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The theory of optical thermodynamics provides a comprehensive framework that enables a self-
consistent description of the intricate dynamics of nonlinear multimoded photonic systems. This theory,
among others, predicts a pressurelike intensive quantity (p̂) that is conjugate to the system’s total number of
modes (M)—its corresponding extensive variable. Yet at this point, the nature of this intensive quantity is
still nebulous. In this Letter, we elucidate the physical origin of the optical thermodynamic pressure and
demonstrate its dual essence. In this context, we rigorously derive an expression that splits p̂ into two
distinct components, a term that is explicitly tied to the electrodynamic radiation pressure and a second
entropic part that is responsible for the entropy change. We utilize this result to establish a formalism that
simplifies the quantification of radiation pressure under nonlinear equilibrium conditions, thus eliminating
the need for a tedious evaluation of the Maxwell stress tensor. Our theoretical analysis is corroborated by
numerical simulations carried out in highly multimoded nonlinear optical structures. These results may
provide a novel way in predicting and controlling radiation pressure processes in a variety of nonlinear
electromagnetic settings.
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Introduction.—The presence of nonlinearity in highly
multimoded photonic systems can give rise to a broad array
of novel phenomena [1–16] but at the same time introduces
several new fundamental theoretical challenges in under-
standing and predicting the emerging intricate spatiotem-
poral dynamics [17–19]. To address many of these issues,
quite recently, an optical thermodynamic theory was put
forward [20–22], capable of describing the collective
behavior of the “photon gas” in heavilymultimoded systems
under weak nonlinearity [Fig. 1(a)]. In this formalism,
an extensive optical entropy was self-consistently intro-
duced S ¼ SðU;M;PÞ that directly involves the two invar-
iants of the system, i.e., the “internal energy” U and total
optical power P as well as the total number of modesM. In
general, it was found that at equilibrium, the power
distribution among the various modes obeys a Rayleigh-
Jeans law [14–16]—a response that in turn maximizes the
optical entropy [20,21]. In this regard, the theory of optical
thermodynamics [20–22] has provided a clear pathway
in harvesting notions from statistical mechanics when
studying various nonlinear multimoded optical configura-
tions, like optical fibers, waveguide lattices, and cavity
systems [14–16,20–29].
A fundamental tenet of statistical mechanics states that,

for each extensive variable, there should exist a conjugate

intensive quantity that acts as a thermodynamic force [30].
In the context of optical thermodynamics, the optical
temperature and chemical potential can be defined through
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FIG. 1. (a) Photons in a nonlinear multimoded optical system.
An optical arrangement can be excited with a random initial state.
After the modes are thermalized, an equilibrium state is attained
by maximizing the optical entropy. (b) Different photon modes
can bounce at the waveguide boundaries with distinct transverse
wave vectors, resulting in unique radiation pressure contribu-
tions. At equilibrium, the total pressure can be deduced by
summing incoherently the contributions from all modes once
weighted with respect to a Rayleigh-Jeans distribution.
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the fundamental thermodynamic equation, according to
1=T ¼ ∂S=∂U and μ=T ¼ −∂S=∂P, respectively [20].
Most importantly, these two intensive quantities ðT; μÞ
directly govern the energy and power exchange ðΔU;ΔPÞ
between optical subsystems in thermal contact with each
other [20]. Meanwhile, the fundamental equation of
thermodynamics predicts an additional intensive quantity,
the so called “optical thermodynamic pressure,” i.e., p̂=T ¼
∂S=∂M that, in principle, results from a change in the total
number of modesM. However, the physical manifestations
of this thermodynamic quantity p̂ have so far remained
elusive. If indeed it represents a thermodynamic force,
could a possible interpretation of p̂ be tied to actual
pressure effects, such as those resulting from radiation
pressure forces at the boundaries of dielectric materials?
Thus far, radiation pressure forces have found significant

applications in laser cooling [31–33], optical trapping, and
manipulation of microscopic objects [34–38]. At the same
time, optomechanical arrangements based on strong pho-
non-photon coupling effects are nowadays actively pursued
[39–46]. One way to understand these phenomena is
through the perspective of momentum exchange between
an object or medium and the electromagnetic field. For
example, as Fig. 1(b) shows, in a waveguide system, the
bouncing photons conveyed in each guided mode contin-
uously exert an electromagnetic radiation pressure
perpendicular to the boundaries, which can be determined
via the Maxwell stress tensor [47–49]. In general, the
Maxwell stress tensor can be employed when the field
distribution is known a priori. However, standard electro-
magnetic techniques fail in chaotic systems (i.e., multi-
moded nonlinear configurations) where, at any given
instance of time, the system exists in a random and
unknown state. To tackle such a problem, it would be
necessary to employ the toolset of thermodynamics and
statistical mechanics. In a statistical mechanics context,
historically, electromagnetic pressure has been mainly
studied in black-body systems [50–55]. An interesting
question to ask is whether a connection between radiation
pressure and statistical mechanics can be constructed for
purely optical environments where thermalization ensues
because of “photon-photon collisions.”
In this Letter, we elucidate the physical nature of the

optical thermodynamic pressure, as defined within the
context of optical thermodynamics, and formally derive
an equation that unifies it with the electromagnetic radi-
ation pressure. We show that radiation pressure in large
chaotic arrangements can be directly correlated with the
system’s intensive thermodynamic quantities, such as the
optical temperature and chemical potential and can thus be
effortlessly calculated under thermal equilibrium condi-
tions. Our results are found in agreement with the Maxwell
stress tensor formalism that is evaluated through extensive
numerical simulations. Consequently, we demonstrated
that optical thermodynamics [20–22] can directly provide
the radiation pressure resulting from thousands of modes

(once optical thermal equilibrium is reached) without any
knowledge of the vectorial structure of the electromagnetic
fields involved.
Background.—We begin by considering an arbitrary

nonlinear multimoded optical waveguide system support-
ing a finite number of M bound modes, propagating along
the axial direction z. Each mode jψki and its corresponding
propagation constant βk can be obtained from the pertinent
eigenvalue problem associated with the evolution equation
idjΨi=dz ¼ −cHLjΨi where cHL is the linear Hamiltonian
operator of the optical system. Under weakly nonlinear
conditions, the total Hamiltonian of this arrangement is
primarily dominated by its linear component, i.e., H ≈HL
[20,21]. In this regime, the role of nonlinearity is merely to
ergodically and chaotically promote power exchange
among the various modes—in a way akin to particle
collisions in ideal gases responsible for thermalization.
In conservative systems, one can directly identify two

invariants which are completely specified by the initial
excitation conditions [22]: (i) the “internal energy” of the
system U ¼ −

P
M
k¼1 βknk that physically represents the

Minkowski longitudinal electrodynamic momentum flow
density [56] and (ii) the total optical power P ¼ P

M
k¼1 nk

transported in this guiding configuration. In the above
expressions, nk represents a quantity that is proportional to
the power jckj2 ¼ P0nk conveyed by mode jψki where the
arbitrary level P0 denotes the power of each discrete power
packet (see Supplemental Material [57]). Note that
ckðzÞ ¼ hψkjΨðzÞi. As indicated in previous studies, upon
thermalization, the expectation values of the power occu-
pancies among the modes eventually settle into a Rayleigh-
Jeans (RJ) distribution, that is, nk ¼ −T=ðβk þ μÞ where T
represents the optical temperature and μ is the correspond-
ing chemical potential [20–22,66]. Interestingly, these
systems display the following global equation of state: U −
μP ¼ MT (see Supplemental Material [57]).
Optical thermodynamic pressure.—Of importance is the

classical entropy associated with these photonic multimode
systems [20–26,28,29],

S ¼
XM
k¼1

ln nk: ð1Þ

In the microcanonical ensemble, the entropy is expressed
as a function of the other three extensive variables,
S ¼ SðU;M;PÞ, a relation that directly leads to the
fundamental thermodynamic equation TdS ¼ dU −
μdP þ p̂dM where 1=T ¼ ∂S=∂U, μ=T ¼ −∂S=∂P and

p̂
T
¼ ∂S

∂M
: ð2Þ

Here p̂ is what we call “optical thermodynamic pressure.”
Like the other two intensive quantities T and μ that are
conjugate to their corresponding variables U and P, the
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optical thermodynamic pressure p̂ mathematically emerges
from its complementarity with respect to the number of
modes M. While T and μ act in every respect as thermo-
dynamic forces that govern the exchange of U and P [20],
at this point it is unknown if indeed a similar physical
significance can be ascribed to p̂—the topic of this Letter.
To address this fundamental issue we consider the optical
thermodynamic pressure as obtained from the entropy at
equilibrium

p̂
T
¼ ∂

∂M

����
P;U

�XM
k¼1

ln

�
−

T
βkðMÞ þ 1

P ðU −MTÞ
��

; ð3Þ

where in obtaining Eq. (3) we used Eqs. (1) and (2) in
conjunction with the RJ distribution and the global equa-
tion of state (see Supplemental Material [57]). In Eq. (3),
βkðMÞ denotes the propagation eigenvalue constant of
mode k which is also a function of M. These eigenvalues
are arranged according to β1 ≥ β2 ≥ … ≥ βM, where β1
stands for the eigenvalue of the ground state while βM
corresponds to that associated with the highest-order mode
[58]. The following relation proves useful in our analysis:

∂SðU;M;P;TÞ
∂M

����
P;U

¼ ∂S
∂M

þ ∂S
∂T

∂T
∂M

¼ ∂S
∂M

: ð4Þ

In obtaining Eq. (4) we used the fact that at thermal
equilibrium, ∂S=∂T ¼ 0 as shown in the Supplemental
Material [57]. Given that the system is highly multimoded,
the summation in Eq. (3) can be written as an integral
(a first order approximation to the Euler-Maclaurin
formula [59]),

p̂
T
¼ ∂

∂M

����
P;U

�Z
M

1

ln

�
−

T
βðM;kÞþ 1

P ðU−MTÞ
�
dk

�
: ð5Þ

The partial derivative in Eq. (5) can now be performed by
employing the Leibniz integral rule (see Supplemental
Material [57]), and yields

p̂
T
¼ 1

T

Z
M

1

nk
∂βðM; kÞ

∂M
dkþ

�
ln

�
−

T
βM þ μ

�
− 1

�
: ð6Þ

Equation (6) provides a general expression for the optical
thermodynamic pressure. To understand the physical ram-
ifications of the terms involved in Eq. (6), let us first
recall that the Minkowski longitudinal electrodynamic
momentum flow density M [56] is given by M ∝
−U ¼ P

M
k¼1 βknk. In this respect, the first term in

Eq. (6) corresponds to a change in the longitudinal
momentum flow when the supported number of modes
M varies. Typically, for a waveguide arrangement, a change
in the number of modes can be achieved by increasing the
structure size, in other words, “expanding” the waveguide.

From previous studies [42,60–64,67–71], one finds that the
local pressure pEM

k exerted by mode k (carrying power
Pk ¼ P0nk) can be directly related to the total work
performed during a virtual expansion through

R
C p

EM
k dl ¼

ω−1Pkdβk=dξ where ω is the angular frequency of the
optical field, ξ represents the dimension relevant to the
virtual expansion, and the line integral is performed around
the waveguide boundary (C) in the x-y plane. In a wave-
guide arrangement, the local pressure pEM

k depends on the
electromagnetic field profile and hence it may not be
uniform around the circumference. In this respect, one
can define a spatially averaged electrodynamic pressure
two pEM

k representations are different, according to p̄EM
k ¼

W−1 R
C p

EM
k dl whereW is the relevant boundary length and

pEM
k is the local pressure at each point at the boundary. For

example, in a regular optical fiber with radius a, the
electromagnetic force tends to expand the fiber along the
radial direction. In this case, the line integral will be
performed around the fiber circumference and hence
W ¼ 2πa. By considering that the total number of sup-
ported modes is related to ξ through M ¼ MðξÞ, the
average electrodynamic pressure produced by each mode
can be rewritten as p̄EM

k ¼ ðωWÞ−1PkðdM=dξÞðdβk=dMÞ.
Given that upon optical thermalization, the modal fields
happen to be mutually incoherent, one can then obtain the
total average electrodynamic pressure pEM

T by summing the
contributions from all the modes, i.e., pEM

T ¼ P
k p̄

EM
k .

From all the above considerations, it is straightforward to
show that the first term in the rhs of Eq. (6) represents the
total average electrodynamic pressure and hence Eq. (6)
can be recast as

p̂ ¼ Q · pEM
T þ T ln

�
−

T
βM þ μ

�
− T; ð7Þ

where the prefactor Q ¼ ωWP−1
0 =ðdM=dξÞ is completely

determined by the waveguide system itself (see
Supplemental Material [57]).
Equation (7) indicates that the thermodynamic pressure in

highly multimoded systems is directly related to the electro-
dynamic pressure once a universal entropic term that solely
depends on T and μ is taken into account. To elucidate the
physical significance of this additional universal term
T ln ½−T=ðβM þ μÞ� − T, we make use of the fundamental
thermodynamic equation TdS ¼ dU − μdP þ p̂dM. If the
total number of modes M is increased by dM through a
virtual expansion, both the entropy and the electromagnetic
momentum change by an amount ðdS; dUÞ while the power
flowing in this system P remains invariant, i.e., dP ¼ 0. In
this regard, the fundamental thermodynamic equation is
reduced to TdS ¼ dU þ p̂dM. From our previous analysis
one can readily show that −dU=dM ¼ R

M
1 nk½∂βðM; kÞ=∂

M�dk ¼ Q · pEM
T . Consequently we find that the following

relations will hold true for such an irreversible expansion:
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dS=dM ¼ ln ½−T=ðβM þ μÞ� − 1, −dU=dM ¼ Q · pEM
T .

These last two expressions imply that if the waveguide
expands slowly, the universal term T ln ½−T=ðβM þ μÞ� − T
in Eq. (7) will be responsible for the entropy increase while
the electrodynamic pressure pEM

T will account for the
resulting longitudinal momentum flow change. We must
emphasize that the optical thermodynamic pressure is always
present in a thermalized electromagnetic system and does not
require such an expansion process to manifest itself (hence
we consider the expansion as virtual). Moreover, to illustrate
how a lateral force can lead to a change in the longitudinal
momentum flow we include a rigorous proof in the
Supplemental Material [57].
Of interest is to consider optical multimoded systems

where the density of states is self-similar, a condition that is
upheld by the majority of optical arrangements when
dealing with a large number of modes. In this case, the
thermodynamic Euler equation leads to the following
simple expression [20,21]:

p̂
T
¼ S

M
− 1: ð8Þ

From here, one quickly obtains the following relation:

pEM
T ¼ T

Q

�
S
M

− ln

�
−

T
βM þ μ

��
: ð9Þ

Equation (9) represents an important result: it allows one to
obtain in an effortless manner the electrodynamic pressure
once a system attains a RJ thermal equilibrium at a
temperature T and chemical potential μ. This can be
accomplished by only knowing the linear spectrum of
the system βk and the initial excitation conditions that
specify the invariantsU, P. From this minimal information,
one can directly calculate S, T, μ and therefore pEM

T from
Eq. (9). This is quite impressive given that it is possible to
obtain the electrodynamic pressure without having any
detailed knowledge as to the electromagnetic vectorial
structure of the modes themselves—an ingredient tradi-
tionally required to compute the corresponding Maxwell
stress tensor elements. These results can be further
extended for non-self-similar systems, as shown in the
Supplemental Material [57].
Numerical results.—To exemplify the validity of our

theoretical results, we investigate electromagnetic pressure
effects in a weakly guided step-index fiber with a radius
a ¼ 15 μm, as shown in Fig. 2. The core refractive index of
this fiber is n1 ¼ 1.46 while in the cladding it is
n2 ¼ 1.4454. This fiber supports M ¼ 86 modes [58,65]
in each polarization and conveys in total 2 MWof power at
a wavelength of 1064 nm. Our quasi-continuous-wave beam
propagation simulations show that once the fiber is excited
with an arbitrary spatial beam profile, it gradually undergoes
thermalization into a RJ distribution, resulting in maximum

decoherence between the modes. The electromagnetic pres-
sure at each point z can bemonitored by performing a spatial
average of the local forces per unit area along the circum-
ference of the fiber, i.e., pEM ¼ ð2πÞ−1 R 2π

0 fðθÞdθ, where
fðθÞ can be computed using theMaxwell stress tensor or the
Minkowski-Helmholtz formula. During thermalization, the
total electromagnetic pressure relaxes into an equilibrium
value. Here, we show that this equilibrium value can be
instead evaluated effortlessly using Eq. (9) where for step-
index fibers Q ¼ 4πcP−1

0 =½k0ðn21 − n22Þ� (see Supplemental
Material [57]) and βM ≃ k0n2 with k0 ¼ ω=c. The two
results, i.e., the theoretical value predicted by Eq. (9) (brown
line in Fig. 2) and the equilibrium value of the electromag-
netic pressure as obtained from numerical simulations, are in
excellent agreement with each other, providing compelling
evidence as to the power of the thermodynamic approach.
Notably, Eq. (9) involves solely thermodynamic variables
that can be directly extracted from the initial condition, in
contrast to conventional approaches that require a full
simulation of the nonlinear dynamics.
To further demonstrate the universality of our method-

ology, we next evaluate the electrodynamic pressure for a
high contrast step-index fiber with a radius a ¼ 20 μm.
This is done across a continuous range of optical energies
U, covering almost the entirety of accessible optical

FIG. 2. A beam with an irregular spatial profile is injected into a
nonlinear multimode weakly guided step-index fiber, thermaliz-
ing into a RJ distribution at the output. Here, the power
occupancies jckj2 of all guided modes are shown as a two-
dimensional surface plot, whose axes involve the effective
refractive index of each mode and the propagation distance z.
The electromagnetic pressure pEM is calculated at each z point
via the Maxwell stress tensor (blue curve), displaying a gradual
relaxation towards a stable equilibrium value. The brown line
corresponds to the electromagnetic pressure calculated via optical
thermodynamics [Eq. (9)].
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temperatures (−∞;þ∞). This fiber (n1 ¼ 1.46 and
n2 ¼ 1.4) supports in total M ¼ 1210 modes (in both
polarizations) at λ0 ¼ 1064 nm [58], that include vectorial
transverse electric (TE) modes, transverse magnetic (TM)
modes and hybrid (EH and HE) modes [58]. In all cases, the
total optical power is taken to be P ¼ 2 MW. The results in
Fig. 3(a) show that indeed these twomethods are in excellent
agreement across the entire temperature range. In Fig. 3(b),
we plot the corresponding Rayleigh-Jeans distributions
under positive and negative temperature conditions [points
A and D in Fig. 3(a)] where the lower- and higher- order
modes are favored, respectively. Meanwhile, at infinite
temperatures, T → �∞ [points B and C in Fig. 3(a)], power
equipartition ensues amongmodes. Interestingly, asT → 0−,
the electrodynamic pressure increases. Intuitively, this can be
understood given that the predominant higher-order modes
tend to bouncemore frequently at the core-cladding interface
—thus boosting up the pressure. The converse is true as T →
0þ in which case the lowest order modes (bouncing at very
small angles) are occupied. In this case, the electrodynamic

pressure is at its lowest, in accordancewith Fig. 3(a). Finally,
we investigate the electrodynamic pressure for varying fiber
radii a when the initial (U, P) are such that the temperature
and chemical potential (T,μ) in theRJ distribution remain the
same. As illustrated in Fig. 3(c), the discrepancy between the
two methods diminishes as the number of modes increases,
an expected outcome considering that the derivation of
Eq. (9) relies on the assumption that the optical system is
highly multimoded.
Conclusion.—In conclusion, we have investigated the

physical essence of the optical thermodynamic pressure,
as defined under the framework of optical thermodynamics.
We formally demonstrated that this optical thermodynamic
quantity is directly tied to the actual electromagnetic pressure
once a universal entropic component is taken into account.
This result provides an altogether new approach to compute
radiation pressure effects in highly multimoded nonlinear
arrangements effortlessly, without requiring any knowledge
of the complex electromagnetic modal field distributions.
We must emphasize that the theoretical analysis presented
herein is general and can be applied to any electromagnetic
system that can display thermalization. Of interest would
be to experimentally observe these processes. In this regard,
radiation pressure induced liquid core fibers with high
nonlinearities could be a promising direction [72,73].
Finally,wenote that inRef. [74], the electrodynamicpressure
was computed in optical lattice settings using an alternative
approach. In those arrangements, the pressurewas defined as
the conjugate variable of the system volume.
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