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Artificial crystals such as moiré superlattices can have a real-space periodicity much larger than the
underlying atomic scale. This facilitates the presence of Bloch oscillations in the presence of a static electric
field. We demonstrate that the optical response of such a system, when dressed with a static field, becomes
resonant at the frequencies of Bloch oscillations, which are in the terahertz regime when the lattice constant
is of the order of 10 nm. In particular, we show within a semiclassical band-projected theory that resonances
in the dressed Hall conductivity are proportional to the lattice Fourier components of the Berry curvature.
We illustrate our results with a low-energy model on an effective honeycomb lattice.
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Nonlinear optical responses are becoming an increas-
ingly important tool to investigate the spectral and
geometric properties of electron Bloch bands in low-
dimensional materials [1–3]. In particular, the nonlinear
Hall effect [4]whichprobesmultipoles of theBerry curvature
of the band at successive orders in the driving field [5].
Importantly, since time-reversal symmetry only precludes
odd powers of the field in the Hall response, nonlinear
responses allow one to study the momentum-space distri-
bution of the Berry curvature even in systems with time-
reversal symmetry. Recently, the advent of moiré [6–8] and
other two-dimensional (2D) artificial crystals [9–11] has
opened up the prospect of studying responses at nonpertur-
bative order in the driving field [12–14]. These systems can
host spectrally isolated and flattened minibands, and non-
linear responses have already been used to study their
properties [15–22]. Moreover, because the real-space perio-
dicity of these systems can be much larger than the under-
lying atomic scale periodicity, with lattice constants ranging
between 1–100 nm, the momentum space Brillouin zone
(BZ) is relatively small. Under an applied electric field, it
therefore becomes possible for an electron to traverse the
entire zone, i.e., perform a full Bloch oscillation [23,24],
before relaxing to equilibrium by scattering. To quantify
this regime, consider an applied uniform electric field of
the form

EðtÞ ¼ E0 þ E1ðtÞ; ð1Þ

which has a static component E0 ¼ E0ðcos θ0; sin θ0Þ and
an oscillating component E1ðtÞ. The latter acts as a weak
probe for the system that is dressed by the static field. Here,
the nonperturbative regime is defined by the condition
ωBτ ≫ 1 [12–14] where ωB ¼ eE0L=ℏ is the Bloch
frequency, i.e., the characteristic frequency of Bloch
oscillations, and τ is the momentum-relaxation time with

L the lattice constant. If we estimate τ ¼ 1 ps we find that
ωBτ ≈ ½1.5E0=ðkV=cmÞ�½L=ð10 nmÞ� such that ωBτ can
become large in artificial crystals for reasonable field
strengths [12,13].
In this work, we study the dressed time-dependent

response of time-reversal-invariant 2D artificial lattices
with lattice constants L ∼ 10 nm, that are subjected to a
uniform electric field of the form given in Eq. (1). This
setup is illustrated in Fig. 1(a). When the static field is in the

FIG. 1. (a) A 2D artificial crystal (e.g., a moiré) subjected to a
static uniform in-plane electric field E0 and probed by mono-
chromatic light of frequency ω. (b) Berry curvatureΩk in the first-
shell approximation for a system with D3 or C3v symmetry.
(c) Imaginary part of the dressed optical Hall conductivity
σHðω;E0Þ for the Berry curvature shown in (b) as a function
of ω=ωB for θ0 ¼ 15° and different values of ωBτ. (d) ImσH in
units e2Ω1f01=2ℏVc for ωBτ ¼ 15 as a function of the frequency
and the field direction θ0. The resonant frequencies for the first
shell ωn ¼ jeE0 · Ln=ℏj are indicated.
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regime of Bloch oscillations, we find an optical response,
linear in the oscillating component, that is resonant at the
Bloch frequencies. For the studied systems, the latter are on
the order of 5–10 THz. Moreover, we show that the peak
heights of the resonances in the dressed optical Hall
conductivity are proportional to the Fourier components
of the Berry curvature. Hence, our approach is in some
sense dual to probing the momentum-space distribution of
the Berry curvature via its multipoles at successive har-
monics [25] and complementary to other methods, e.g.,
measuring orbital moments with circular dichroism [26]. In
contrast, in our proposal, all information on the Berry
curvature is contained in the dressed linear optical response
and contributions from different Fourier components can be
favored by varying the direction of the static field.
Semiclassical theory.—Our starting point is the band-

projected semiclassical theory of electron dynamics for a
2D crystal in a uniform electric field EðtÞ. The equations of
motion for the central position and crystal momentum of a
wave packet constructed from the Bloch states of an energy
band εnk are given by [27,28]

ℏṙnk ¼ ∇kεnk − ℏk̇ ×Ωnkẑ; ð2Þ

ℏk̇ ¼ −eEðtÞ; ð3Þ

where −e is the electron charge and Ωnk ¼
−2Imh∂kxunkj∂kyunkicell is the Berry curvature [29]. The
band-projected theory holds as long as interband transitions
can be neglected. These can arise both from optical
transitions and electric breakdown (Zener tunneling)
[31]. The former are absent for frequencies below the
energy gap to the other energy bands εgap, while the
absence of the latter can be estimated by the condition
that ε2gap=εwidth ≫ eE0L where εwidth is the bandwidth.
Hence, we consider the intermediate regime ℏ=τ ≪
eE0L ≪ ε2gap=εwidth [12–14].
In the following, we drop the band index n since we

consider a single band. The current is then given by

jðtÞ ¼ −e
Z
k
ṙkðtÞfkðtÞ; ð4Þ

with
R
k ¼

R
BZ d

2k=ð2πÞ2 and where fkðtÞ is the nonequili-
brium occupation of the electrons in the band. The latter is
obtained from the Boltzmann transport equation in the
relaxation-time approximation:

τ∂tfk −
eτ
ℏ
EðtÞ ·∇kfk ¼ f0k − fk; ð5Þ

where τ is the momentum-relaxation time and f0k ¼
nFðεk − μÞ with nF the Fermi function and μ the chemical
potential. Because the system has translational symmetry,
the occupation function is periodic in momentum space:

fk ¼
P

R fRe
ik·R where the sum runs over lattice vectors R

with fR ¼ Vc

R
k fke

−ik·R. Plugging this expansion in
Eq. (5) we obtain an ordinary differential equation with
the steady-state solution [32]

fRðtÞ ¼ f0R

Z
∞

0

ds e−s exp

�
ie
ℏ

Z
t

t−sτ
dt0 Eðt0Þ · R

�
; ð6Þ

as shown in Supplemental Material (SM) [33]. The
occupation fk is thus given by a weighted sum of displaced
Fermi functions where the drift due to the electric field is
determined by the accumulated momentum between colli-
sions at time t − sτ and time t. Here, the exponential weight
e−s reflects the fact that scattering is modeled as a Poisson
process.
The current in Eq. (4) can be decomposed into two terms

as jðtÞ ¼ jBlochðtÞ þ jgeomðtÞ where

jBlochðtÞ ¼
ie
ℏVc

X
R

Rε−RfRðtÞ; ð7Þ

jgeomðtÞ ¼ ẑ ×
e2

ℏVc

X
R

Ω−REðtÞfRðtÞ; ð8Þ

where Vc is the unit cell area and we made use of the
expansions of the band dispersion and the Berry curvature,
as well as Vc

R
k e

ik·R ¼ δR;0. The Bloch current jBloch
originates from the band dispersion while the geometric
current jgeom originates from the anomalous velocity due to
the Berry curvature in Eq. (2).
Dressed optical conductivity.—We now consider probing

the system with monochromatic light of frequency ω that is
incident normal to the xy plane. In the electric-dipole
approximation, the electric field of the light can bewritten as

E1ðtÞ ¼ E1eiωt þ E�
1e

−iωt; ð9Þ

where E1 ∈C2 gives the amplitude and polarization. To
investigate the response at frequency ω, we expand each
lattice Fourier component of the distribution function in its
frequency components.We have fRðtÞ ¼

P∞
m¼−∞ fR;meimωt

where fR;m ¼ ðω=2πÞ R 2π=ω
0 dtfRðtÞe−imωt with fR;−m ¼

f�−R;m. The frequency components of the currents become

jðmÞ
Bloch ¼

ie
ℏVc

X
R

Rε−RfR;m; ð10Þ

jðmÞ
geom¼ ẑ×

e2

ℏVc

X
R

Ω−RðE0fR;mþE1fR;m−1þE�
1fR;mþ1Þ:

ð11Þ

Since we are interested in the linear response dressed by
the static part of the field, we expand Eq. (6) in orders of
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eE1 · R=ℏωwhile retaining all orders inE0. Up to first order,
the only nonzero terms are given by

fR;0 ¼
f0R

1 − iωRτ
; ð12Þ

fR;1 ¼
f0R

1 − iωRτ

eE1 · R=ℏ
ω − ωR − i

τ

¼ f�−R;−1; ð13Þ

with ωR ¼ eE0 · R=ℏ. The response at frequency ω can then

bewritten as jð1Þa ¼ σabE1b wherea; b ¼ x, y and summation
over repeated indices is implied. This leads us to the main
result of this work: the dressed optical conductivity

σabðω;E0Þ ¼
ie2

ℏ2Vc

X
R

RaRbε−Rf0R
ð1 − iωRτÞðω − ωR − i

τÞ

−
e2

ℏVc

X
R

Ω−Rf0R
1 − iωRτ

�
ϵab þ

eϵacE0cRb=ℏ
ω − ωR − i

τ

�
;

ð14Þ

where ϵab is the permutation symbol and σabðω;E0Þ� ¼
σabð−ω;E0Þ such that the real (imaginary) part is even (odd)
in ω. As a check, we undress the conductivity by setting
E0 ¼ 0. In this case, the two terms in Eq. (14) reduce to the
Drude and anomalous Hall conductivity, respectively.
Importantly, the dressed linear Hall response does not vanish
when time-reversal symmetry is conserved, because it is
effectively a compound nonlinear response in the fields E0

and E1ðtÞ.
Let us now focus on the case where E0 is finite and

consider the dressed longitudinal σL ¼ δabσab=2 and Hall
σH ¼ ϵabσab=2 conductivities, which transform as a scalar
and pseudoscalar, respectively [34]. We obtain

σL ¼ ie2

2ℏ2Vc

X
R

R2ε−Rf0R
ð1 − iωRτÞðω − ωR − i

τÞ
; ð15Þ

σH ¼ −
e2

ℏVc

X
R

Ω−Rf0R
1 − iωRτ

�
1þ 1

2

ωR

ω − ωR − i
τ

�
; ð16Þ

which for ωBτ ≫ 1 simplify to

σLðω;E0Þ ¼ −
e2

h
π

τVc

X
R

R2ε−Rf0R
ℏωRðω − ωR − i

τÞ
; ð17Þ

σHðω;E0Þ ¼ −
e2

h
π

τVc

X
R

iΩ−Rf0R
ω − ωR − i

τ

: ð18Þ

For crystals with time-reversal symmetry, the band
dispersion (Berry curvature) is an even (odd) function of
momentum, such that εR and f0R are real, while ΩR is
imaginary. In this case, and for ωBτ ≫ 1, we see that ImσL

and ImσH are given by a series of Lorentzians centered at
the Bloch frequencies ωR. The height of these resonances is
proportional to εR andΩR, respectively, and independent of
the relaxation time τ. Conversely, the real part of the
dressed conductivity vanishes at resonance. Hence, σL is
purely reactive while σH is purely absorptive at Bloch
resonance. For linearly polarized light, the system does not
dissipate, since it is essentially collisionless on the time-
scale set by Bloch oscillations for ωBτ ≫ 1. However, for
circularly polarized light the Hall response couples dis-
sipatively via ImσH since it lags in phase by a quarter cycle
(see also SM [33]).
These results can thus potentially be used to map out the

distribution of the Berry curvature in systems with time-
reversal symmetry by measuring the resonances in the
dressed optical Hall conductivity in the nonperturbative
regime where ωBτ ≫ 1.
First-shell approximation.—It is instructive to first

evaluate the dressed optical conductivity by only taking
into account the leading-order terms in the sum over the
lattice vectors. For concreteness, we consider a system with
point group D3 or C3v which lacks inversion or C2z rotation
symmetry. In this case, the Berry curvature is generally
nonzero even though the Chern number of the band
vanishes. In the first-shell approximation, we only take
into account the shortest nonzero lattice vectors such that
εk ¼ ε1

P
3
n¼1 cosðk · LnÞ up to an additive constant and

Ωk ¼ Ω1

P
3
n¼1 sinðk · LnÞ where ε1 and Ω1 are real para-

meters that depend on the details of the system, and L1 ¼
Lð1=2; ffiffiffi

3
p

=2Þ, L2 ¼ ð−L; 0Þ, and L3 ¼ −ðL1 þ L2Þ are
related by C3z rotation symmetry [13,14].
The imaginary part of the dressed optical Hall conduc-

tivity is shown in Fig. 1(c) as a function of ω for θ0 ¼ 15°
and different values of ωBτ. There are three resonances in
this case because the first coordination shell supports three
Bloch frequencies ωn ¼ jeE0 · Ln=ℏj which are nondegen-
erate for general θ0. The height of these resonances is
approximately equal due to C3z and time-reversal symmetry
and saturates to e2Ω1f01=2ℏVc in the limit ωBτ ≫ 1, where
f01 ¼ f0R¼Ln

. Notice that the resonances are only well
defined for ωBτ ≳ 10. The dependence on the direction
of the static field is shown in Fig. 1(d). Here, we show
ImσH for ωBτ ¼ 15 as a function of ω and θ0. As we rotate
the static field, resonances move along the curves ω ¼
ωBj cosðθ0 − θnÞj with θn ¼ fπ=3; π;−π=3g. For the spe-
cial case θ0 ¼ mπ=3 (m∈Z) two Bloch frequencies
coincide and the peaks are doubled. On the contrary, for
θ0 ¼ ð2mþ 1Þπ=6 the response vanishes due to Mx

(x ↦ −x) mirror symmetry. These features can also be
seen in the rose plots of Fig. 2. Here, we clearly see that the
strongest resonance occurs when two lattice vectors have
the same projection along the static field. Away from these
directions, the resonance splits into two peaks that shift to
higher and lower frequencies.
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Low-energy model.—Going beyond the first-shell appro-
ximation, we now consider a low-energy model defined on
an effective honeycomb lattice with one orbital per site, and
with nearest-neighbor hopping amplitude t > 0 and a
sublattice-staggering potential m. The Bloch Hamiltonian
is given by

HðkÞ ¼ dðkÞ · σ; ð19Þ

dðkÞ ¼ ð−tRegk;−tImgk; mÞ; ð20Þ

where σ ¼ ðσx; σy; σzÞ are the Pauli matrices and gk ¼
e−ik·τ ½1þ eik·L1 þ eik·ðL1þL2Þ� with τ ¼ Lŷ=

ffiffiffi
3

p
the relative

separation of the two sublattices. Note that we work in
periodic gauge for which the semiclassical equation given
in Eq. (2) is valid [28,30]. This model has time-reversal
symmetry with point group C3v generated by C3z and Mx,
and can be seen as a minimal low-energy model for moirés
such as h-BN–aligned twisted bilayer graphene [35,36] or
twisted double bilayer graphene [37,38], as well as other
systems with the same point group, e.g., periodically
buckled graphene with a C3v height profile [14,39–41].
The model gives two energy bands εk� ¼ �jdðkÞj that

are separated by a gap j2mj at the zone corners. Because C2z
symmetry is broken by the sublattice potential, the Berry
curvature is nonzero and given by

Ωk� ¼ � mt2Vc

6jdðkÞj3
X3
n¼1

sin ðk · LnÞ; ð21Þ

with Vc ¼
ffiffiffi
3

p
L2=2. In the limit jm=tj ≫ 1, we have

jdðkÞj ≃ jmj and the first shell dominates with
Ω1 ¼ �sgnðmÞVct2=6m2. However, in general many shells
contribute, as illustrated in Fig. 3 where we show σLðω;E0Þ
in panels (a) and (b), and σHðω;E0Þ in panels (c) and (d) for
m=t ¼ 0.5 and different fillings ν of the valence band.
Here, the static field lies along the x direction and
kBT=t ≪ 1. Note σL decays faster with frequency than

σH because the first shell of the dispersion is dominant [see
inset of Fig. 3(a)] and because of the additional factor of
1=ω in Eq. (17). The filling ν enters only through the
Fourier components of the Fermi function f0R which
modulate the height of the peaks in the imaginary part
of the conductivities and can change sign as a function of ν,
see Fig. 3(d).
In conclusion, we developed a band-projected semi-

classical theory for the optical response of an artificial
crystal, such as a moiré material, that is dressed by a
uniform static field. When the static field is sufficiently
strong, achieved for field strengths of order 10 kV=cm for a
lattice constant of order 10 nm, the dressed system becomes
resonant at the Bloch frequencies which are in the 10 THz
regime. We quantified this effect by defining a dressed
optical conductivity whose imaginary part displays reso-
nant peaks, while the real part vanishes at resonance. In
particular, the height of the resonances in the optical Hall
conductivity probe the lattice Fourier components of the
Berry curvature and are independent of the relaxation time.
One thus obtains an intrinsic probe of the quantum
geometry of the band by resonantly coupling light to
Bloch oscillations. The dressed optical conductivity can,
for example, be obtained from terahertz Faraday rotation
and ellipticity spectroscopy measurements [42,43]. In
contrast to probes of the Berry curvature multipoles, such
at the rectified second-order response involving the Berry

FIG. 2. Roses for the real (a) and imaginary (b) part of the
dressed optical Hall conductivity σHðω;E0Þ for the Berry
curvature shown in Fig. 1(b) with ωBτ ¼ 15. The angle corre-
sponds to the direction of the static electric field θ0 and the color
scale gives the frequency ω of the oscillating field.

FIG. 3. Dressed optical conductivities σLðω;E0Þ and σHðω;E0Þ
for the valence band of the two-band model with m=t ¼ 0.5
where ωBτ ¼ 15, θ0 ¼ 0°, and kBT=t ¼ 0.004. The color scale
gives the filling ν∈ ½0.1; 0.9� in 0.1 increments [see inset of (b)].
(a), (b) Real and imaginary part of σLðω;E0Þ. (c), (d) Real and
imaginary part of σHðω;E0Þ. Dashed vertical lines give the
position of the resonances ωR and the inset in (a) and (d) shows
the relative magnitude (size of dots) and phase (color) of εR− and
ΩR−, respectively.
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curvature dipole [4], our proposal works at linear order in
the optical response, and works best for a smooth Berry
curvature dominated by the first coordination shell whose
lowest multipoles are zero or small. Moreover, by changing
the in-plane direction of the static field, one can tune
contributions from different lattice vectors. This work thus
provides a novel route to probe the Berry curvature in time-
reversal symmetric moiré and other artificial crystals which
have a large real-space periodicity.
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