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We argue that the chiral Uð1ÞA symmetry of a Weyl fermion cannot be implemented by a shallow depth
quantum circuit operation in a fermionic lattice Hamiltonian model with finite dimensional onsite Hilbert
spaces. We also extend this result to discrete Z2N subgroups of Uð1ÞA, in which case we show that for Nf

Weyl fermions of the same helicity, this group action cannot be implemented with shallow depth circuits
when Nf is not an integer multiple of 2N.
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Introduction.—Understanding how chiral symmetry of
Weyl fermions can be implemented on the lattice is an
important problem to multiple disciplines of physics. In the
field of condensed matter theory, the well-known ’t Hooft
anomaly of the chiral Uð1ÞA symmetry is an archetypal
example of the boundary of a symmetry protected topo-
logical (SPT) phase, which should preclude the possibility
of realizing the Uð1ÞA as an exact on-site symmetry on the
lattice. For the high energy theory community, realizing
chiral fermions on the lattice is of both fundamental and
practical importance, as the Standard Model and various
versions of grand unified theories are chiral gauge theories.
A celebrated no-go theorem by Nielsen and Ninomiya [1]
explicitly concluded that the Uð1ÞA symmetry cannot be
engineered in a local lattice model in three spatial dimen-
sions for free fermions. Over the years this problem has
been approached in several ways, for example by intro-
ducing an extra dimension [2], so that the chiral fermions
and the Uð1ÞA symmetry are realized at the boundary of a
higher dimensional system, consistent with the general
spirit of realizing the anomalous chiral symmetries at the
boundary of a bulk SPT phase. It was also realized that the
axial rotation symmetry could be an emergent symmetry in
the infrared, which is implemented as a nonlocal trans-
formation on a four-dimensional Euclidean spacetime
lattice and action [3–5].
In this Letter, we will approach this problem from the

standpoint of the fermionic analog of the many-qubit
model. That is, we will assume a many-body Hilbert space
that is a graded tensor product of finite dimensional on-site
fermionic Hilbert spaces, and investigate the action of
chiral symmetry from a quantum information theoretic
local unitary perspective. This perspective has proven
useful in elucidating aspects of anomalies in other contexts

]6–9 ]. Specifically, we ask the following question. Suppose

that a local Hamiltonian H acting in such a Hilbert space
realizes in its low energy limit a single Weyl fermion [10].
Is it then possible to find an operator Q which is a sum of
quasilocal terms such that exp ð2πiQÞ ¼ 1, ½Q;H� ¼ 0, and
Q coincides with the usual U(1) particle number associated
to the Weyl fermion at low energies? That is, can the chiral
U(1) symmetry be implemented by a possibly non-on-site,
but still quasilocal operator acting on this Hilbert space?
We argue that the answer to this question is no, for any

number Nf of Weyl fermions of the same helicity. In
particular, the Uð1ÞA axial symmetry of a Dirac fermion
cannot be realized by a non-on-site operator of this form
[11]. We note that in Ref. [12] a non-on-site free fermion
operator Q implementing axial Uð1ÞA symmetry in such a
setting was written down; however, this Q fails to satisfy
exp ð2πiQÞ ¼ 1, i.e. it does not generate a compact U(1)
group. There is in fact a simple topological argument which
shows that any such free-fermion Q must have a vanishing
eigenvalue at some point in the Brillouin zone, implying
that in the thermodynamic limit excitations with arbitrarily
small nonzero charges exist, a violation of charge quan-
tization. In this work, we show that, more generally, an
obstruction exists even at the level of interacting but still
quasilocalQ. We also show that the conclusion still holds if
only a Z2N ⊂ Uð1ÞA subgroup is preserved, assuming that
Nf is not an integer multiple of N.
The significance of our result arises from the existence of

a large class of ‘t Hooft anomalies for which the typically
discrete symmetries can be realized by shallow depth
circuits, but not on-site. This includes in particular the
boundaries of all of the in-cohomology SPT phases [6].
Another example can be obtained by considering k Dirac
fermions in 1þ 1 dimensions, and restricting the symmetry
group to Z2 × Zf

2 , where Z2 is the fermion parity of the left
movers and Zf

2 the overall fermion parity. It is known that
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with interactions the anomaly in this case depends only on k
mod 8 [13,14], and that for even k the symmetries can be
realized by shallow depth circuits [15,16], but for odd k they
cannot [17]. Thus, ‘t Hooft anomalies may be classified by
severity according to whether or not the corresponding
symmetries admit shallow depth circuit representations,
where increasing severity corresponds to being further away
from the cohomology classification. Now, for a continuous
group like Uð1ÞA, the natural generalization of “acting by
shallow depth circuits” is that the Hermitian generator of
the Uð1ÞA be a quasilocal operator. Thus, modulo this
assumption, our result demonstrates that the Uð1ÞA cannot
act by shallow depth circuits and hence suffers a severe form
of ‘t-Hooft anomaly.
Our result can be viewed as a partial interacting

generalization of the Nielsen and Ninomiya theorem [1].
Our argument relies on certain physical assumptions, the
most important one being that it is impossible to have a
chiral edge for a ð2þ 1Þd commuting projector
Hamiltonian. The key part of the argument for the U(1)
case is that a U(1) vortex line in the Majorana mass term
carries 1d chiral modes, and a sufficiently local Q would
allow one to build a shallow depth circuit that inserts such a
vortex at the boundary of a 2d membrane. This circuit
effectively builds a 2d chiral phase on this membrane from
a trivial state, in particular giving it a commuting projector
Hamiltonian, which is a contradiction.
Assumptions and statement of the result.—We assume

the Hilbert space is a graded tensor product, over the sites
of some lattice, of two-dimensional fermionic Hilbert
spaces with one even and one odd dimensional subspace.
We assume the existence of a fixed microscopic length
scale l (setting the lattice constant to 1), that controls the
locality of various operators as described below. We
assume the existence of a quasilocal Hermitian Q ¼P

j Qj with expð2πiQÞ ¼ 1 and Qj acting near lattice
site j. We will not formalize the notion of quasilocal
beyond the following. First, Q must satisfy the locality
conditions of the Lieb-Robinson theorem [18,19], so that
the unitary operators expðiτQÞ, 0 ≤ τ < 2π have a
common Lieb-Robinson length [18] bounded by l.
We will further consider operators of the form
expðiτPj fjQjÞ, where 0 ≤ fj ≤ 1 is a slowly varying
function on the lattice. We assume that these operators
also have Lieb-Robinson length bounded by l. Finally, we
require that for any local operator Ak supported on
sites within distance d of k, the operator norm of the
difference between expðiτPj fjQjÞAk expð−iτ

P
j fjQjÞ

and exp ðiτQÞAk expð−iτQÞ is bounded by Cdj∇fj · kAkk
where C is some constant, and j∇fj the maximum gradient
of f, in lattice units. This condition formalizes the idea
that a slowly spatially varying U(1) rotation acting on a
local operator can be approximated by a constant U(1)
rotation acting on that local operator, with the quality of
the approximation controlled by the gradient of the spatial
variation.

We will assume the existence of a local Hamiltonian H,
possibly interacting, with the locality of the terms bounded
by l, whose effective low energy theory is described by a
Weyl fermion

HWeyl ¼ ℏv
X
jk⃗j<Λ

ψ†ðk⃗ÞT
�X3

i¼1

kiσi

�
ψðk⃗Þ; ð1Þ

valid below a cutoff scale of ℏv=l. This means that the field
operator

ψðr⃗Þ ¼ N
X
jk⃗j<Λ

eik⃗·r⃗ψðk⃗Þ

is quasilocal in the sense of being well approximated by an
operator acting on a region of diameter l around r⃗.
Furthermore, we will assume that the only low energy
excitations are those of HWeyl, even on spatial manifolds of
nontrivial topology. This rules out the possibility of H
allowing additional gapped topological quantum field
theory excitations, and means in particular that when H
is gapped out with a Majorana mass term below, the result
is an invertible state.
Finally, we will assume that ½Q;H� ¼ 0 and at low

energies Q generates the chiral U(1) particle number
symmetry of HWeyl. We will show that, taken together,
these assumptions lead to a contradiction.
No quasilocal Q generating chiral Uð1Þ.—We first

compactify along one of the spatial directions, which we
call z, and impose periodic boundary conditions along that
direction, with length lz ≫ l. We will parametrize the z
directionwith a coordinate z∈ ½0; lz�, with 0 and lz identified.
We now construct a unitary operator V which smoothly

interpolates between doing a π U(1) rotation on half of the
space (in the z coordinate) and doing nothing on the other
half, as illustrated in Fig. 1. Note that this is a π rotation on
the fermions, so a 2π rotation of the order parameter ΔðzÞ.
To define V, we first pick w such that l ≪ w ≪ lz, and let
fðzÞ be an indicator function for ½0; lz=2� smoothed out on

FIG. 1. Dimensionally reduced system, extended in the x
direction and y direction (into the page). The operator V
interpolates smoothly between a trivial operator for lz=2þ w <
z < lz and a π U(1) rotation for w < z < lz [acting as fermion
parity ð−1ÞF]. The function fðzÞ used to define Qf in Eq. (2)
shown on the right.
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the scale w; its defining properties are that it is equal to 1 for
w < z < lz=2, it is equal to 0 for z outside of ½0; lz=2þ w�,
and it interpolates smoothly between those values in the
intervening regions, with a maximum gradient of order
w−1 ≪ l−1. We then define

Qf ¼
X
i

fðziÞQi ð2Þ

where for each i, zi is a point in the support of Qi, and
define V ¼ exp ðiπQfÞ.
V can be viewed as a finite time evolution of a bounded

local pseudo-Hamiltonian and has Lieb-Robinson length
bounded by l. Hence, after possibly increasing w by an
amount of order l, we can see that Ṽ acts as the fermion
parity operation ð−1ÞF on all operators supported on the
region w < z < lz=2, and as the identity on all operators
supported on the region lz=2þ w < z < lz.
We now perturb the Hamiltonian in our dimensionally

reduced geometry as follows. We first define

HΔ ¼ H þ
Z

dr⃗Δψ1ðr⃗Þψ2ðr⃗Þ þ H:c:

We choose jΔj sufficiently small so that the effect of the
perturbation can be analyzed within the low energy free
fermion theory, where it is just a Majorana mass term that
gaps out the Weyl fermion Hamiltonian of Eq. (1). Note
that this Majorana mass term induces a correlation length
ξ ∼ Δ−1, which we can assume to satisfy l ≪ ξ ≪ w. As
mentioned above, this gapped state must be invertible.
Using the fact that the conjectured classification of
ð3þ 1Þd invertible fermionic states is trivial, or by stacking
with the conjugate invertible state, we can assume that this
state is trivial, i.e. connected by a shallow depth circuit to a
product state. This means, in particular, that it has another
parent Hamiltonian H0

Δ which is of local commuting
projector form (obtained by conjugating the trivial com-
muting projector for the product state by this circuit).
Now, for x < 0 we simply define Hx<0 ¼ HΔ. We also

define H0
x<0 ¼ H0

Δ to be the commuting projector parent
Hamiltonian with the same ground state. For x > 0, we
define Hx>0 as follows. For z away from the interval

½lz=2; lz=2þ w�, we take the local terms in Hx>0 to be
identical to those of HΔ. For z in the interval
½lz=2 − ϵ; lz=2þ wþ ϵ�, we take the local terms to be
those of VHΔV−1, where ϵ is some length scale with
l ≪ ϵ ≪ lz. This is a thickening of the interval
½lz=2; lz=2þ w�, but since V acts as either the identity or
fermion parity in the thickened regions, and all terms inHΔ
are fermion parity even, and hence not affected. Carrying
out the same procedure with H0

Δ yields a commuting
projector Hamiltonian with the same ground state.
Let us now analyze Hx>0 in the low energy field theory.

Away from the range lz=2 < z < lz=2þ w it is just HΔ,
while for z in this range its terms are given by conjugating
those ofHΔ by the slowly spatially varying U(1) rotation v.
Hence, these terms may be approximated by the action of a
uniform U(1) rotation. More precisely, for any such local
operator A of diameter d localized at some z coordinate zA,
we have by assumption that

kṼAṼ−1− exp½ifðzAÞQ�Aexp½−ifðzAÞQ�k<Cd
w

kAk: ð3Þ

Hence

Hx>0 ¼ HWeyl þHtwisted þOð1=wÞ

where

Htwisted ¼
Z

dr⃗ΔðzÞψ1ðr⃗Þψ2ðr⃗Þ þ H:c:

with ΔðzÞ being a complex number of amplitude Δ whose
phase winds by 2π as for z∈ ½lz=2; lz=2þ w�. Since the
ground states of bothHx>0 andHWeyl þHtwisted are gapped,
for sufficiently large w the extra term of order ð1=wÞ above
will have no effect, so that Hx>0 can be continuously
connected to HWeyl þHtwisted without closing the gap.
But the situation with HWeyl þHMajorana on one side of

the interface and HWeyl þHtwisted is precisely a fundamen-
tal 2π vortex in the order parameter of the Majorana mass
term, located at the effectively one dimensional interface
x ¼ 0, as illustrated in Fig. 2. As derived in the supple-
mentary material, a fundamental vortex hosts a gapless
chiral mode with chiral central charge 1=2. Since this is a
topological property, the same is true of the interface
between Hx<0 and Hx>0, and also H0

x<0 and H0
x>0. We

thus have a situation where an interface between two 2d
local commuting projector Hamiltonians hosts a gapless
chiral mode. If we fold the system at the interface, stacking
the two gapped phases on top of each other, this yields a
local commuting projector Hamiltonian with a chiral edge
mode, which is believed to be impossible [20]. Hence we
have derived a contradiction.
Generalization to discrete subgroups Z2N .—Consider a

theory of Nf ≠ 0 mod 2N flavors of same helicity Weyl

FIG. 2. A 1d spatial interface along the y direction (into the
page) between two different 2d gapped phases in the x, y plane, at
x > 0 and x < 0 respectively. A 2π vortex in the order parameter
Δ extends along this interface, as can be seen by the fact that the
phase of Δ winds by 2π when crossing the blue region.
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fermions, but instead of the full U(1) symmetry suppose
that only a Z2N subgroup is preserved. We will show that in
this case theZ2N action cannot be realized by shallow depth
quantum circuits in a graded tensor product Hilbert space.
The argument is again by contradiction, and is illustrated
in Fig. 3.
Again the geometry is dimensionally reduced to 2d

along the z direction. We now stack 2N defects of the
generator g of the Z2N symmetry; as illustrated in Fig. 3 the
state to the left of the defects is the original ground state
(labeled “phase 1”), whereas the state to the right of the
defects (labeled “phase 2”) can be obtained from the
ground state by multiplying by the truncated unitary actions
of g; g2;…; g2N ¼ 1 in the indicated regions (this is where
we use the shallow circuit assumption, as shallow circuits
can be truncated). As noted in the U(1) case, phase 1 is
trivial and hence has a commuting projector parent
Hamiltonian, and by essentially the same argument in
the U(1) case, phase 2 is trivial and has a commuting
projector Hamiltonian as well.
Now, as we cross the branch cut surfaces emanating from

each defect, the phase of Δ abruptly advances by 2π=N.
This is a discontinuity inΔ and cannot be studied in the low
energy theory of the Weyl fermion and Majorana mass
term; however, we can imagine instead thickening the
branch cut surfaces and advancing the phase slowly by
2π=N across these thickened surfaces. This is labeled
“phase 3” in Fig. 3 and can be studied using the low
energy field theory. The 1d interface between an abrupt
branch cut (in phase 2) and a slow one (in phase 3) is not
necessarily gapped, and may carry some chiral central
charge c0. However, since the state immediately above and
below the branch cuts can be disentangled into a product
state, each such interface is effectively an interface between
two-dimensional fermionic invertible gapped states, and
hence c0 is an integer multiple of 1=2. Since the 2N
different branch cuts are all related by symmetry, the value
of c0 is the same for all.
Now we simply note that the gray shaded region

encompassing phase 2 in Fig. 3 is effectively a 4π vortex

in the Majorana mass term, when viewed from far away.
This means that its total chirality must be Nf. This chirality
is a sum of the contributions of the interfaces between
phases 2 and 3, which contribute 2Nc0, and some con-
tribution c from the defects (note that c is not necessarily a
half integer multiple of 2N). Hence cþ 2Nc0 ¼ Nf, so
c ¼ Nf − 2Nc0. Thus if Nf is not an integer multiple of N,
then cmust be nonzero moduloN, and hence nonzero. This
is a contradiction for the same reason as in the U(1) proof,
namely the fact that one cannot have a chiral edge mode
between two 2d phases described by commuting projector
Hamiltonians (phases 1 and 2 in Fig. 3).
In this section we considered the situation where there is

a discrete Z2N chiral symmetry rather than a Uð1ÞA
symmetry. As long as N ≥ 2, this chiral symmetry still
prohibits any fermion bilinear mass operator in the Weyl
fermion Hamiltonian, though some higher order fermion
operators are allowed. These higher order terms are
obviously perturbatively irrelevant under renormalization
group (RG) flow, hence there will still be a Uð1ÞA emergent
symmetry in the infrared. In the past few years, it has been
gradually recognized that when the Uð1ÞA symmetry is
broken down to its discrete subgroups on the lattice scale,
Weyl fermions with emergent IR Uð1ÞA symmetry can be
regularized as essentially a three-dimensional spatial lattice
model, with the proper combination of short range inter-
action, flavor number, and flavor symmetries [21–27].
These results were obtained from various ways of dem-
onstrating the absence of the ’t Hooft anomaly of the
discrete axial symmetries. It is worth noting that the
absence of any ’t Hooft anomaly is a stronger result than
ours, which states that the symmetry cannot be imple-
mented through a finite depth quantum circuit. For exam-
ple, if N ¼ 2, i.e. if we have a Z4 subgroup of Uð1ÞA, then
the symmetry cannot be realized by finite depth circuits for
any odd Nf, while it has been shown that the Z4 axial
symmetry is completely anomaly free when Nf ¼ 0 mod
16 [26,28–31], and hence the symmetry should be realiz-
able on-site in that case. We note that if the symmetry can
be realized by a locality preserving unitary [32] in the case
Nf ¼ 1, then a standard argument would show that for any
even Nf the symmetry should be realizable by a shallow
circuit [33].
Summary and discussion.—In this Letter, we showed

that Uð1ÞA symmetry cannot be realized by a quasilocal
chargeQ. For the case ofZ2N andNf ≠ 0mod 2N, we also
showed that the unitaries generating the group action
cannot be quasilocal shallow depth circuits. In this case,
there is still the possibility that these unitaries could be
locality preserving but not shallow depth, i.e. they could be
nontrivial quantum cellular automata (QCA); however, for
a continuous connected group like Uð1ÞA this possibility
is unlikely [34]. We note that while in-cohomology SPT
phases always have a boundary action of symmetry by
shallow-depth circuits [35], there exists a beyond

FIG. 3. An effective 4π vortex in Δ constructed from fusing 2N
defects of a fundamental vortex of Z2N ⊂ Uð1Þ symmetry.
Dimensionally reduced phases 1 and 3 can be described within
the low energy field theory of Nf Weyl fermions with Majorana
mass term.
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cohomology SPT phase where the boundary action is a
nontrivial QCA [36]. It would be interesting to relate the
present work to this classification of boundary symmetry
actions.
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