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The geometric phase is a fundamental quantity characterizing the holonomic feature of quantum
systems. It is well known that the evolution operator of a quantum system undergoing a cyclic evolution can
be simply written as the product of holonomic and dynamical components for the three special cases
concerning the Berry phase, adiabatic non-Abelian geometric phase, and nonadiabatic Abelian geometric
phase. However, for the most general case concerning the nonadiabatic non-Abelian geometric phase, how
to separate the evolution operator into holonomic and dynamical components is a long-standing open
problem. In this Letter, we solve this open problem. We show that the evolution operator of a quantum
system can always be separated into the product of holonomy and dynamic operators. Based on it, we
further derive a matrix representation of this separation formula for cyclic evolution, and give a necessary
and sufficient condition for a general evolution being purely holonomic. Our finding is not only of
theoretical interest itself, but also of vital importance for the application of quantum holonomy. It unifies
the representations of all four types of evolution concerning the adiabatic/nonadiabatic Abelian/non-
Abelian geometric phase, and provides a general approach to realizing purely holonomic evolution.
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Introduction.—Nature is replete with phenomena where
a quantity fails to return to its original value although the
driving parameters undergo a cyclic evolution. Holonomy
is used to characterize the geometrical essence of such
phenomenon, in which the value difference remains even
if the local rate of change is always zero [1]. This kind of
holonomic effect plays crucial roles in various fields of
physics [2], including, for example: in mechanics the
change of the swing plane of a Foucault pendulum after
one rotation of the Earth, in optics the change in the
direction of linear polarization of light along a coiled
optical fiber, and in general relativity the change of
reference frames around a closed loop in spacetime.
In the quantum regime, despite of earlier studies in

specific systems [3–7], the Berry phase found in 1984 [8]
is often considered as the seminal theory on the quantum
holonomic phenomenon. This finding represents a special
case of quantum holonomy, the adiabatic Abelian geometric
phase. The generalization of the Berry phase to adiabatic
non-Abelian geometric phase [9], nonadiabatic Abelian
geometric phase [10], and nonadiabatic non-Abelian geo-
metric phase [11] were soon established. The holonomic
nature of geometric phases is of broad importance in various
research fields, such as in condensed matter physics [12], in
quantum chemistry [13], in quantum field theory [14,15], in
quantum gravity [16,17], and in quantum information [18].
Moreover, this kind holonomic nature has also been
experimentally observed and manipulated in a variety of
physical platforms, such as in superconductors [19,20], in

nitrogen-vacancy centers [21–23], in trapped ions [24],
in molecular ensembles [25,26], and in photonic sys-
tems [27,28].
For a quantum system undergoing a cyclic evolution, the

state difference, i.e., the evolution operator transforming
the initial state to the final state, is not purely holonomic, in
general, but it can be simply written as the product of the
holonomic and dynamical components for the three special
cases concerning the Berry phase, adiabatic non-Abelian
geometric phase, and nonadiabatic Abelian geometric
phase. However, the situation is different for the most
general case concerning the nonadiabatic non-Abelian
geometric phase. In all the previous works on this issue,
the holonomic component is blended with the dynamical
component, and the evolution operator cannot be separated
into the product of them except for some special cases such
that they commute with each other.
How to separate the evolution operator of a general

quantum system into the product of holonomic and
dynamical components has been a long-standing open
problem ever since the discovery of nonadiabatic quantum
holonomy. The difficulty comes from the noncommuta-
tivity of the holonomic and dynamical components, both of
which are related to the time-ordered integral. Solving this
problem is not only of theoretical interest itself, but also of
vital importance for the application of quantum holonomy.
For example, holonomy-based quantum computation and
quantum control relay on the separation of holonomic and
dynamical components, which ensures the possibility of
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eliminating the dynamical component from cyclic evolu-
tion and hence taking full advantage of the holonomy
against control errors [29–34].
In this Letter, we solve this open problem. We first show

that the evolution operator of a quantum system can always
be separated into the product of holonomy and dynamic
operators. Based on it, we further derive a matrix repre-
sentation of this separation formula for cyclic evolution,
and give a necessary and sufficient condition for a general
evolution being purely holonomic. Our finding unifies the
representations of all four types of evolution concerning
the adiabatic/nonadiabatic Abelian/non-Abelian geometric
phase, and provides a general approach to realizing purely
holonomic evolution.
Preliminaries.—We start by recalling the notion of

quantum holonomy. Since Abelian geometric phase can
be taken as a special case of non-Abelian geometric phase,
our discussion focuses on non-Abelian geometric phase, to
which we refer as quantum holonomy or holonomy for
simplicity.
Quantum holonomy was first studied in adiabatic evolu-

tion as a generalization of the Berry phase to degenerate
eigenstates [9]. It arises in the quantum system governed by
a slowly changing Hamiltonian HðsÞ with a degenerate
eigenvalue EðsÞ of order l, where s ¼ sðtÞ is a set of time-
dependent parameterswith sðTÞ ¼ sð0Þ.Without ambiguity,
we will use PðsÞ to denote both the subspace spanned
by the l degenerate eigenstates and the corresponding rank-
l orthogonal projector. Then, PðsÞ ¼ jϕiðsÞihϕiðsÞj ≔Pl

i¼1 jϕiðsÞihϕiðsÞj, where fjϕiðsÞigli¼1 is an arbitrary
orthonormal basis of the l-degenerate eigenspace. Here
and in the following, the Einstein summation convention is
employed, i.e., repeated indices are implicitly summed over
from 1 to l. For a quantum system evolving adiabatically,
any state initially in the subspace P½sð0Þ� will be in the
subspaceP½sðtÞ� at time t, and go back to the initial subspace
at t ¼ T as P½sðTÞ� ¼ P½sð0Þ�.
Let jψ jðtÞi be the state of the quantum system at time t,

which is initially in jψ jð0Þi ¼ jϕjð0Þi. Then, jψ jðtÞi
admits the expression jψ jðtÞi ¼ UijðtÞjϕiðsðtÞÞi, where
UðtÞ ¼ ½UijðtÞ�li;j¼1 is the transformation matrix between
the basis and the states, and UðTÞ gives the evolution
operator after a cyclic evolution. By substituting jψ jðtÞi
into the Schrödinger equation, one can obtain that UðtÞ ¼
e−i

R
t

0
EðsðτÞÞdτΓ½sðtÞ� with ΓðsÞ ¼ P exp½R AðςÞ · dς�, where

P denotes the path ordering along the curve
fsðτÞ∶0 ≤ τ ≤ tg, and AðsÞ ¼ ½AijðsÞ�li;j¼1 with AijðsÞ ¼
−hϕiðsÞj∇sjϕjðsÞi. Thus, after a cyclic evolution with
period T, the evolution operator acting on the initial

subspace reads UðTÞ ¼ e−i
R

T

0
EðsðτÞÞdτΓðTÞ, where ΓðTÞ ¼

P exp½H AðsÞ · ds� is the quantum holonomy in adiabatic
evolution. ΓðTÞ is gauge invariant in the sense that it
depends only on the subspace PðsÞ but not on the

choice of the basis fjϕiðsÞigli¼1, as long as jϕiðTÞi ¼
jϕið0Þi ¼ jψ ið0Þi.
Quantum holonomy can also be generalized to the

nonadiabatic case [11]. Consider a d-dimensional quantum
system governed by Hamiltonian HðtÞ. If there exists a
set of the orthonormal states fjψ iðtÞigli¼1 satisfying the
Schrödinger equation ijψ̇ iðtÞi ¼ Hjψ iðtÞi and the cyclic
evolution condition jψ iðTÞihψ iðTÞj ¼ jψ ið0Þihψ ið0Þj, i.e.,P

l
i¼1 jψ iðTÞihψ iðTÞj ¼

P
l
i¼1 jψ ið0Þihψ ið0Þj, with T being

the evolution period, then one can define the quantum
holonomy for the subspace PðtÞ spanned by fjψ iðtÞigli¼1

similarly to the adiabatic case,

ΓðTÞ ¼ P exp

�Z
T

0

AðtÞdt
�

; ð1Þ

where AðtÞ ¼ ½AijðtÞ�li;j¼1 with

AijðtÞ ¼ hϕ̇iðtÞjϕjðtÞi ð2Þ

is an anti-Hermitian matrix. Here, fjϕiðtÞigli¼1 satisfying
jϕiðTÞi ¼ jϕið0Þi ¼ jψ ið0Þi is an arbitrary basis of the
subspace PðtÞ, and the dot (̇ ) denotes the derivative with
respect to t. Again, ΓðTÞ does not depend on any special
choice of the basis, being gauge invariant.
A critical problem existing in all the previous works on

the nonadiabatic quantum holonomy is that the evolution
operator acting on the subspace cannot be separated into the
product of holonomic and dynamical components. To see
this clearly, we recall the processing procedure in the
literature (see, e.g., [11]). The state jψ jðtÞi is expressed as

jψ jðtÞi ¼ UijðtÞjϕiðtÞi: ð3Þ

Still, UðtÞ ¼ ½UijðtÞ�li;j¼1 represents the transformation
matrix between the basis and the states, and UðTÞ gives
the evolution operator after a cyclic evolution. Substituting
jψ jðtÞi into the Schrödinger equation gives the differential
equation,

d
dt

UðtÞ ¼ ½AðtÞ þ KðtÞ�UðtÞ; ð4Þ

where KðtÞ¼ ½KijðtÞ�li;j¼1 with KijðtÞ¼−ihϕiðtÞjHðtÞ
jϕjðtÞi. Equation (4) implies that UðTÞ ¼ T exp½R T

0 ½AðtÞ þ
KðtÞ�dt� with T denoting the time ordering. Clearly,
although UðTÞ can be written as the product of
T exp½R T

0 AðtÞdt� and T exp½R T
0 KðtÞdt� in the special case

that ½Aðt1Þ; Kðt2Þ� ¼ 0 for any t1 and t2, this separation is
invalid in general. Therefore, one cannot simply separate
the holonomic component ΓðTÞ from the dynamical com-
ponent by starting from the known differential equation (4).
To realize the separation, we need to construct a new
differential equation.
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Main results.—With the above preliminaries, we can
now present our results. We first construct a new differ-
ential equation of the evolution operator, based on which
we derive a universal formula for separating the evolution
operator into the product of holonomy and dynamic
operators.
The evolution operator acting on the subspace spanned

by fjψ ið0Þigli¼1 plays the role that it transforms an arbitrary
state in the initial subspace Pð0Þ to a corresponding state in
the subspace PðtÞ at time t. For example, if the quantum
system is initially in the superposition cijψ ið0Þi, it will be
in the state cijψ iðtÞi at time t. Thus, the evolution operator
acting on the subspace can be written as

ÛðtÞ ¼ jψ jðtÞihψ jð0Þj: ð5Þ

Here, we use the hat (̂ ) to emphasize that ÛðtÞ is an
operator, which should not be simply viewed as an l × l
matrix. The evolution operator ÛðtÞ is different from the
transformation matrix UðtÞ defined in Eq. (3), in general,
but coincides with UðtÞ at time T.
Based on the expression (5), we can construct the

following differential equation satisfied by the evolution
operator [35]

d
dt

ÛðtÞ ¼ ṖðtÞÛðtÞ þ ÛðtÞF̂ðtÞ; ð6Þ

where

F̂ðtÞ ¼ FijðtÞ
�
�ψ ið0Þihψ jð0Þ

�
�; ð7Þ

with

FijðtÞ ¼ −hψ̇ iðtÞ
�
�ψ jðtÞi ¼ −ihψ iðtÞ

�
�HðtÞjψ jðtÞi: ð8Þ

It is interesting to note that the form of Eq. (6) is different
from Eq. (4) in the sense that ṖðtÞ and F̂ðtÞ appear on
different sides of ÛðtÞ, while their counterparts AðtÞ and
KðtÞ appear on the same side of UðtÞ. It is exactly
this subtle difference that makes the separation possible.
Mathematically, if ẊðtÞ ¼ LðtÞXðtÞ and ẎðtÞ ¼ YðtÞRðtÞ,
then ZðtÞ ¼ XðtÞYðtÞ satisfies that ŻðtÞ ¼ LðtÞZðtÞ þ
ZðtÞRðtÞ. Note also that Pð0Þ is the identity operator on
the initial subspace, and so is Ûð0Þ. Thus, Eq. (6) implies
the following separation formula in operator form.
Theorem 1.—Let PðtÞ be a subspace spanned by l

orthonormal states fjψ iðtÞi gli¼1 of a quantum system with
Hamiltonian HðtÞ, then the evolution operator ÛðtÞ acting
on the subspace can always be separated into the product of
the holonomy operator Γ̂ðtÞ and dynamic operator D̂ðtÞ,

ÛðtÞ ¼ Γ̂ðtÞD̂ðtÞ; ð9Þ

with

Γ̂ðtÞ ¼ P exp

�Z
t

0

ṖðτÞdτ
�

Pð0Þ; ð10Þ

D̂ðtÞ ¼ Pð0ÞT̄ exp

�Z
t

0

F̂ðτÞdτ
�

; ð11Þ

where PðtÞ ¼ jψ iðtÞihψ iðtÞj, F̂ðtÞ ¼ FijðtÞjψ ið0Þihψ jð0Þj,
FijðtÞ ¼ −ihψ iðtÞjHðtÞjψ jðtÞi, and P and T̄ are the path
ordering and reverse time ordering, respectively.
Alternatively, one can express Eqs. (10),(11) in differ-

ential form

d
dt

Γ̂ðtÞ ¼ ṖðtÞΓ̂ðtÞ; d
dt

D̂ðtÞ ¼ D̂ðtÞF̂ðtÞ; ð12Þ

with the initial conditions that Γ̂ð0Þ ¼ D̂ð0Þ ¼ Pð0Þ. In
Eq. (10), the time ordering T has been replaced by the path
ordering P, as Γ̂ðtÞ is independent of the evolution details
such as the evolution rate but only depends on the path of
the l-dimensional subspaces fPðτÞ∶0 ≤ τ ≤ tg. Hence,
Γ̂ðtÞ is a holonomic component, and thus we call it the
holonomy operator for the evolution. The other component
D̂ðtÞ depends on the dynamical details of the evolution,
hence we call it the dynamic operator for the evolution.
Besides, F̂ðtÞ defined by Eq. (7) is an anti-Hermitian
operator, i.e., F̂†ðtÞ ¼ −F̂ðtÞ, and therefore the Hermitian
conjugate of the dynamic operator can be written in the
time ordering form as

D̂†ðtÞ ¼ T exp

�

−
Z

t

0

F̂ðτÞdτ
�

Pð0Þ: ð13Þ

So far, we have proved that the evolution operator
can always be separated into the product of holonomy
and dynamic operators as in Theorem 1. In the following,
we will apply the theorem to the cyclic evolution,
and give the matrix representation of the separation
formula.
To this end, we need to express operators ÛðTÞ, D̂ðTÞ,

and Γ̂ðTÞ with their corresponding matrices. By using
Eq. (3), the evolution operator ÛðtÞ can be written as
ÛðtÞ ¼ UijðtÞjϕiðtÞihϕjð0Þj, which coincides with the
transformation matrix UðtÞ at time T, i.e.,

ÛðTÞ ¼ UijðTÞ
�
�ϕið0Þihϕjð0Þ

�
�: ð14Þ

Here, fjϕiðtÞigli¼1 satisfying jϕiðTÞi ¼ jϕið0Þi ¼ jψ ið0Þi
is still used to denote a basis of the subspace PðtÞ.
In analogy to Eq. (14), we can derive the matrix

representation of the dynamic operator D̂ðTÞ from its
definition. Equations (7),(11) directly imply that

D̂ðtÞ ¼ DijðtÞ
�
�ϕið0Þihϕjð0Þ

�
� ð15Þ
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with DðtÞ ¼ T̄ exp½R t
0 FðτÞdτ�, where FðtÞ ¼ ½FijðtÞ�li;j¼1

is an anti-Hermitian matrix defined by Eq. (8).
Equation (15) gives D̂ðTÞ ¼ DijðTÞjϕið0Þihϕjð0Þj at the
time T.
The remaining task is to show that Γ̂ðTÞ coincides

with the holonomy matrix ΓðTÞ defined in Eq. (1)
for cyclic evolution. For this, we first use ĈðtÞ to
denote ΓijðtÞjϕiðtÞihϕjð0Þj, where ΓðtÞ ¼ ½ΓijðtÞ�li;j¼1 ¼
T exp½R t

0 AðτÞdτ� with AðtÞ ¼ ½hϕ̇iðtÞjϕjðtÞi�li;j¼1, and will

then prove Γ̂ðtÞ ¼ ĈðtÞ by demonstrating that they satisfy
the same differential equation with the same initial con-
dition. From the definitions of ĈðtÞ and ΓðtÞ, we have

d
dt
ĈðtÞ¼ Γ̇ijðtÞ

�
�ϕiðtÞihϕjð0Þ

�
�þΓijðtÞ

�
�ϕ̇iðtÞihϕjð0Þ

�
� ð16Þ

with Γ̇ijðtÞ ¼ AikðtÞΓkjðtÞ ¼ hϕ̇iðtÞjϕkðtÞiΓkjðtÞ. Simple
calculations show that the first term on the right-hand side
of Eq. (16) reduces to jϕiðtÞihϕ̇iðtÞjĈðtÞ and the second
term reduces to jϕ̇iðtÞihϕiðtÞjĈðtÞ. Therefore, ĈðtÞ satisfies
the differential equation ðd=dtÞĈðtÞ ¼ ṖðtÞĈðtÞ with the
initial condition that Ĉð0Þ ¼ Pð0Þ, which is the same to
Γ̂ðtÞ. Thus, we prove that Γ̂ðtÞ ¼ ĈðtÞ, i.e.,

Γ̂ðtÞ ¼ ΓijðtÞ
�
�ϕiðtÞihϕjð0Þ

�
�; ð17Þ

which gives Γ̂ðTÞ ¼ ΓijðTÞjϕið0Þihϕjð0Þj at the time T.
With Eqs. (9), (14), (15), (17), we obtain the following

separation formula for cyclic evolution in matrix form.
Theorem 2.—If the subspace PðtÞ spanned by l ortho-

normal states fjψ iðtÞigli¼1 evolves cyclically with period T,
i.e., PðTÞ ¼ Pð0Þ, then the evolution operator acting on the
subspace at time T has the matrix representation,

UðTÞ ¼ ΓðTÞDðTÞ; ð18Þ

where ΓðTÞ ¼ P exp½R T
0 AðtÞdt� and DðTÞ ¼ T̄ exp

½R T
0 FðtÞdt� are the holonomic and dynamical components,

respectively.
Before proceeding further, we would like to add

a few remarks. First, our finding unifies the representations
of all four types of evolution concerning the adiabatic/
nonadiabatic Abelian/non-Abelian geometric phase. In the
adiabatic Abelian/non-Abelian case, FijðtÞ ¼ −iEðtÞδij,
and thus Eq. (18) reduces toUðTÞ ¼ e−i

R
T

0
EðtÞdtΓðTÞ, which

is just the well-known results of Berry [8] (when l ¼ 1) and
Wilczek and Zee [9] (when l ≠ 1). In the nonadiabatic
Abelian case, i.e., PðtÞ ¼ jψðtÞihψðtÞj, Eq. (18) reduces to
the celebrated formula of Aharonov and Anandan [10],
γðTÞ¼ arghψð0ÞjψðTÞiþR

T
t¼0hψðtÞjHðtÞjψðtÞidt. Second,

Eqs. (9) and (18) provide separation formulas in the operator
and matrix forms, respectively, but Eq. (9) is more general

than Eq. (18). The operator form (9) holds for any time t, or
equivalently, it also holds for noncyclic evolution, while the
matrix form (18) holds only for cyclic evolution. Third, a
fundamental difference between Γ̂ðtÞ and ΓðtÞ is that the
gauge invariance holds at any time t for the former but only at
time T for the latter. Moreover, the gauge-invariant quantity
Γ̂ðtÞ gives the operator form of the so-called parallel trans-
port, i.e., it satisfies that Γ̂†ðtÞðd=dtÞΓ̂ðtÞ ¼ 0 [36].
Purely holonomic evolution.—A crucial issue for the

application of quantum holonomy is to determine when a
quantum evolution is purely holonomic. Explicitly, we call
a cyclic evolution purely holonomic if UðTÞ is equal to
ΓðTÞ up to a global phase, i.e., UðTÞ ¼ eiαΓðTÞ for some
real number α. We note that this is different from Abelian
geometric phases, in the applications of which two or more
paths are considered and thus the phases, or rather, the
difference of the phases matters. From Theorem 2, one can
directly obtain the following necessary and sufficient
condition for purely holonomic evolution.
Corollary 3.—If the subspace PðtÞ spanned by l

orthonormal states fjψ iðtÞigli¼1 evolves cyclically with
period T, i.e., PðTÞ ¼ Pð0Þ, then the evolution is purely
holonomic if and only if

D†ðTÞ ¼ T exp

�

−
Z

T

0

FðtÞdt
�

¼ eiα1l; ð19Þ

where α is some real number, 1l is the l × l identity
matrix, and FðtÞ ¼ ½FijðtÞ�li;j¼1 with FijðtÞ ¼ −ihψ iðtÞj
HðtÞjψ jðtÞi.
Corollary 3 shows that for a quantum system, the

evolution operator acting on the subspace Pð0Þ is purely
holonomic if and only if the Hamiltonian governing
the quantum satisfies Eq. (19). This provides a general
approach for realizing purely holonomic evolution.
Specially, this opens a new avenue for holonomic quantum
computation and holonomic quantum control. Note that in
the previous schemes, either the systems must be in
adiabatic evolution [32] or satisfy the parallel transport
condition [33,34], which are just corresponding to the
special cases of Corollary 3 with FðtÞ ¼ −iEðtÞ1l and
FðtÞ ¼ 0, respectively. Yet, our result shows that these
requirements are unnecessary for purely holonomic evo-
lution. This largely extends the applicability of holonomic
quantum computation. In the Supplemental Material [37],
we take a one-parameter Hamiltonian, which is widely used
in holonomic quantum computation, as a concrete example
to illustrate this point.
Besides, the use of Corollary 3 can be flexible.

For a cyclic evolution fjψ iðtÞigli¼1 (0 ≤ t ≤ T1) with the
dynamical component DðT1Þ∝ 1l, it is possible to con-
struct an adjacent cyclic evolution fjψ iðtÞigli¼1 (T1 ≤ t ≤
T1 þ T2) such that D†ðT1 þ T2; T1Þ ∝ DðT1Þ, where
D†ðT1 þ T2;T1Þ ¼ T exp½− R T1þT2

T1
FðtÞdt�. In this way,
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the dynamical components cancel out and only the holo-
nomic components remain. This strategy works because
we can regard fjψ iðtÞigli¼1 (0 ≤ t ≤ T1 þ T2) as an overall
cyclic evolution, whose dynamical component satisfies
D†ðT1 þ T2Þ ¼ D†ðT1 þ T2;T1ÞD†ðT1Þ.
Conclusions.—We have shown that the evolution oper-

ator of a quantum system can always be separated into the
product of holonomy and dynamic operators, of which the
operator expression and the matrix representation are stated
as Theorem 1 and Theorem 2, respectively. From the
fundamental perspective, our finding solves a long-
standing open problem in the study of quantum holonomy,
and unifies the representations of all four types of evolution
concerning the adiabatic/nonadiabatic Abelian/non-
Abelian geometric phase. From the practical perspective,
our separation formula provides a general approach for
realizing purely holonomic evolution, which can find
widespread applications in quantum information and quan-
tum control. For example, our approach can largely extend
the applicability of holonomic quantum computation.
For future research, it would be very interesting to

apply our approach for implementing holonomic quantum
computation and holonomic quantum control in actual
quantum systems, both theoretically and experimentally.
Furthermore, as quantum holonomy is a fundamental
geometric quantity in quantum physics, our result may
also lead to deeper understandings of the geometric
phenomena in various fields. For example, as our approach
holds for any quantum evolution, it opens a more flexible
avenue for simulating the non-Abelian gauge field.
This may shed light on the investigation of the factional
quantum Hall effect [40], lattice gauge theory [41],
topological field theory [14,15], and loop quantum gravity
[16,17], in various quantum simulation platforms [42,43].
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