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Recently, it was argued [Kuklov et al., Phys. Rev. Lett. 128, 255301 (2022)] that unusual features
associated with the superflow-through-solid effect observed in solid 4He can be explained by unique
properties of dilute distribution of superfluid edge dislocations. We demonstrate that stability of super-
currents controlled by quantum phase slips (instantons), and other exotic infrared properties of the superfluid
dislocations readily follow from a one-dimensional quantum liquid distinguished by an effectively infinite
compressibility (in the absence of Peierls potential) associated with the edge dislocation’s ability to climb.
This establishes a new class of quasi-one-dimensional superfluid states that remain stable and long-range
ordered despite their dimensionality. Our theory is consistent with the existing experimental data, and we
propose an experiment to test the mass-current–pressure characteristic prediction.
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Introduction.—About a decade ago the superflow-
through-solid (STS) effect in a structurally imperfect crystal
of 4He [1–9], along with the striking companion effect of
anomalous isochoric compressibility (also known as the
syringe effect) [1] were attributed—by means of ab initio
simulations—to the properties of superfluid edge disloca-
tions (SED) [10], as envisioned by Shevchenko [11]; for a
recent review, see Ref. [12]. (Specifically, the superfluidity
was found only in the cores of dislocations with Burgers
vector along the c-axis in hcp 4He [10,13], while all other
dislocations were insulating [14,15].) However, two appa-
rently unrelated experimental features, namely (i) an expo-
nentially strong suppression of the flow by a moderate
increase in pressure and (ii) an enigmatic temperature
dependence of the flow rate—hardly fitting into the
Shevchenko scenario of rigid superfluid 1D channels
[11,12], remained unexplained until very recently, when
both dependencies were argued to be linked and accounted
for by the highly unusual properties of isolated SED [16].
The arguments of Ref. [16] rest on the self-consistent
assumption that a SED can support stable supercurrents
despite being quasi-one-dimensional and featuring the
spectrum of elementary excitations in violation of the
Landau criterion (see the Supplemental Material [17] for
the discussion of the Landau criterion in a non-Galilean
superfluid system).
An outstanding (apparent) inconsistency between the

scenario of Ref. [16] and the experimental data has been the
observation of a mass-current–pressure (henceforth abbre-
viating as I-V, that is, current-voltage) characteristic rem-
iniscent of a Luttinger liquid (LL) [2], while the

temperature dependence of the flux was incompatible with
the LL physics.
In this Letter, we put the theory of SED on a solid

theoretical basis by examining the consequences of the key
feature distinguishing a SED from a LL: SED is charac-
terized by a (nearly) divergent linear compressibility
imposed by the approximate translational invariance of
the dislocation transverse to its Burgers vector and its axis,
as illustrated in Fig. 1. The I-V characteristic that we find
resolves the above-mentioned inconsistency with the exper-
imental data and suggests a simple experiment to confirm
our theory.

FIG. 1. Sketch of the superfluid edge dislocation marked by the
bold (red) wavy line. Its Burgers vector b (along the c-axis) is
perpendicular to the planes of atoms—two complete layers are
shown as two parallel planes with straight edges and the
incomplete one is limited by the dislocation line. The transverse
translation invariance of hðxÞ (continuous in the absence of the
pinning Peierls potential, and discrete otherwise) is responsible
for infinite compressibility of the bosonic fluid confined to the
dislocation core.
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Transverse quantum fluid model.—The minimal
model—which we refer to as transverse quantum fluid
(TQF)—proposed in Ref. [10] for SED in an ideal crystal
of 4He with an average superflow velocity ∼v0 along its
x-directed core—is given by a 1D bosonic Hamiltonian,
H½ϕ; n� ¼ R

Hdx, with

H ¼ 1

2κ
ð∂xnÞ2 þ

ns
2
ðv0 þ ∂xϕÞ2: ð1Þ

The 1D boson density n is canonically conjugate to the
superfluid phaseϕ, and the second term is the kinetic energy
of the flow, with the superfluid stiffness, ns, exponentially
sensitive to the local pressure. The parameter κ is determined
by the inverse shearmodulus of the crystal [10]. As shown in
Ref. [16], namely this feature accounts for the unusual
dependence of the critical current on temperature.
The key feature distinguishing TQF from LL is the

absence of the compressibility term χ−1n2, namely, TQF is
characterized by a divergent compressibility χ. The con-
dition χ−1 ¼ 0 is enforced by the translation invariance of
the dislocation motion transverse to its core axis and its
Burgers vector (Peierls potential effects that violate this
symmetry and lead to finite compressibility are discussed
below). This feature is illustrated in Fig. 1: The dislocation
climb displacement δhðxÞ corresponds to the 1D boson
density change,

δnðxÞ ¼ δhðxÞ=a2; ð2Þ

along the dislocation, where a is a lattice constant that we set
to unity hereafter. The associated spectrumωk of elementary
excitations (at v0 ¼ 0) is straightforwardly found to be
quadratic in the wave vector k along the dislocation,

ωk ¼ Dk2; D ¼
ffiffiffiffiffiffiffiffiffi
ns=κ

p
; ð3Þ

as a direct consequence of the aforementioned translation
invariance, that leads to n → nþ const invariance of (1).
We note that the quadratic dispersion (3) appears to violate

theLandau criterion for the critical velocity,v0 < fωk=kgmin,
for arbitrary small v0. However, as we discuss in the
Supplemental Material (SM) [17], the Landau criterion for
instability relies on the existence of the term δnðv0þ∂xϕÞ2 ¼
2v0δn∂xϕþ�� �, which is forbidden for SED by the climb
translation invariance, allowing only density derivatives, ∂xn,
in the TQF Hamiltonian. Thus, at sufficiently small v0, SED
(described by TQF) does not develop the Landau instability,
and we must consider superflow relaxation via quantum
phase slips, i.e., instantons (space-time vortices) in the phase
field ϕðx; τÞ configuration [20].
The Euclidean Lagrangian density of TQF, correspond-

ing to (1), can be obtained after eliminating the density n,

L ¼ κ

2
ð∂−1x ∂τϕÞ2 þ

ns
2
ð∂xϕÞ2 þ nsv0∂xϕ; ð4Þ

where the long-range operator ∂−1x is defined by its Fourier
transform, namely, ∂−1x → −ik−1. The last (boundary) term
in (4) is important only in the presence of instantons, and
we have omitted an irrelevant constant.
Goldstone modes and long-range order.—Mean-squared

fluctuations of the superfluid phase ϕ, computable within
the Gaussian approximation,

hϕ2i ¼ 1

κ

Z
2π=a dωdk

ð2πÞ2
k2

ω2 þD2k4
≈

1

a
ffiffiffiffiffiffiffi
κns

p ; ð5Þ

are finite, and TQF thus features a long-range order in the
superfluid field ψ ¼ eiϕ at zero temperature (T), despite
being one dimensional [21]. Given the exact mathematical
symmetry between ϕ and n in (1), the field η ¼ ei2πn also
exhibits long-range order at zero temperature.
At this point we recall that SED is subject to a Peierls

potential, U ¼ U0 cosð2πnÞ [utilizing the density n—
displacement h relation, (2)], omitted in the formulation
(1). This sets certain limitations on the applicability of the
TQF as an asymptoticmodel for SED. Long-range order in η
implies that U is a relevant perturbation, which suppresses
the dislocation climb motion and induces a crossover of the
excitation spectrum to a conventional (LL-type) linear form
at small momenta, k=ð2πÞ < ξ−1, with the length scale ξ
diverging with the crystal’s vanishing shear modulus ∼κ−1
[22]. (In the opposite limit, the LL superfluid undergoes a
phase transition to a Mott insulator [22].) Concomitantly, at
length scales longer than ξ, the zero-temperature long-range
order of SED changes to the algebraic quasi-long-range one,
typical for LL. Such a crossover was observed in model
simulations of Refs. [21,22] through a finite-size scaling
of compressibility χ for a pinned dislocation with
hð0Þ ¼ hðLÞ ¼ 0: from TQF’s χ ∼ L2 to a constant in the
L → ∞ limit, as T ∼ 1=L → 0.
In what follows, we will focus on the exotic TQF regime

on scales below ξ, where SED is quantum rough and
the associated 1D superfluid is long-range ordered.
Equivalently, one can view TQF as the asymptotic limit
(ξ → ∞) of SED.We demonstrate that such a simplification
is sufficient for explaining the experimental data with high
accuracy.
Confinement of instantons.—We now analyze the sta-

bility of this novel one-dimensional superfluidity to super-
flow-induced instantons [20]. To account for these, we
consider non-single-valued configurations of the superfluid
phase ϕðx; τÞ, corresponding to its space-time vortex
configurations. To this end, we introduce the velocity
field vμ ≡ ∂μϕ in the (1þ 1)-dimensional space-time
xμ ¼ ðx; τÞ. The instantons have the form of point-vortex
singularities in the otherwise regular field vμ:

∂ × v ¼ qðxμÞ ¼
X
j

qjδ2ðxμ − xμ;jÞ; ð6Þ
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where ∂ × v≡ ϵμν∂μvν is shorthand notation for (1þ 1)
space-time curl of vμ and qj and xμ;j are, respectively, the
“charge” (an integer multiple of 2π) and space-time
position of the jth instanton.
With these ingredients we can now straightforwardly

derive the instanton action S½qðxμÞ� from the Lagrangian
density (4) forϕðxμÞ. Themost direct way to obtain this (with
alternative derivations presented inRef. [17]) is to enforce the
topological constraint (6) using a functional delta function in
a path integral for a partition function over vμ,

Z ¼
Z

½dvμ�½dq�½dλ�e−
R

dxdτL½vμ;λ;q�; ð7Þ

with the Lagrangian density (for v0 ¼ 0)

L ¼ κ

2
ð∂−1x vτÞ2 þ

ns
2
ðvxÞ2 þ iλð∂ × v − qÞ: ð8Þ

In L we implemented the vorticity constraint (6) via a
functional delta function as an integral over the auxiliary
field λðxμÞ. Performing the Gaussian integration over fields
vμðxμÞ and λðxμÞ gives the instanton action

S ¼ ns
2

Z
dωdk
ð2πÞ2

jqω;kj2
ω2 þD2k4

ð9Þ

¼ 1

2

Z
xμ;x0μ

qðxμÞVðxμ − x0μÞqðx0μÞ; ð10Þ

where Vðx; τÞ is the space-time instanton-instanton inter-
action, which after subtracting the self action Vð0; 0Þ,
becomes

Vðx; τÞ ¼ ns

Z
dωdk
ð2πÞ2

eiðωτþkxÞ − 1

ω2 þD2k4

≈

8<
:

− ns
ffiffiffiffi
jτj

p
2
ffiffiffiffiffi
πD

p ; for x2 ≪ Dτ;

− nsjxj
4D ; for x2 ≫ Dτ:

ð11Þ

This result can be complementarily obtained (see Ref. [17])
through the saddle-point equation for vμ together with the
Fourier-transformed instanton constraint, Eq. (6), finding

vτ ¼
−iD2k3q
D2k4 þ ω2

; vx ¼
iωq

D2k4 þ ω2
: ð12Þ

The interaction kernel in (11) is reminiscent (but misses a
factor of −∂2x in the numerator) of interaction between
dislocations in the 2D classical smectic [23]. This differ-
ence is expected as the 2D smectic elasticity is “softer” than
in the XY model, while here it is “stiffer” than in the XY
model because of the extra ∂−1x factor in L of (4). The latter
effect is directly related to divergent compressibility, which
allows stronger density fluctuations and thereby “stiffens”

the canonically conjugate superfluid phase ϕ. As a result, in
contrast to the 2D smectic (where interaction is weak and
dislocations are deconfined) [23,24], the TQF instantons
with opposite “charges” are always confined by the
interaction Vðτ; xÞ in (11), featuring a power-law growth
with spatial and temporal separation. Note that this behav-
ior is consistent with the 1D long-range superfluid order at
T ¼ 0 discussed above [21].
Metastability of the superflow and nonlinear I-V

response.—We now demonstrate that instanton confine-
ment, (11), leads to the exponential in 1=v0 metastability of
the superflow. This is readily seen by examining the
contribution of the v0-dependent term to the Langragian
density (4). Since this is a boundary term, its presence does
not change the conditions (6) and action in (11), leaving the
solution (12) intact. Further simplification comes from the
fact that the metastable regime corresponds to appropriately
small values of v0, when the destabilization channel is
associated with a well-isolated instanton–anti-instanton
pair characterized by space-time coordinates ðxþ; τþÞ and
ðx−; τ−Þ. Straightforward integration in the v0-dependent
term in (4),

R
dx∂xϕðx; τÞ ¼ ϕðþ∞; τÞ − ϕð−∞; τÞ, gives

its contribution to the instanton pair action (for the pair
with “charges” �2π)

Sv0 ¼v0ns

ZZ
dτdxvx¼2πv0ns

Z
τ−

τþ
dτ¼2πv0nsðτþ−τ−Þ:

ð13Þ

We see that, in a close similarity with the vortex–anti-vortex
pair in a 2D superfluid, the superflow generates a transverse
(in space-time) “force” pulling the pair apart along the
imaginary-time direction.
Combining this with the competing v0-independent part

of the pair action at short distances, Sð0Þinst ≈ Vðx ¼ 0; τÞ,
given by (10) and (11), we find the total instanton-pair
action,

Sinst ≈
2π3=2nsffiffiffiffi

D
p

ffiffiffiffiffi
jτj

p
− 2πnsjv0τj; ð14Þ

where ðx; τÞ≡ ðxþ − x−; τþ − τ−Þ. The maximum-action
instanton-pair configuration controlling the dissipation is
reached at

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ�ðv0Þ

p ¼ ffiffiffi
π

p
=ð2 ffiffiffiffi

D
p

v0Þ, and the correspond-
ing action is given by

S�inst ≡ Sinstðτ�Þ ≈
π2ns
2Dv0

: ð15Þ

In the exponential approximation [20], this defines the
probability of the instanton nucleation:

P ∼ e−vc=v0 ; vc ¼
π2ns
2D

¼ π2
ffiffiffiffiffiffiffi
nsκ

p
2

; ð16Þ
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in sharp contrast with the LL’s power-law dependence
P ∼ ðv0Þg, with g > 0.
Another qualitative difference with the LL physics

comes from kinematic considerations regarding the ulti-
mate decay of the superflow. In the translation-invariant
LL, the decay of the supercurrent is kinematically for-
bidden because it is impossible to simultaneously satisfy
the conservation of energy and momentum under generic
conditions. One needs either impurities and/or commensu-
rate external potential to absorb the momentum released by
the supercurrent when the phase winding number changes
by�1 due to a quantum phase slip. In TQF, the decay of the
supercurrent into elementary excitations is kinematically
allowed due to the quadratic dispersion, Eq. (3). However,
at small values of v0, this involves a large number of
elementary excitations. Indeed, the energy and momentum
released by a supercurrent in a single phase slip are
(respectively) ΔE ¼ 2πnsv0 and ΔP ¼ 2πns. Suppose
these are absorbed by N quasiparticles with momentum
k� ¼ ΔP=N . From the energy conservation, ΔE ¼
NDΔP2=N 2 ¼ DΔP2=N , we then readily obtain N ¼
DΔP2=ΔE ¼ 2πnsD=v0 and k� ¼ v0=D. In what follows
we will not be pursuing further the analysis of specific
details of the decay and assume that the exponential factor
in Eq. (16) controls the rate of the phase slips.
Experimental implications.—The results obtained above

allow us to resolve an apparent disagreement between the
scenario advocated in Ref. [16] and the experimental data
on the I-V characteristic of the STS effect. Experimentally,
the flow rate F (the mass current, proportional to v0) as
a function of the chemical potential bias (the “voltage”)
Δμ was found to be consistent with the sublinear power
law [2,7]:

F ¼ AðTÞðΔμÞα ðα < 1Þ: ð17Þ

The authors of Ref. [2] reported α ≈ 0.3� 0.1, independent
of T up to T ≈ 0.5 K. This value agrees well with α ≈ 0.24,
observed at T < 0.2 K in Ref. [7]. However, as T → 1 K,
the value of αðTÞwas found to cross over to α ≈ 0.5 [7]. If it
were not for the drastic temperature dependence of the flux
amplitude, AðTÞ, as well as the less shocking but still
unexpected temperature dependence of αðTÞ, it would be
natural to interpret (17) as the manifestation of the LL
behavior [2].
By suggesting a solution for the temperature dependence

of the amplitude AðTÞ, Ref. [16] questioned the LL origin
of the dependence (17), without providing a detailed
mechanism. Present analysis offers a concrete alternative
to the LL interpretation based on the TQF instanton
mechanism of the phase slips described above by
Eqs. (15) and (16). If the probability of phase slips is
controlled by the TQF instanton action (15) rather than by
the matrix element of the transition from the initial to the
final state of the system, the I-V characteristic of the

superfluid edge dislocation can be obtained within an
elementary hydrodynamics approach (see Supplemental
Material [17]). Accordingly, the resulting I-V curve can
be described by the relation P0v0P ¼ Δμ where P is given
in Eq. (16) and P0 is a constant that includes the details of
the mechanisms for the transfer of the total momentum and
energy from the current to the excitations. Then, introduc-
ing dimensionless variables v̂ ¼ v0=vc, μ ¼ Δμ=ðP0vcÞ,
the normalized flow velocity v̂ (in units of critical velocity,
vc) obeys the relation

v̂e−1=v̂ ¼ μ; ð18Þ

with the flux F through a sample containing many
dislocations being F ∝ v̂. While the overall curve v̂ vs μ
is obviously inconsistent with the dependence (17), its
significant parts can be well fit by this dependence,
provided the interval of μ variation does not exceed 2
orders of magnitude—as demonstrated by the dashed line
in Fig. 2.
In accordance with the large-fluctuation scenario of

Ref. [16], the crossover between different parts of the
curve takes place with increasing temperature when at fixed
Δμ, the dimensionless bias μ ∼ Δμ=

ffiffiffiffiffiffiffiffiffiffiffiffi
nsðTÞ

p
increases

exponentially, shifting the I-V characteristic from α ≈
0.24 at low T towards v̂ ∼ 1, where α ≈ 0.5 ÷ 0.6. This
behavior is demonstrated by the good collapse of the data F
vs μ [7] on the master curve in Fig. 2. (See more details
in Ref. [17].)

10-4 10-3 10-2 10-1 100

10-1

100

500 mK(0.42)
550 mK(0.42)
600 mK(0.48)
650 mK(0.53)
700 mK(0.54)
750 mK(0.54)

instanton

������
45 mK (0.24)
100 mK(0.26)
150 mK(0.27)
200 mK(0.28)
250 mK(0.28)
300 mK(0.29)
350 mK(0.32)
400 mK(0.36)
450 mK(0.37)

�

F

FIG. 2. The I-V characteristic master curve (solid line) of the
TQF, Eq. (18) (units are arbitrary). Symbols are the experimental
data from Fig. 5(a) of Ref. [7] [presented also in Fig. 1 of
Ref. [17] ] collected at different T and interpreted within the sub-
Ohmic dependence (17). The corresponding values of T and α (in
parentheses) are shown in the legend. The data points from a set
at a given T are shifted without changing their log-log slopes to
achieve the collapse onto the master curve (see the text
below).The dashed line, as an example, corresponds to the power
law (17) with α ¼ 0.16.
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Summary and outlook.—Motivated by a recent sugges-
tion that phase slips in a superfluid edge dislocation are
expected to be qualitatively distinct from those in a LL and
allow for a metastable superflow in 1D, we presented and
analyzed the TQF model as the natural asymptotic limit of
SED. We demonstrated that the quantum Lagrangian of
TQF predicts confinement of quantum phase slips, imply-
ing the exponential nonlinear I-V characteristic, along with
other special properties that have no analogs in known one-
dimensional systems.
This confinement of instantons, accompanied by the

quadratic dispersion of elementary excitations—the hall-
mark of the TQF—follows directly from its divergent
compressibility in the absence of the Peierls potential.
Despite superficial similarity with the ideal Bose gas, the
physics here is qualitatively distinct because (i) SED lacks
Galilean invariance and (ii) translational invariance in the
climb direction prohibits terms in the TQF Hamiltonian that
are responsible for the Landau-type instability—a vanish-
ing critical current—for a parabolic dispersion in the ideal
Bose gas.
Our theory is consistent with the existing experimental

data on the superflow-through-solid effect thus offering a
resolution of a vexing controversy in the data interpretation.
The exponential I-V characteristic that we predict is in stark
contrast with the LL power law, that requires a variable
exponent to fit the experimental data. This naturally brings
up a proposal for the compelling experimental test: detailed
measurements of the I-V characteristic at low temperature
and different external pressures and then collapsing the data
on the master curve predicted by Eq. (18) and illustrated in
Fig. 2. Specifically, (i) extending the range of the biases Δμ
should demonstrate the deviation from the LL dependence
(17), (ii) applying external pressure at small T should
decrease ns and, accordingly, shift the effective α from 0.24
to higher values, (iii) decreasing temperature below 45 mK
(the lowest studied in Ref. [7]) should either decrease α to
even smaller values—as demonstrated by the dashed line in
Fig. 2—or eventually bring the dislocation to the LL
regime, where α is determined by the emerging finite
compressibility.
The role of 3He impurities in modifying the I-V char-

acteristic calls for special attention. An intriguing possibil-
ity is that pinning of the superclimbing dislocations (alike
to the basal dislocations [25]) can occur while not com-
pletely suppressing the superflow through them. This
would result in the suppression of the TQF regime in
favor of the LL behavior. The existing discrepancy between
the amount of 3He needed to affect the superflow [5] (see
more details in [17], Sec. VII A) requires additional
experiments in the geometry of the inverse syringe effect
[5] aimed at studying the I-V characteristic at different
concentrations of the impurities.
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