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In the field of monitored quantum circuits, it has remained an open question whether finite-time
protocols for preparing long-range entangled states lead to phases of matter that are stable to gate
imperfections, that can convert projective into weak measurements. Here, we show that in certain cases,
long-range entanglement persists in the presence of weak measurements, and gives rise to novel forms of
quantum criticality. We demonstrate this explicitly for preparing the two-dimensional Greenberger-Horne-
Zeilinger cat state and the three-dimensional toric code as minimal instances. In contrast to random
monitored circuits, our circuit of gates and measurements is deterministic; the only randomness is in the
measurement outcomes. We show how the randomness in these weak measurements allows us to track the
solvable Nishimori line of the random-bond Ising model, rigorously establishing the stability of the glassy
long-range entangled states in two and three spatial dimensions. Away from this exactly solvable
construction, we use hybrid tensor network and Monte Carlo simulations to obtain a nonzero Edwards-
Anderson order parameter as an indicator of long-range entanglement in the two-dimensional scenario. We
argue that our protocol admits a natural implementation in existing quantum computing architectures,
requiring only a depth-3 circuit on IBM’s heavy-hexagon transmon chips.
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In extended quantum systems, the rich interplay between
measurements and quantum correlations point to a plethora
of new emergent phenomena. Although measurements are
often associated with reducing entanglement, they provide
an intriguing loophole enabling fast preparation of long-
range entangled (LRE) states, such as macroscopic cat
states or topologically ordered states, that are otherwise
forbidden. Indeed, while LRE can only be prepared with a
unitary quantum circuit whose depth grows with system
size [1–10], a large class of them can be prepared in finite
time by simply measuring certain stabilizers (finite product
of Pauli operators) [11]. This allows for deterministic state
preparation using a finite-depth unitary feedback [12–18],
intimately tied to the idea of quantum error correcting
codes [19,20]. Moreover, it has recently been shown that
measurement-based state preparation protocols also exist
for certain nonstabilizer states, including non-Abelian
topological order [21–24].
Remarkably, it is not known whether such measurement-

induced states form stable phases of matter, which are
robust to local perturbations of the preparation protocol.
While this question is of clear practical significance, it is
also of conceptual interest to explore whether one can
extend the familiar notion of stability of phases of matter
(primarily developed for solid-state purposes) to the era of

quantum simulators and computers [25,26]. Here, we
explore what happens when the circuit is perturbed prior
to measuring. In effect, this turns an originally projective
measurement into a weak measurement, as we will discuss.
We ask whether such a generic scenario allows for stable
LRE states, and if so, is there a critical point at the
boundary of stability?
This motivating question fits naturally into the broader

realm of monitored quantum circuits [27,28]. Recent years
have seen immense progress and activity in studying the
long-time limit of random unitary gates combined with
(projective) measurements. A key result has been that there
is an entanglement transition between volume-law and
area-law entangled regions as one increases the measure-
ment rate [29,30]. Subsequent works also explored how the
latter can be in distinct phases of matter [31–36]. While the
effects of weak measurements have been partially explored
for the case of long-time quantum trajectories [37–46], to
the best of our knowledge, it has not been explored in the
finite-time protocols. This question is especially important
in the latter case, since using measurement is then the only
route toward preparing LRE states.
In this Letter, we establish a stability threshold for

various measurement based protocols that induce long
range entanglement, with a novel form of quantum
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criticality at the threshold. For this it is of fundamental
importance to recall how one experimentally measures a
multibody stabilizerO for an arbitrary state jψi, such as the
two-body Ising interaction for a cat state [12] or the four-
body stabilizers of the toric code [47]. Since most platforms
naturally perform single-site measurements, one introduces
an ancilla qubit and entangles it with jψi in such a way that
measuring the ancilla effectively measures O. However, if
the entangling operation is not perfect, the net result is to
have a (partial collapsing) weak measurement [48]. This
can be seen most clearly from the following identity, which
transforms real time into imaginary time evolution up to a
complex phase factor (derived in the Supplemental Material
(SM) [49]):

h�yje−itsz⊗Ojþxi ∝ e�
β
2
O with tanhðβ=2Þ ¼ tan t; ð1Þ

where j�αi are the eigenstates of Pauli matrix sα on the
ancilla qubit. This is a projective measurement on jψi only
if t ¼ ðπ=4Þ: then β ¼ ∞ pins O ¼ �1 depending on the
measurement outcome. Equation (1) gives us two key
insights into the correlations resulting from weak measure-
ments (e.g., for times 0 < t < π=4): first, the effective
imaginary time evolution suggests we ought to consider
phases that are stable to finite temperature, such as a 2D
Ising ferromagnet or 3D discrete gauge theory. Second, the
randomness of measurement outcomes introduces effective
disorder. A large part of our analysis is devoted to
demonstrating stability against this disorder, which we
discuss in detail for the minimal cases of a 2D Greenberger-
Horne-Zeilinger (GHZ) [50] state, and whose discussion

mutatis mutandis carries over for the 3D toric code.
Crucially, the disorder distribution in our scenario is highly
correlated, enabling us to map the entire range between
strong and weak measurements π=4 ≥ t ≥ 0 exactly onto
the solvable Nishimori line of the random bond Ising model
(RBIM) [51]. For instance, for the simple protocol in
Eq. (1), we find a Nishimori critical point at tc ≈ 0.143π in
2D. We refer to the stable LRE phase between the GHZ-
type fixed point and the Nishimori critical point as
“Nishimori’s cat.” Our work thereby also establishes a
firm connection between monitored circuits and the vast
literature on spin glasses.
Prior work.—We further note that finite-time transitions

have recently been explored in the context of teleportation
transitions [52,53], which again involves projective mea-
surements and where one leaves a subextensive region
unmeasured, while Ref. [54] studied the effect of weak
measurement on removing quantum correlations of an
initially critical state. Finite-depth transitions have also
been explored in the context of computational [55] and
complexity transitions [56]. Finally, we point out an
intriguing formal connection to phase transitions in infor-
mation recovery in surface codes [20], where in the absence
or presence of syndrome measurement errors, the problem
is also mapped to the 2D RBIM/3D random plaquette Ising
gauge model along the Nishimori line.
Circuit model.—To achieve an Ising LRE phase, we

weakly measure the domain wall operator: O ¼ σziσ
z
j,

which is weight-three when including additional ancillas
[see Eq. (1)]. However, one can design a protocol with only
two-body evolutions [49]. For this, we consider qubits on
the Lieb lattice [Fig. 1(a)], where we denote the target spins

on the square lattice as σzðxÞj and the ancillas at the bond

(a) (b) (c) (d)

FIG. 1. Circuit and phase diagram for Nishimori’s cat from measurements. (a) On the Lieb lattice populated with physical site (blue,
green) and ancilla bond (white) spins, a depth-4 circuit of e−itZZ gates is applied to nearest-neighbor spins, where the evolution time
depends on the site sublattice (A-B), and the ancilla bond spins are then measured in Pauli-x basis. (b) A classical snapshot of the
premeasurement wave function. The circles and crosses label spins up (↑) and down (↓), and their domain walls are highlighted by red
loops. Ising evolution correlates the ancillas to the domain walls. (c) Wave function phase diagram and the Nishimori line by tuning
evolution times on the AðBÞ sublattice. The postmeasurement wave function is a LRE disordered cat state inside the yellow region, and a
short-ranged entangled (SRE) state outside. A Z2 gauge symmetry emerges along the Nishimori lines (red), which upon gauge
symmetrization, can be mapped exactly onto the eponymous line [51] in the phase diagram of the classical RBIM shown in (d). Beyond
the Nishimori line, the phase boundaries in (c) are charted out by numerical computations (yellow dots), which have no direct equivalent
in the RBIM phase diagram.

PHYSICAL REVIEW LETTERS 131, 200201 (2023)

200201-2



centers as szðxÞij . We entangle these two types of spins
by a depth-4 circuit of nearest-neighbor Ising evolutions
[Fig. 1(a)]:

jψðtA; tBÞi ¼ e−i
P

hijitjσ
z
js

z
ij jþxi⊗N: ð2Þ

Crucially, we have introduced two evolution times tj ¼
tAðBÞ if j belongs to the A or B sublattice (of the original
square lattice of site spins); see Fig. 1(a). As shown in
Fig. 1(b), the pair of gates associated with any given bond
effectively rotates the ancilla spin by an angle 2ðtA � tBÞ
depending on the alignment of the neighboring spin pair.
Consequently, measuring the ancilla spin in x direction
weakly measures the domain wall of the target spins,
which becomes a strong measurement only when both
tA; tB → ðπ=4Þ, in which case jψi equals the 2D cluster
state [12]. More generally, the entire wave function (2) can
be viewed as a superposition of all allowed fσg classical
configurations, in which the orientation of ancillas uniquely
depends on whether it sits on a domain wall or not
[Fig. 1(b)].
The probability of the measurement outcome sxij → sij ¼

�1 is given by Born’s rule,

pfsg ≡ khfsgjψik2 ∝
X

fσg
e−β

P
ij
ðJsijσiσjþhsijÞ; ð3Þ

which we recognize as the partition function of the RBIM
(with the measurement outcome labeling the random bond
configuration), where a straightforward computation [49]
shows that

tanh
β

2
Jþ ¼ tan tA tan tB; tanh

β

2
J− ¼ − tan tA cot tB;

and βh ¼ 1
2
ln j tanðtA þ tBÞ tanðtA − tBÞj. The subspace

ðtA; tB ¼ π=4Þ of this two-parameter protocol recovers
the single-parameter protocol of Eq. (1). Note that we
can interpret the right-hand side of Eq. (3) as a classical
partition function Zfsg, which contains the information of
all diagonal correlation functions [57–59] of our postmea-
surement quantum state.
We can thus interpret the ensemble (over all measure-

ment outcomes of the ancillas) as a classical system with
disorder fsg, where frustrated plaquettesQl∈□

sl ¼ −1 are
said to have an Ising vortex. However, unlike commonly
studied disordered models, the disorder distribution in
Eq. (3) is highly correlated (making the vortices attractive).
In fact, the property that Zfsg ∝ pfsg is akin to the structure
Nishimori first uncovered after a gauge transformation [51]
for his eponymous line in the RBIM. It implies that certain
quantities (like the internal energy) are nonsingular even at
the transition. This remarkable fact is naturally explained
by our approach, since those quantities can be expressed

as linear functions of the density matrix of the premeasure-
ment wave function, generated by finite-depth unitary
circuit.
To chart out our generic phase diagram in Fig. 1(c), we

use the Edwards-Anderson (EA) order parameter as our
diagnostic for the formation of a glassy LRE state [60],

q≡ ½hσ0σci2�≡
X

fsg
pfsghσ0σci2fsg; ð4Þ

where σcð0Þ is the spin at the central (corner) site of the open
square lattice, ½� � �� denotes the measurement (disorder)
average, and h� � �i the quantum average of the postmeasure-
ment wave function, equivalent to the classical ensemble
average for a given disorder pattern. Because of the global
Ising symmetry of the protocol, the quantum state is Ising
symmetric with hσi ¼ 0, and a nonzero EA order in
thermodynamic limit signifies long range connected quan-
tum correlation, which serves as lower bound for the
quantum mutual information between two sites at a dis-
tance [61]. Therefore the ordered phase of this classical
description corresponds to the postmeasurement quantum
state being a LRE cat state.
Nishimori line.—Along the line (tB ¼ π=4) [the red

horizontal line in Fig. 1(c), although the same discussion
also applies to tA ¼ π=4], the EA order parameter can be
exactly mapped to the magnetization of the Nishimori line
in the RBIM, which exhibits a phase transition on crossing
the Nishimori multicritical point [62–70]. Importantly, this
point is located at a finite tA < π=4 in our model, implying
stability of the cat state up to a finite error threshold at
tcA ≈ 0.143π [51,65–71]. This can be seen as follows. First,
consider the partition function (3) for a given disorder
realization. Then, as βJþ ¼ −βJ− and βh ¼ 0, our circuit
model becomes precisely equivalent to the RBIM with
quenched binary bond disorder, where the inverse temper-
ature β≡ ln j tanðtA þ π=4Þj (by setting Jþ ¼ −J− ¼ 1) is
tuned by the unitary evolution time. Second, consider the
disorder ensemble: due to an Ising gauge symmetry in the
premeasurement wave function [49], any pair of bond
disorder configurations that share the same vortex con-
figuration are gauge equivalent and have the same prob-
ability. Together, this implies that our possible
measurement outcomes fsg form a gauge symmetric
disorder ensemble generated by gauge symmetrizing
an uncorrelated bond disorder fs0g with probability
ps0¼1 ¼ 1=ð1þ e2βÞ ¼ ½1 − sinð2tAÞ�=2, according to

σ0j ¼ σjτj; s0ij ¼ sijτiτj; ð5Þ

where τj ¼ �1 stands for a local Z2 gauge transformation.
Then the measurement average can be decomposed to two
steps: ½� � �� ¼ P

fτg½� � ��0, where ½� � ��0 denotes the uncorre-
lated disorder average as in the RBIM, and

P
fτg denotes

gauge symmetrization. We thus find that all gauge invariant
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observables of the Nishimori line in the RBIM [i.e., the red
line in Fig. 1(d)] coincide with those in our model.
The Nishimori line is known to be invariant under a

renormalization group flow [71,72], which crosses the
paramagnetic or ferromagnetic phase boundary at a multi-
critical point [51,66,73]. It was mathematically proven that
the phase transition happens at finite critical disorder
probability [20,51,74]. Inside the ferromagnetic phase,
½hσ0σci�0 ≠ 0. Nevertheless, our wave function measure-
ment average involves an extra gauge symmetrization, i.e.,
summation over τ ¼ �1, which turns the ferromagnetic
phase into a finite-temperature spin glass: ½hσ0σci� ¼ 0,
½hσ0σci2� ≠ 0. That is, while the linear magnetization
vanishes, the nonlinear EA order parameter keeps track
of the magnetization correlation in each gauge sample,
because ½hσ0σci2� ¼ ½hσ0σci2�0 ¼ ½hσ0σci�0 [51]. More gen-
erally, any odd moment of a σ correlation function is odd
under gauge transform and thus vanishes under gauge
symmetrization. Note that this spin glass state should be
contrasted to the zero-temperature spin glass in the 2D
RBIM [indicated by the gray dashed line in Fig. 1(e)]. The
robust glassiness of our state against finite temperature
originates from the gauge symmetry, analogous to the
exactly solvable Mattis spin glass [64,75], which gauge
symmetrizes the frustration-free Ising ordered phase.
Nevertheless, away from the limit tA → π=4, our state
features a finite density of Ising vortices that is more
nontrivial than conventional Mattis spin glasses.
Beyond the Nishimori line.—We expect the phase dia-

gram established on the Nishimori line to be perturbatively
robust, because any symmetric perturbation in the circuit
away from the Nishimori line can be mapped to a local,
Ising-symmetric perturbation in the corresponding classical
model. For more generic ðtA; tBÞ, the partition function Zfsg
of Eq. (3) can still be interpreted as a disordered Ising
model, albeit one with imbalanced strengths, Jþ and J−, of
the ferromagnetic and antiferromagnetic bonds signaling
the breakdown of the gauge symmetry, i.e., we are moving
away from the solvable line in the phase diagram of
Fig. 1(c) [and out of the plane of the phase diagram in
Fig. 1(d)]. Indeed, while the “Nishimori property” pfsg ∝
Zfsg remains, the gauge symmetry was crucial for obtaining
exact results along the Nishimori line [51]. This coupling
imbalance becomes particularly pronounced when one
approaches the diagonal line tA ¼ tB in the phase diagram
of Fig. 1(c), where the strength of the ferromagnetic bond
diverges to infinity.
For this generic scenario with two timescales ðtA; tBÞ,

one needs to numerically contract out the entire tensor
network to calculate the disorder probability pfsg, which is
essentially a structured shallow version of the quantum
circuit sampling problem [76–78]. To do so, we develop a
hybrid Monte Carlo and tensor-network approach, which
traces out the two degrees of freedoms in different manners:
we sample the ancilla bond spins fsg using a standard

Metropolis algorithm but the weights of the importance
sampling are computed by tracing out the site spins fσg via
a tensor-network algorithm (for details of the algorithm, see
SM [49]). Despite the considerable cost of such
Monte Carlo sweeps, this treatment has the advantage that
it effectively avoids the minima of the glassy landscape for
the fσg spins in the presence of disorder [79].
We use this method to chart out the phase diagram in

Fig. 1(c) by performing calculations for three scenarios:
along the Nishimori line tB ¼ π=4 (to validate our
approach), along the diagonal line tB ¼ tA (with maximal
coupling imbalance), as well as for a case in between with
tB ¼ π=5. Along the Nishimori line, varying the system
size and analyzing the finite-size scaling of the EA order
parameter as shown in Fig. 2, we can verify the existence of
a true critical point at tcA ≈ 0.149π, in reasonable numerical
agreement with the location of the multicritical Nishimori
point established in large-scale simulations [51,65–71] of
the RBIM identifying the critical point tcA ≈ 0.143π and
ν ≈ 4=3. The numerical results for the diagonal line tB ¼ tA
and tB ¼ π=5 are qualitatively similar and provided in the
SM [49].
Realization in quantum devices.—Vying a potential

realization of our 2D cat state construction, we note that
our protocol employs two basic ingredients that are readily
available in current digital quantum computing platforms: a
two-body Ising evolution and selective measurements for
an extensive set of ancilla qubits on every bond. A
particularly well-suited platform is IBM’s quantum com-
puting systems [26,81], which arrange their superconduct-
ing transmon qubits in a heavy-hexagon lattice geometry—
a honeycomb variant of the square Lieb lattice, which can

FIG. 2. Transition from SRE to LRE states after finite
evolution time along the Nishimori line (tA; tB ¼ π=4) in the
phase diagram of Fig. 1(d). Shown are results for the EA order
parameter from our hybrid Monte Carlo and tensor-network
approach (symbols) for Lieb lattices of varying system sizes
with open boundaries. The vertical gray line indicates our
estimate of the critical point tc ≈ 0.149π extracted from a data
collapse in a window 0.1π ≤ tA ≤ 0.2π, fitting a scaling
function [80] q ¼ ½hσ0σci2� ∝ L−β=νf½ðtA − tcAÞL1=ν�.
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be realized by a depth-3 circuit and exhibits qualitatively
similar physics as discussed above, exhibiting a smaller
LRE phase region (for detailed calculations see the SM
[49]). An important question is how to experimentally
prove the successful preparation of a LRE state. Along the
Nishimori line, a large number of distinct ancilla configu-
rations are related by the gauge transformation such that the
classical spin snapshot for one ancilla configuration can be
transformed to that for another gauge equivalent configu-
ration. The current chip sizes (with up to 127 qubits), allow
a brute-force approach by postselecting [82] the same
ancilla vortex configuration to measure the EA order,
which at worst case costs Oð2QÞ number of operations
with Q ¼ 18 being the number of plaquettes. Note the
probability of obtaining vortex-free configuration
approaches 100% when tA → π=4.
Glassy topological order.—As the 2D Ising protocol

measuring domain walls generates Nishimori’s cat state
with Ising vortex disorder, an analogous 3D gauge protocol
that weakly measures plaquette fluxes [83] results in a
glassy Z2 topological order [84,85] with magnetic monop-
ole disorder [20]. For instance, using Eq. (1) for the four-
body plaquette stabilizer O ¼ Bp of the toric code on the
cubic lattice, results in the correlations of classical 3D Z2

lattice gauge theory (describing the fluctuation of magnetic
flux tubes). The latter is well-known to have a finite-
temperature transition [86,87] in the clean case. Our
correlated disorder distribution is by construction (and like
the 2D case) of Nishimori type, which allows us to directly
relate the postmeasurement state to the solvable line of the
classical 3D random plaquette Z2 gauge model [49]. This
has an extended deconfined phase with a known transition
[20,74,88] which, mapped to our time parametrization,
occurs at tc ≈ 0.192π. For times beyond this critical thresh-
old, we have stable topological order, which can be
detected by the perimeter law scaling of the EA analog
of the Wilson loop. We note that this protocol only
(weakly) measures fluxes; gauge charges remain frozen
and absent at all times. See the SM for more details, in
particular, how the above solvable path can be achieved
using only three-body gates [49].
Outlook.—We have demonstrated that stable LRE

phases (2D cat states and 3D topological order) can be
realized in fixed-depth unitaries upon relaxing strong to
weak measurements. The key conceptual finding is that
weak measurements can effectively act as a source of
thermal fluctuations and correlated disorder that conspire
to yield precisely Nishimori’s critical state. The stability of
the ordered phase in the classical model implies that the cat
state is stable against generic Ising symmetric noise, a
detailed study of which is left to future study. Unlike
deep-depth random unitary circuits that feature fluctua-
tions in the temporal dimension, our state exhibits criti-
cality with fluctuations solely in space, reminiscent of

projected entangled pair state wave function deformation
criticality [57–59,89–94] effectively tuned by a determin-
istic circuit.
Although the focus of the present work was on stable

measurement-induced LRE, we note that our mechanism
can be used more generally to prepare exotic states, such as
deterministically preparing phase transitions between dis-
tinct stable SRE phases in 1D [95–97], or symmetry-
enriched cat states in higher dimensions [98]; see the SM
for details [49]. More generally, it would be interesting to
further explore how weak measurements can give rise to
new phenomenology in monitored circuits.
We emphasize the implementability of our protocol, with

regard to the heavy-hexagon geometry of the IBM trans-
mon chips, which will require only a depth-3 circuit to
bring Nishimori’s cat to life. Alternatively, Rydberg atom
simulators are a highly tunable platform [99–101] allowing
for measuring ancillas [102–104]. The Ising interactions of
Rydbergs on sites and bonds of a hexagonal lattice have
been argued to generate the requisite unitary evolution [21],
making this a promising platform for realizing this tran-
sition. While the EA order parameter can in principle be
measured in a brute-force manner for current chip sizes, an
important open question is whether postselection can be
effectively avoided, e.g., by engineering a clever decoder
for reading out hidden information [105–109]. To imple-
ment a minimal instance of glassy topological order via a
3D “Nishimori code,” we anticipate that a two-body Ising
evolution on the Raussendorf lattice [110] is sufficient to
give a stable toric code phase in 3D.

Note added.— Upon completion of the present manuscript,
we became aware of an independent work studying
extended long range entangled phases and transitions from
finite-depth unitaries and measurement, which appeared in
the same arXiv posting [111].
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