
well-known and important one is the symmetric logarith-
mic derivative Fisher information [60,61] with respect to
fe−iHtρeiHtgt, given by

F ðρ; HÞ ≔ 2
X

i;j

ðλi − λjÞ2
λi þ λj

jhijHjjij2; ð2Þ

where ρ ¼ P
i λijiihij is the eigenvalue decomposition.

See, e.g., [32,62,63] for details and its generalization.
Hereafter, we call this quantity quantum Fisher informa-
tion, simply written as F ðρÞ. For a pure state, QFI equals
four times the variance of H [64].
Following the standard argument [27], we hereafter

analyze a system with a Hamiltonian

H ¼
X∞

n¼0

njnihnj; ð3Þ

where fjnig denotes an orthogonal basis. With the method
in Ref. [27], pure-state conversion theory in this system can
be extended to a more general setup in RTA with arbitrary
Hamiltonians [48].
An essential characteristic of a pure state ψ ¼ jψihψ j in

the manipulation of energetic coherence is its energy
distribution pψ ¼ fpψ ðnÞg∞n¼0, where pψðnÞ ≔ jhnjψij2.
This is because any pure state jψi can be mapped toP∞

n¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
pψðnÞ

p jni by an energy-conserving unitary oper-
ation, which is covariant and invertible. In fact, necessary
and sufficient conditions for the exact convertibility
between pure states have been obtained in terms of the
energy distributions [25,30,67].
From a practical viewpoint, the exact conversion is

typically impossible and too restrictive. Therefore, it is
common to explore the convertibility with vanishing error
in the asymptotic regime. We adopt the trace distance
Dðρ; σÞ ≔ 1

2
kρ − σk1 as a quantifier of error, where

kAk1 ≔ Trð
ffiffiffiffiffiffiffiffiffi
A†A

p
Þ. For ϵ∈ ð0; 1�, we denote ρ≈ϵ σ if

and only if two states ρ and σ satisfy Dðρ; σÞ ≤ ϵ. For
two sequences of states ρ̂ ¼ fρmgm and σ̂ ¼ fσmgm, we
denote ρ̂≻covϵσ̂ if and only if there exists a sequence of
covariant channels fEmgm such that EmðρmÞ≈ϵ σm for all

sufficiently large m. If ρ̂≻covϵσ̂ holds for all ϵ∈ ð0; 1�, we say
ρ̂ is asymptotically convertible to σ̂ and denote ρ̂ ≻cov σ̂. For
simplicity, we only analyze systems with Hamiltonian
given by Eq. (3). Our main theorem on the pure-state
conversion (Theorem 1) for this setup can be extended to a
more general setup with arbitrary Hamiltonians. Of course,
this includes the i.i.d. case, where a Hamiltonian is given by
a sum of copies of a free Hamiltonian of a subsystem. See
the Supplemental Material [48] for a general formula.

In the analysis of asymptotic convertibility, we adopt a
coherence bit, i.e., a qubit with Hamiltonian j1ih1j in a state
jϕcohi ≔ ðj0i þ j1iÞ= ffiffiffi

2
p

as a reference. There are two
fundamental resource measures: the coherence cost and
the distillable coherence. They are defined as the optimal
rates for converting a sequence of states from and to
coherence bits, i.e.,

Ccostðρ̂Þ ≔ inf
n
RjdϕcohðRÞ≻cov ρ̂

o
; ð4Þ

Cdistðρ̂Þ ≔ sup
n
Rjρ̂ ≻cov dϕcohðRÞ

o
; ð5Þ

where dϕcohðRÞ ≔ fϕ⊗½Rm�
coh gm for R > 0 and ϕcoh ≔

jϕcohihϕcohj. Note that the infimum of the empty set is
formally defined as þ∞.
Finally, we introduce several notations for later conven-

ience. For a ¼ faðnÞgn∈Z, we denote a ≥ 0 if and only if
aðnÞ ≥ 0 for all n∈Z. A product sequence a � b is de-
fined by a � bðnÞ ≔ P

k∈Z aðkÞbðn − kÞ. Similarly, we
define ½a � b�tsðnÞ ≔

P
t
k¼s aðkÞbðn − kÞ.

For a given sequence q ¼ fqðnÞgn∈Z, another sequence
q̃ ¼ fq̃ðnÞgn∈Z satisfying

δ0;n ¼ q̃ � qðnÞ ð6Þ

plays a central role in our analysis. Here, δm;n is
the Kronecker delta. If there exists a finite n⋆ ≔
minfnjqðnÞ > 0g, such a sequence is constructed as

q̃ðnÞ ≔

8
>><

>>:

0 ðn < −n⋆Þ
1

qðn⋆Þ ðn ¼ −n⋆Þ
− 1

qðn⋆Þ ½q̃ � q�n−1−n⋆ðn⋆ þ nÞ ðn > −n⋆Þ
: ð7Þ

Note that q̃ðnÞ is defined recursively for n > −n⋆. If q is
an energy distribution, n⋆ ≥ 0 exists. In this case, q̃
satisfies

P
n q̃ðnÞ ¼ 1. However, it is not a probability

distribution in general since it can contain negative ele-
ments. Such a sequence q̃ is utilized to define central
quantifiers of our analysis, the max- and min-QFI, just
below.
We also introduce a generalized Poisson distribution

Pλ ¼ fPλðnÞgn∈Z for λ∈R, where PλðnÞ ≔ e−λλn=n! for
n ≥ 0 and PλðnÞ ≔ 0 for n < 0. For λ ≥ 0, Pλ is the
ordinary Poission distribution. Although Pλ with negative
λ is not a probability distribution, this notation is useful
since P̃λ ¼ P−λ [48].
Main results.—Now, let us construct an information-

spectrum theory for QFI and show our main results. We
first introduce key quantities. For a pure state ψ , we define
the max-QFI Fmax and the min-QFI Fmin by

FmaxðψÞ ≔ inf f4λjPλ � fpψ ≥ 0g; ð8Þ
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FminðψÞ ≔ sup f4λjpψ � P−λ ≥ 0g: ð9Þ

They quantify the amounts of coherence in ψ transformable
from and to a state whose energy distribution follows a
Poisson distribution [48]. For a general state ρ, we define
the max-QFI by FmaxðρÞ ≔ infΦρ

FmaxðΦρÞ, where the
infimum is taken over the set of all purifications Φρ of ρ
and the Hamiltonians of the auxiliary system with integer
eigenvalues. This notation is consistent with that for pure
states [48].
The max- and min-QFI have similar properties to the

max- and min-entropies in entanglement theory [48].
For example, they provide the upper and lower bounds
for QFI:

FmaxðψÞ ≥ F ðψÞ ≥ FminðψÞ: ð10Þ

For a general sequence of pure states ψ̂ ¼ fψmg, the
spectral sup- and inf-QFI rates are defined as

F ðψ̂Þ ≔ lim
ϵ→þ0

limsup
m→∞

1

m
F ϵ

maxðψmÞ; ð11Þ

F ðψ̂Þ ≔ lim
ϵ→þ0

liminf
m→∞

1

m
F ϵ

minðψmÞ; ð12Þ

where F ϵ
maxðψÞ ≔ infρ∈BϵðψÞFmaxðρÞ and F ϵ

minðψÞ ≔
supϕ∈Bϵ

pureðψÞFminðϕÞ are smooth max- and min-QFI.
Here, we defined BϵðψÞ ≔ fρ∶ statesjDðρ;ψÞ ≤ ϵg and
Bϵ
pureðψÞ ≔ fϕ∶ pure statesjDðϕ;ψÞ ≤ ϵg. Note that

limsupm→∞ð1=mÞF ϵ
maxðψmÞ and liminfm→∞ð1=mÞF ϵ

minðψmÞ
monotonically increases and decreases as ϵ becomes
smaller, and hence limit values F ðψÞ and F ðψÞ exist.
The main theorem of this Letter is the following:
Theorem 1.—For a general sequence of pure states

ψ̂ ¼ fψmg, the coherence cost and the distillable coherence
are equal to the spectral sup- and inf-QFI rates, respectively.
That is

Ccostðψ̂Þ ¼ F ðψ̂Þ; Cdistðψ̂Þ ¼ F ðψ̂Þ: ð13Þ

As a corollary of Theorem 1, we immediately get [48]

ψ̂ ≻cov ϕ̂ ⇒ F ðψ̂Þ ≥ F ðϕ̂Þ; F ðψ̂Þ ≥ F ðϕ̂Þ; ð14Þ

F ðψ̂Þ > F ðϕ̂Þ ⇒ ψ̂ ≻cov ϕ̂ : ð15Þ

Replacing F , F , and ≻cov by S, S, and ≻LOCC, the same
relations as Eqs. (14) and (15) hold in entanglement theory.
Here, S and S denote the spectral sup- and inf-entropy rates,

while ψ̂ ≻LOCC ϕ̂ means that ψ̂ is asymptotically convertible
to ϕ̂ by LOCC [48].

Theorem 1 for a system with Hamiltonian in Eq. (3) can
be extended to an arbitrary sequence of systems with any
Hamiltonians in pure states having a finite period [48]. In
particular, the spectral QFI rates F and F are equal to QFI
F in the i.i.d. setting [48], which reproduces the result in
earlier i.i.d. studies [25,27]. We remark that S and S are
equal to entanglement entropy in the i.i.d. regime in
entanglement theory [48].
These results show that the spectral sup- and inf-QFI

rates, F and F , in RTA play the same roles as the spectral
sup- and inf-entropy rates, S and S, in entanglement theory
[48]. See Fig. 2. In other words, RTA in the non-i.i.d.
regime has the same structure on convertibility as
Lieb-Yngvason’s nonequilibrium theory [68], based on
QFI-related quantities rather than entropies.
Theorem 1 for the coherence cost is directly extended

to general states, including mixed states. That is, defin-
ing F ðρ̂Þ ≔ limϵ→þ0limsupm→∞ð1=mÞF ϵ

maxðρmÞ, where
F ϵ

maxðρÞ ≔ infσ ∈BϵðρÞFmaxðσÞ, the following holds [48]:
Theorem 2.—For a general sequence of states ρ̂ ¼ fρmg,

it holds Ccostðρ̂Þ ¼ F ðρ̂Þ.
One-shot convertibility between pure states.—We here

define a notion of asymmetric majorization, which we
abbreviate a-majorization, as follows:
Definition 3.—For probability distributions p ¼

fpðnÞgn∈Z and q ¼ fqðnÞgn∈Z, we say that p a-majorizes
q if and only if p � q̃ ≥ 0 hold. In this case, we
denote p≻aq.
For comparison, we review the definition of majoriza-

tion. A probability distribution p ¼ fpðiÞgdi¼1 majorizes
another probability distribution q ¼ fqðiÞgdi¼1 if and only ifP

k
l¼1 p

↓ðlÞ ≥ P
k
l¼1 q

↓ðlÞ for all k ¼ 1;…; d, where ↓
indicates that the distributions are rearranged in decreasing
order so that p↓ðiÞ ≥ p↓ðjÞ and q↓ðiÞ ≥ q↓ðjÞ for i > j.
The a-majorization has properties similar to the ordinary

majorization [48]. Among them, a significant one is the
following:
Theorem 4.—A pure state ψ is convertible to a pure state

ϕ by a covariant operation if and only if pψ≻apϕ.

FIG. 2. Comparison of entanglement theory and RTA on the
asymptotic convertibility [48]. The quantities Ecost and Edist
denote the entanglement cost and the distillable entanglement.
For sequences of general bipartite pure states ψ̂ ¼ fψAB;mgm, we
define ρ̂ ¼ fρmgm, where ρm ≔ TrBðψAB;mÞ. The quantities
SEEðψÞ, SϵmaxðρÞ, and SϵminðρÞ denote entanglement entropy, the
smooth max- and min-entropies.
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This is the counterpart in RTA to Nielsen’s theorem in
entanglement theory [47]: A bipartite pure state ψ is
convertible to a bipartite pure state ϕ by LOCC if and
only if λψ ≺ λϕ, where λψ and λϕ are the probabi-
lity distributions given by the Schmidt coefficients of ψ
and ϕ, respectively. This correspondence is the motiva-
tion for introducing the terminology of a-majorization.
See Fig. 3.
We remark that other necessary and sufficient conditions

on one-shot convertibility in RTA were proven in earlier
studies [25,30,67]. Our contribution here is to provide the
one-shot convertibility condition in terms of a-majorization
to make it useful for our purpose to analyze the asymptotic
convertibility in the non-i.i.d. regime. In particular, this
reformulation makes the correspondence between RTA and
entanglement theory clearer.
Proof of Theorem 1.—For a Poisson distribution

Pλ, we denote χλ ≔
P∞

n;n0¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PλðnÞPλðn0Þ

p jnihn0j and
χ̂λ ≔ fχλmgm. This sequence is interconvertible with
dϕcohðRÞ by covariant operations, i.e., dϕcohðRÞ≻covχ̂R=4 and

χ̂R=4≻cov dϕcohðRÞ [48].
The followings are key lemmas [48]:
Lemma 5.—Let E be a covariant channel. A state EðχλÞ

has a purification Ψ such that pΨ ¼ Pλ, where the
Hamiltonian of the ancilla added to purify EðχλÞ has integer
eigenvalues.
Lemma 6.—Let ψ and ϕ be pure states. Assume that a

covariant channel satisfies EðψÞ≈ϵ ϕ. Then there exists a
pure state ψ 0 such that ψ 0 ∈B2ϵ1=4

pure ðψÞ and pψ 0≻apϕ.
To show Ccostðψ̂Þ ¼ F ðψ̂Þ, we introduce Cϵ

costðρ̂Þ ≔
inf

n
R
���dϕcohðRÞ≻covϵρ̂

o
. Defining 4λϵ=2 ≔ Cϵ=2

costðψ̂Þ, for any

δ > 0, there exists δ0 such that δ > δ0 ≥ 0 and
dϕcoh½4ðλϵ=2 þ δ0Þ�≻covϵ=2ψ̂ . Since χ̂ðλϵ=2þδ0Þ≻covϵ=2dϕcoh½4ðλϵ=2þ
δ0Þ�, we have χ̂ðλϵ=2þδÞ≻covϵψ̂ , where we have used the fact that
Pλ≻aPλ0 holds for any λ ≥ λ0 [48]. From Lemma 5, for all
sufficiently large m, there exists a state ρm ∈BϵðψmÞ whose
purification Φm satisfies Pðλϵ=2þδÞm ¼ pΦm

. Therefore,

4ðλϵ=2 þ δÞm ≥ F ϵ
maxðψmÞ for sufficiently large m, which

implies

∀ δ > 0; Cϵ=2
costðψ̂Þ þ 4δ ≥ limsup

m→∞

1

m
F ϵ

maxðψmÞ: ð16Þ

As ϵ → þ0, we get Ccostðψ̂Þ ≥ F ðψ̂Þ.
To show the opposite inequality, we define

4λϵ=2m ≔ F ϵ=2
maxðψmÞ. For any δ > 0, there exist δ0m, satisfying

δ > δ0m ≥ 0, such that there exist a state ρm ∈Bϵ=2ðψmÞ and
its purification Φm satisfying Pðλϵ=2m þδ0mÞ≻apΦm

. Note that

for all sufficiently large m, mðλϵ=2 þ δÞ ≥ λϵ=2m holds
for λϵ=2 ≔ limsupm→∞ð1=mÞλϵ=2m . Therefore, we get
Pðλϵ=2þ2δÞm≻apΦm

, where we have used mδ > δ0m. Since

dϕcoh½4ðλϵ=2 þ 2δÞ�≻covϵ=2χ̂ðλϵ=2þ2δÞ, we have dϕcoh½4ðλϵ=2þ
2δÞ�≻covϵ=2fΦmgm. Since the partial trace is a covariant

operation, we have dϕcoh½4ðλϵ=2 þ 2δÞ�≻covϵψ̂ . Therefore,

∀ δ > 0; Cϵ
costðψ̂Þ ≤ limsup

m→∞

1

m
F ϵ=2

maxðψmÞ þ 8δ: ð17Þ

As ϵ → þ0, we get Ccostðψ̂Þ ≤ F ðψ̂Þ. There-
fore, Ccostðψ̂Þ ¼ F ðψ̂Þ.
To show Cdistðψ̂Þ ¼ F ðψ̂Þ, we introduce Cϵ

distðψ̂Þ ≔
supfRjψ̂≻covϵdϕcohðRÞg. Defining 4λϵ=2 ≔ Cϵ=2

distðψ̂Þ, for
any δ > 0, there exists δ0 such that δ > δ0 ≥ 0

and ψ̂≻covϵ=2dϕcoh½4ðλϵ=2 − δ0Þ�. Since dϕcoh½4ðλϵ=2−
δ0Þ�≻covϵ=2χ̂λϵ=2−δ0 , we get ψ̂≻covϵχ̂λϵ=2−δ0 . From Lemma 6, for
all sufficiently large m, there exist pure states
ψ 0
m ∈B2ϵ1=4

pure ðψmÞ such that ψ 0
m≻aPðλϵ=2−δÞm, where we used

δ > δ0. Therefore,

∀ δ > 0; Cϵ=2
distðψ̂Þ − 4δ ≤ liminf

m→∞

1

m
F 2ϵ1=4

min ðψ̂Þ: ð18Þ

As ϵ → þ0, we get Cdistðψ̂Þ ≤ F ðψ̂Þ.
To show the opposite inequality, we define

4λϵ=2m ≔ FminðψmÞ. For any δ > 0, there exists δ0m, satisfy-
ing δ > δ0m ≥ 0, such that there exists a pure state
ψ 0
m ∈Bϵ=2

pureðψmÞ satisfying pψ 0
m
≻aPλϵ=2m −δ0m

. For all suffi-

ciently large m, λϵ=2m ≥ mðλϵ=2 − δÞ, where λϵ=2 ≔
liminfm→∞ð1=mÞλϵ=2m . Since mδ > δ0m, we have

pψ 0
m
≻aPðλϵ=2−2δÞm. By using χ̂λϵ=2−2δ≻covϵ=2dϕcoh½4ðλϵ=2 − 2δÞ�

and ψ 0
m ∈Bϵ=2ðψmÞ, we get ψ̂≻covϵdϕcoh½4ðλϵ=2 − 2δÞ�, which

implies

∀ δ > 0; Cϵ
distðψ̂Þ ≥ liminf

m→∞

1

m
F ϵ=2

minðψmÞ − 8δ: ð19Þ

As ϵ → þ0, we get Cdistðψ̂Þ ≥ F ðψ̂Þ. There-
fore, Cdistðψ̂Þ ¼ F ðψ̂Þ.
Conclusion and discussions.—In this Letter, we estab-

lished the pure-state conversion theory in RTA in the

FIG. 3. Comparison of entanglement theory and RTA on the
one-shot convertibility. If a pure state ψ is exactly convertible to
another pure state ϕ by LOCC (respectively, covariant opera-

tions), we denote ψ ≻LOCCϕ (respectively, ψ≻covϕ).
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asymptotic non-i.i.d. regime. Unlike entanglement theory,
the traditional information-spectrum method for entropy
cannot be applied to RTA since its standard measure, QFI,
is quite different from entropy. To overcome this issue, we
constructed an information-spectrum approach for QFI by
carefully analyzing the correspondence between RTA and
entanglement theory. It opens the possibility of exploring a
unified understanding of asymptotic conversion theory in
each branch of quantum resource theories by extending the
information-spectrum method for its resource measure.
Such an extension may trigger research that has been
out of the scope of the information-spectrum method. We
speculate that the information-spectrum approach for QFI
can be helpful in research areas where QFI plays an
essential role, such as in non-equilibrium thermodynamics
[69] and general resource theories [70].
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