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We present a theory for band-tuned metal-insulator transitions based on the Kubo formalism. Such a
transition exhibits scaling of the resistivity curves in the regime where Tτ > 1 or μτ > 1, where τ is the
scattering time and μ the chemical potential. At the critical value of the chemical potential, the resistivity
diverges as a power law, Rc ∼ 1=T. Consequently, on the metallic side there is a regime with negative
dR=dT, which is often misinterpreted as insulating. We show that scaling and this “fake insulator” regime
are observed in a wide range of experimental systems. In particular, we show that Mooij correlations in
high-temperature metals with negative dR=dT can be quantitatively understood with our scaling theory in
the presence of T-linear scattering.

DOI: 10.1103/PhysRevLett.131.196303

Thanks to the advent of highly tunable “twisted” Van der
Waals heterostructures [1–3], the field of quantum matter
physics is in a position to study continuous zero-temperature
phase transitions with an unprecedented accuracy. Detailed
(and smooth) experimental results allow a systematic
comparison between different theoretical predictions, which
is particularly true for continuous metal-to-insulator tran-
sitions (MITs).
Interaction-induced MITs, such as the Mott transitions,

display quantum critical behavior, including scaling of the
resistivity [4,5]. A full theoretical understanding of Mott
criticality, which would include a precise calculation of the
scaling exponents, is still lacking [6]. One of the main
challenges lies in the fact that an MIT is, in general, not a
transition described by symmetry breaking, which makes it
challenging to identify the source of scaling.
Recently, scaling has been observed in a simple band-

tuned MIT in a MoTe2=WSe2 bilayer at full filling of the
first valence flat band [7]. By tuning the displacement field,
one can open a band gap to the second valence band. The
scaling behavior there has been analyzed using a model
with disorder and a bosonic field [8], inspired by earlier
work on “Mooij” correlations [9,10]. However, the
observed scaling can also be interpreted in a much simpler
perspective.
From a theoretical viewpoint, calculating the conduc-

tivity is notoriously difficult. An exception is the classical
Drude formula, σ ¼ ðne2τ=mÞ, which can also be derived
with fully quantum-mechanical advanced methods such as
the Kubo formula [11,12]. A natural question is whether the
observed scaling at a metal-insulator transition can be
explained with the same set of assumptions that is used to
derive Drude theory.

Indeed, in this Letter we show that only a small number
of very natural assumptions lead to scaling behavior near a
band-tuned MIT. The only assumptions are that the
scattering time τ is large, parametrized by Tτ > 1 or μτ > 1
(with μ the chemical potential measured from the band
edges on the metallic side), and that the electron self-energy
is local and proportional to the electron density of states.
These quantitative conditions are relevant for weakly
correlated, weakly disordered materials. Under these
assumptions, the critical resistivity at the MIT is diverging
as RcðTÞ ∼ 1=T, in contrast to the oft-cited picture that the
critical resistivity curve is independent of temperature. We
derive an explicit scaling form, showing that in the scaling
regime the resistivity is given by a universal RðT; μÞ ¼
RcðTÞfðμ=TÞ. Contrary to the physics of universality at
continuous phase transitions, the scaling of the resistivity
breaks down very close to the MIT.
Band-tuned MIT.—Consider a weakly interacting elec-

tron system described by a band structure. The system is
metallic if there is a nonzero density of charge carriers,
characterized by a nonzero chemical potential μ. The system
is an insulator if there is a gap toward exciting charge
carriers. By continuously changing the band structure we
can induce a band-tuned MIT. This can be achieved with
pressure, displacement field, or even due to spontaneous
symmetry breaking such as ferromagnetic polarization.
Without loss of generality, the dispersion at a band edge
is parabolic, with the dispersion set by ξk ¼ ðk2=2mÞ − μ,
where m is the effective mass. With this notation, μ > 0
corresponds to the metal, μ < 0 to an insulator, and μ ¼ 0 is
the critical point. The chemical potential μ is thus the tuning
parameter of the MIT, as shown in Fig. 1.
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In general, the conductivity is determined by disorder,
electron-electron interactions, and electron-phonon cou-
pling. Nonzero resistivity from electron-electron inter-
actions requires umklapp scattering, which becomes
asymptotically irrelevant at low carrier densities (though
there might be nontrivial vertex corrections) [13]. Similarly,
at zero temperature there is no thermal occupation of
phonons, and therefore no electron-phonon contribution
to the resistivity. The zero-temperature behavior of a band-
tuned MIT is therefore completely dominated by disorder.
In principle, strong disorder might push the system into
Anderson insulation. However, in d ¼ 2, 3 it is considered
that the combination of weak disorder and weak inter-
actions generally precludes true localization [14–17].
Moreover, even in the absence of interactions, quantum
corrections to the conductivity are not relevant in the
regimes μτ > 1 and Tτ > 1 considered here, and will
therefore be neglected throughout this work.
Conductivity.—With these natural assumptions, the con-

ductivity close to the MIT is calculated using the Kubo
formula for local self-energies [11,18], which reads

σxx ¼ π
XNb

n

Z
dξΦx;nðξÞ

Z
dzA2

nðξ; zÞ½−f0ðzÞ�; ð1Þ

where Anðξ; zÞ is the one-particle spectral function for the
nth band, and f is the Fermi function. The details of the
following derivation are presented in Ref. [19]. The entire
momentum dependence is contained in the transport
function Φx;nðξÞ ¼

R ðddp=ð2πÞdÞδðξ − ξpÞj2xðpÞ. The
transport function itself displays universal behavior in
the vicinity of a band-tuned MIT: given a parabolic band
dispersion for either holelike or electronlike bands, the

current operator equals jðpÞ ¼ ðe=mÞp. Consequently the
transport function for each band is proportional to the
density of states NðξÞ ¼ R ðddp=ð2πÞdÞδðξ − ξpÞ times a
linear function:

ΦxðξÞ ¼
2e2

dm
ðξþ μÞNðξÞ: ð2Þ

This universal shape stems from the fact that the current
squared is proportional to the dispersion, j2 ∝ ξ. Focusing
for nowond ¼ 2,we assume a constant, energy-independent
scattering rate τ, so that the imaginary part of the self-energy
is ImΣðzÞ ¼ −Θðzþ μÞð2τÞ−1. This scattering time is typi-
cally of the order τ ∼ 10−12–10−14 s ∼ 10–103 eV−1. When
μτ > 1 orTτ > 1, theKubo formula radically simplifies, and
we find the conductivity,

σðT; μÞ ¼ e2

h
τT log½1þ eμ=T �; ð3Þ

per conduction or valence band. This is our central result
for the conductivity close to the band-tuned MIT.
Surprisingly, it contrasts a few commonly held convictions
on metal-insulator transitions. First, at the critical point, the
conductivity is linear in temperature, σcðTÞ≡ σð0; TÞ ¼
ðe2=hÞτT log 2, rather than temperature independent.
Furthermore, on the metallic side of the transition
(μ > 0), the temperature derivative of the resistivity can
be negative: a “fake insulator” regime that is commonly
misinterpreted as insulating. Furthermore, Eq. (3) satisfies a
universal scaling form,

σðμ; TÞ ¼ σcðTÞFðμ=TÞ; ð4Þ

which allows the collapse of many resistivity curves onto a
simple scaling function FðxÞ ¼ log2 ½1þ ex�. The theoreti-
cal resistance curves near the band-tuned MIT, including the
scaling properties, are shown in Fig. 2.
Hidden in plain view is the fact that Eq. (3) is, at zero

temperature on the metallic side, equivalent to Drude
theory. Explicitly, its low-temperature limit for μ ¼
EF > 0 yields σ ¼ ΦðEFÞτ, with ΦðEFÞ ¼ ne2=m in
any dimension d yielding σ ¼ ne2τ=m.
At finite temperature the scaling regime persists, even

with a temperature-dependent scattering time τðTÞ, pro-
vided that τ−1 is still proportional to the density of states.
When τ is temperature independent, in fact, all resistivity
curves on the metallic side are fake insulators with
dρ=dT ≤ 0 (cf. Fig. 2). Only when the scattering rate
increases with temperature, for example, from electron-
phonon interactions shown in Fig. 2(b) or from umklapp
scattering, we find traditional metallic behavior with
dρ=dT > 0. In this case, inside the metallic regime there
exists a point where the temperature derivative of the
resistivity dρ=dT changes sign. We will discuss universal

FIG. 1. In a band-tuned metal-insulator transition (MIT), the
system changes from having overlapping valence (blue) and
conduction (red) bands in the metallic side (right) to having a gap
on the insulating side (left). The tuning parameter is the chemical
potential μ. When either Tτ > 1 or μτ > 1, the resistivity (in
shades on the background) can be described by a scaling form, as
shown in Fig. 2. This scaling relation breaks down very close to
the transition, where localization and interaction effects will
change the picture.
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properties around this point later in the context of Mooij
correlations [9,20].
It is important to emphasize that the scaling form of

Eq. (4) is limited to regions not too close to the transition.
This limitation is similar to the one proposed byMott-Ioffe-
Regel (MIR) [21]. A common formulation of the MIR limit
in metals is kFl ∼ 1, where l is the mean-free path. This
can be rewritten as μτ ∼ 1; we therefore find that, upon
approaching the transition from the metallic side, the
scaling hypothesis breaks down precisely at the MIR
boundary. What happens close to the transition is nonuni-
versal, and depending on model parameters one can find
various different violations of scaling (see Ref. [19]).

Band-tuned MIT in moiré bilayers.—We are now in a
position to verify our universal scaling result of Eq. (3) in
experimental results on real physical systems. Inspired by
the recent developments in moiré materials, let us first
focus on the MIT in MoTe2=WSe2 at full filling of the first
valence flat band (f ¼ 2) [7]. By tuning the perpendicular
displacement field, a gap is opened up, yielding a band-
tunedMIT. In Fig. 3 we fit the observed resistance curves as
a function of displacement field using our theory. Indeed,
the critical resistance diverges as Rc ∼ 1=T, and the
resistance curves obey scaling. As shown in Fig. 3(a),
the scaling curve itself quantitatively matches the analytical
form derived in Eq. (3). A similar scaling plot for these data

FIG. 2. Theoretical resistance curves close to a band-tuned metal-insulator transition. (a) Resistance calculated using Eq. (3), for a
constant scattering time τ ¼ 25 eV−1, and chemical potential μ ranging from −0.8 toþ0.8 eV. The resistance at the critical point μ ¼ 0
diverges as RcðTÞ ∼ 1=T. On the metallic side, the resistance decreases as a function of temperature (a “fake” insulator), whereas on the
insulating side the resistance is activated. (b) Resistance for a temperature-dependent scattering rate τ−1 ¼ τ−10 þ bT with τ0 ¼ 25 eV−1

and b ¼ 0.1. On the metallic side, a resistivity maximum arises at a temperature dependent on the distance from the transition. At high
temperatures, this gives rise to Mooij correlations (see Fig. 4). (c) When Tτ > 1 or μτ > 1, the resistance curves follow a simple scaling
law, RðT; μÞ ¼ RcðTÞfðμ=TÞ. This can be verified by plotting R=Rc versus T=jμj. All data points collapse onto one of the two curves,
associated with either metallic or insulating behavior.

FIG. 3. Scaling near the band-tuned MIT is observed in a range of materials. Here, we apply our scaling analysis to three material
systems [19]: (a) the moiré heterobilayer MoTe2=WSe2 [5], (b) the heterostructure WSe2=bilayer graphene=WSe2 [22], and (c) GST
amorphous phase change materials [23]. The measured resistivities are shown in insets. In panels (a) and (c) we see a genuine MIT, with
data collapse on both an insulating and conducting branch. The theoretical scaling curve of Eq. (4) is shown as a dashed black line, and
shows remarkable agreement with the experimental results.
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has been reported in Ref. [8], inspired by earlier work in
Ref. [10], which describes disorder-induced polaron for-
mation. While such polaronic effects have been shown to
drive the MITat large metallic densities, the scaling derived
here analytically applies near band edges without the need
of any polaronic effects.
There are many claims of MITs in graphene-based

moiré materials that upon closer inspection seem to exhi-
bit fake insulator behavior. Consider, for example, the
WSe2=bilayer graphene=WSe2 heterostructure measured
in Ref. [22]. At filling ν ¼ 0, the resistivity turns up at
low temperatures reminiscent of an insulating gap.
However, at around T ¼ 20 K, the resistivity seems to
saturate, to a displacement-field dependent value. The
absence of a true diverging resistance at low temperature
suggests that these systems retain a nonzero density of
charge carriers, either from a band overlap or induced by
potential inhomogeneities that are common in graphene
systems. Indeed, when performing the scaling analysis, we
can collapse all the curves of this system to the metallic
branch of our scaling form, as shown in Fig. 3(b).
Disordered metallic alloys.—While Eq. (3) was derived

for weak disorder scattering and d ¼ 2, it is in fact far more
universal.Often amomentum-independent self-energy arises
even beyond perturbation theory and in any dimensions d. In
realistic situations one can apply iterated schemes such as the
self-consistent Born approximation for both disorder scatter-
ing and electron-phonon scattering in the adiabatic limit. This
schemeobeys the equationΣðzÞ ¼ s2GðzÞ,with s a (possibly
temperature-dependent) parameter quantifying the energy
fluctuations involved in the scattering process. This implies
that the inverse scattering time is proportional to the density
of states ImΣðzÞ ∝ NðzÞ ∼ ImGðzÞ, leading to a conductivity
of the form σðTÞ ¼ ðe2=dπms2ÞT log½1þ eμ=T � in general
dimensions d, consistent with Eq. (3) [19].
The universal scaling is indeed also observed in three-

dimensional compounds away from the weak disorder
limit, since the condition ImΣðzÞ∼NðzÞ implies that μτ>1
is always satisfied sufficiently close to the transition. In
particular, we look at GST (GbSeTe compounds with
varying composition) [23], a phase-change compound
where the annealing history affects the effective number
of charge carriers [24]. Here, in the high-temperature range
T ¼ 300–600 K, a smooth evolution from positive dR=dT
to negative dR=dT is observed depending on the precise
composition and history of the sample. Since the main
effect of these compositional changes is in fact a shift of the
chemical potential, we show in Fig. 3(c) that the exper-
imental data on GST can be accurately described by our
scaling theory.
Mooij correlations.—Universal scaling implies the exist-

ence of a fake insulator regime: a metal characterized by a
(dimensionless) negative temperature coefficient of the
resistance α ¼ ðT=RÞdR=dT < 0. Historically, the obser-
vation of a negative α in various disordered metals,

including binary alloys (NixCr1−x, TixAl1−x, FexSi1−x,
etc.) [9,10], was considered a “high-temperature anomaly”
[20]. In a seminal paper, Mooij [9] discovered a correlation
between the temperature coefficient α and the resistivity ρ
itself. There is currently no consensus on the origin of
these Mooij correlations, though they have been interpreted
in terms of quantum localization corrections to the
conductivity [20,25] or the disorder-driven formation of
polarons [10].
Interestingly, the scaling theory proposed in this Letter

allows us to quantitatively describe Mooij correlations. To
do so, we assume that at high temperature the scattering
time τ is linear in T:

τ−1 ¼ τ−10 þ bT: ð5Þ

This form occurs in many metals, where b is either
proportional to the electron-phonon coupling strength, or
a more complex, “Planckian” quantum scattering [26].
With this assumption, the critical curve becomes flat at high
temperature, RcðTÞ → R∞ ∝ b. This allows us to introduce
a dimensionless resistivity R=R∞. By taking the derivative
of the scaling relation Eq. (3), and inverting it with respect
to the tuning parameter μ at a fixed temperature T, we find
that the temperature coefficient α only depends on R=R∞:

αðRÞ ¼ R
R∞ ð1 − 2−R∞=RÞlog2½2R∞=R − 1�: ð6Þ

In Fig. 4 we compare our analytical result with the original
data presented by Mooij [9] and those collected in

FIG. 4. The dimensionless temperature coefficient of the
resistance versus the dimensionless resistance, for a variety of
materials [5,9,23,27–32] (for details, see Ref. [19]), compared to
our theoretical result of Eq. (6) (solid black line). For the
experimental data the only fitting parameter is R∞, the limit of
the critical resistance at high temperature. We find an excellent
agreement of the experimental Mooij correlations and our theory.
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Ref. [10], finding a good agreement between the exper-
imental results on binary alloys and Eq. (6). The recent data
on moiré bilayers show an even more striking quantitative
equivalence between the resistivity data in the high-
temperature range T ¼ 26–60 K: without a fitting param-
eter the experimental results of Ref. [5] match Eq. (6).
Outlook.—In this Letter we have shown that a simple

theory of conductivity predicts universal scaling near band-
tuned MITs consistent with experimental results in a wide
range of materials, from recent moiré materials to decades-
old data on binary alloys.
The predicted scaling regime does not extend arbitrarily

close to the MIT: when Tτ < 1 and μτ < 1 deviations from
or a full breakdown of scaling can appear. Note that the
difference between scaling close to and farther away from
the transition has been discussed in Ref. [6]. The scaling
described in this Letter is thus not due to the divergence of a
length scale, and is not related to Landau order parameters,
the renormalization group, or any other theory of univer-
sality in symmetry-breaking (quantum) phase transitions.
The universal behavior of resistivity scaling near the MIT
throughout many materials is just the consequence of
generic weakly interacting electrons with weak disorder,
in spirit similar to the stability of the Fermi liquid. The
properties of Anderson and weak localization as well as
Wigner crystallization and the Mott MIT [6] are pheno-
mena that, on the other hand, are outside the scaling regime
discussed here. It is an interesting open question whether
the scaling described in this Letter can extend, under certain
conditions, arbitrarily close to the MIT, thus connecting to
the standard theoretical framework of continuous phase
transitions [33].
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