
Collective Excitations of a Strongly Correlated Nonequilibrium Photon Fluid across the
Insulator-Superfluid Phase Transition

Fabio Caleffi ,1,* Massimo Capone ,1,2 and Iacopo Carusotto 3

1International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
2CNR-IOM Democritos, Via Bonomea 265, I-34136 Trieste, Italy

3INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, I-38123 Povo, Italy
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We develop a Gutzwiller theory for the nonequilibrium steady states of a strongly interacting photon
fluid driven by a non-Markovian incoherent pump. In particular, we explore the collective modes of the
system across the out-of-equilibrium insulator-superfluid transition of the system, characterizing the
diffusive Goldstone mode in the superfluid phase and the excitation of particles and holes in the insulating
one. Observable features in the pump-and-probe optical response of the system are highlighted. Our
predictions are experimentally accessible to state-of-the-art circuit-QED devices and open the way for the
study of novel driven-dissipative many-body scenarios with no counterparts at equilibrium.
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Introduction.—Quantum fluids of light are rapidly grow-
ing as a new branch of many-body physics [1,2]. Right after
the observation of Bose-Einstein condensation [3], super-
fluidity [4] and hydrodynamic generation of topological
excitations [5,6] in weakly interacting polariton fluids in
semiconductor microcavities, exciting advances in circuit-
QED engineering [7–9] are preparing the ground for the
realization of strongly interacting fluids [10–13] in bosonic
lattice models [14–17]. Thanks to the strong effective
photon-photon interactions, these systems are promising
candidates to explore Bose-Hubbard physics [18] and the
insulator-superfluid quantum phase transition [19–22] in a
novel out-of-equilibrium context.
In this regard, pioneering theoretical investigations have

explored the rich variety of nonequilibrium steady states
(NESS) under coherent pumping protocols or Markovian
incoherent ones [23–26], also in comparison with the
corresponding equilibrium systems [27]. Generalizing to
scenarios with non-Markovian incoherent pumping [28–30]
provide us with a whole new direction [31], as non-
Markovian features proved crucial for the experimental
creation of genuine insulating states in strongly interacting
regimes [32].
These experimental advances call for theoretical

approaches able to investigate the nature of the observed
steady states. This is a challenging task bridging the
quantum optics, condensed matter, and many-body com-
munities and requires us to establish a common language
and an interdisciplinary perspective across these fields.
Among the open issues,wemention the collective properties
and dynamical correlations of out-of-equilibrium insulators
and strongly interacting superfluids. Even though various
techniques are available to describe driven-dissipative
systems, such as mean-field theories [1], variational

methods [29,33–36], matrix-product states [30,37–41],
and clustering techniques [42], major hurdles still persist
in the extension of these methods to the dynamics of large,
high-dimensional, and strongly interacting non-Markovian
systems [29–31].
In this Letter, we make use of the Gutzwiller ansatz—a

simple yet powerful description of Mott physics in generic
condensed matter systems [43–46]—and we extend it to the
nonequilibrium context of strongly interacting photons in a
cavity array under a non-Markovian and incoherent pump.
The properties of the collective excitation spectrum across
the insulating and superfluid phases are characterized, and
novel features stemming from the nonequilibrium condi-
tion are highlighted. Our predictions represent a first step
towards the understanding of quantum fluctuations in
strongly correlated out-of-equilibrium many-body systems.
Observable fingerprints are identified in the response of the
system to additional weak probes, which is directly
accessible to experiments based on modern circuit-QED
technology.
Model and mean-field theory.—We consider a transla-

tionally invariant d-dimensional array of coupled optical
cavities modeled by a Bose-Hubbard (BH) Hamiltonian,

ĤBH ¼
X
r

ðωcâ
†
r âr þUâ†r â

†
r ârârÞ − J

X
hr;si

â†r âs; ð1Þ

where ârðâ†rÞ is the annihilation (creation) operator asso-
ciated with the cavity mode at site r, J is the hopping
energy, ωc is the bare cavity frequency, and U is the
photon-photon interaction energy stemming from the
optical nonlinearity of the cavity medium [1,2]. Systems
of this kind are currently used for the preparation and
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manipulation of a variety of target quantum states of the
microwave field in state-of-the-art circuit-QED platforms,
e.g., by embedding superconducting qubit elements, such
as transmons, in arrays of coupled coplanar waveguide
resonators and by suitably designing both the conservative
and dissipative terms of the dynamics [12,13,32,47,48].
The driven-dissipative dynamics of the BH array

involves photon losses at a rate Γl and the coupling of
each cavity mode to incoherently pumped two-level emit-
ters (TLEs). The dynamics of the TLEs is governed by the
Hamiltonian

Ĥem ¼ ωat

X
r

σ̂þr σ̂−r þ Ω
X
r

ðâ†r σ̂−r þ H:c:Þ; ð2Þ

where σ̂�r is the rising (lowering) operator in the pseudospin
space of each TLE and the Rabi frequency Ω quantifies
their coupling to the cavities. The TLEs are pumped via
some Markovian mechanism at a rate Γp and decay at a rate
γ. In order to achieve an efficient photon injection into the
cavity modes, we assume Γp ≫ γ, which results in
population-inverted TLEs. Most notably, this provides a
straightforward realization of a non-Markovian driving
protocol for the cavity modes, with an energy-dependent
gain peaked at the TLE frequency ωat with linewidth
approximately equal to Γp [29]. This form of pumping
has been predicted to give a high-fidelity emulation of the
BH model [30].
The evolution of the system is described by the Lindblad

equation for the full density matrix ρ̂,

∂tρ̂ ¼ −i½ĤBH þ Ĥem; ρ̂�

þ 1

2

X
r

ðΓlD½âr; ρ̂� þ γD½σ̂−r ; ρ̂� þ ΓpD½σ̂þr ; ρ̂�Þ; ð3Þ

where D½Ô; ρ̂� ¼ 2Ô ρ̂ Ô† − fÔ†Ô; ρ̂g. For later conven-
ience, we introduce the parameter G≡ Ω2=ðΓpΓlÞ, which
defines the effective strength of the photon injection
process [49]. A pictorial sketch of the model is provided
in the top panel of Fig. 1.
In this Letter, we study the system within a mean-field

description based on a Gutzwiller ansatz [26,27,59]. This
consists in a site-factorized ansatz for the density matrix,

ρ̂ ¼ ⊗
r

X
n;m

X
σ;σ0

cn;m;σ;σ0 ðrÞjn; σirhm; σ0jr; ð4Þ

where jn; σir is the local state of the cavity at r with n
cavity photons and TLE pseudospin σ. In this way, the
Lindblad equation turns into a set of nonlinear dynamical
equations for the (vectorized) density matrix elements
i∂tc⃗ðrÞ ¼ L̂½c⃗ðrÞ� · c⃗ðrÞ. In order to get the NESS, we
solve these equations by numerical propagation until
convergence to the steady-state ρ̂0 ¼ ρ̂ðt → ∞Þ. As we
are considering a translationally invariant system, this

corresponds to a r-independent form c⃗ðrÞ ¼ c⃗0 of the
Gutzwiller ansatz [49]. Note how the Gutzwiller ansatz
(4) provides a nonperturbative description of the on-site
dynamics (2), which is able to capture the pump and loss
processes up to the strong pumping regime G≳ 1, as well
as the strong photon-photon interactions. While the
Gutzwiller approximation provides an accurate description
of both the insulating and superfluid phases [60], deviations
are likely to appear in the vicinity of the critical point,
where nonlocal correlations are typically substantial. A
study of this physics is postponed to future work based on
our quantum Gutzwiller ansatz [60].
In this Letter, we restrict ourselves to the hard-core limit

of our model (U=J → ∞), intended as an archetypal
scenario of the strong photon nonlinearity regimes that
are currently attainable in circuit-QED experiments
[10,12,13,32]. Moreover, we choose to set the TLE
frequency to ωat ¼ ωc − zJ (with z ¼ 2d), in order to
favor photon injection into the states at the bottom of
the cavity band. This guarantees that complex spatial
fragmentation and/or finite-k condensation effects do not
take place and one can focus on condensation into the
lowest-energy k ¼ 0 state as in equilibrium systems [61].
In this regime, the main properties of the NESS can be
summarized as follows [49].

FIG. 1. Top panel: sketch of the driven-dissipative system
under consideration. (a) Mean-field phase diagram of the NESS
for Γl=Γp ¼ 50γ=Γp ¼ 5 × 10−2. The solid (dashed) green line
corresponds to the horizontal cut at Ω=Γp ¼ 1.6 × 10−1

(5 × 10−1) shown in panel (b) [panel (c)]. The white point marks
the tip of the SFP lobe, while the white dashed lines enclose the
region of hole superfluidity. (b) Mean-field average density n0
[red], order parameter jψ0j [blue] and purity P [black] across the
IP-SFP transition at constant Ω=Γp ¼ 1.6 × 10−1 for the same
parameters of panel (a). The green and blue dots highlight the
critical point Jc and the hopping scale Jm, respectively. (c) The
equivalent of panel (b) for a stronger pumping Ω=Γp ¼ 5 × 10−1.
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Insulator-superfluid nonequilibrium phase transition.—
At fixed Ω and below a critical hopping Jc, the NESS is
found to be in an insulating phase (IP) with vanishing order
parameter ψ0 ¼ Trðρ̂0âÞ. In particular, for a large enough
pumping G ≫ 1 and J ≲ Jc, the average photon density
n0 ¼ Trðρ̂0n̂Þ reaches a value close to 1 with suppressed
number fluctuations [Fig. 1(c)], as in an essentially pure
Mott insulating state [29,32]. Increasing the cavity band-
width zJ, i.e., the kinetic energy, replenishment of lost
photons occurs less efficiently, which leads to a substantial
decrease in the density, alongside some entropy generation.
At J ¼ Jc, the NESS undergoes a second-order phase
transition [62] to a superfluid phase (SFP), developing a
finite order parameter displaying limit cycles ψ0 ¼
jψ0je−iω0t and scaling as jψ0j ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J − Jc

p
[63]. In the

Ω − J projection of the phase diagram [Fig. 1(a)], the
SFP occupies a lobe-shaped region.
We stress that this IP-SFP transition is not due to a

competition between delocalization and local interactions
as usual in the equilibrium BHmodel, but rather stems from
a filling effect determined by the competition between the
emission bandwidth Γp and the characteristic kinetic
energy J of particles and holes. As such, it can also occur
in the hard-core limit under consideration here: for a large
Γp=J, all states in the cavity band are filled and the system
behaves as an insulator, while for smaller Γp=J the photon
occupation is concentrated in the lower part of the band,
which leads to the onset of coherence and superfluidity.
In the SFP, the average total density n0 is an overall

decreasing function of J, which acts similarly to a chemical
potential for the system. Indeed, the oscillation or lasing
frequency of the coherent field shows only a little deviation
from its mean-field value at equilibrium, i.e., ω0 ≈
zJð2n0 − 1Þ þ ωc [49], meaning that the energy is lowered
at large J by depleting photons. On the other hand, the
condensate density ρc ¼ jψ0j2 is generally a nonmonotonic
function of J and its behavior crucially depends on the
value ofΩ. In the moderate pumping regimeG ∼ 1, located
below the tip of the SFP lobe [Fig. 1(b)], ρc shows a
maximum for J ¼ Jm, after which it saturates n0 to give an
extremely pure and dilute condensate. This behavior can be
understood as follows. For J < Jm, local losses Γl play a
key role in favoring quantum coherence: since they make
the condensate density to increase while reducing n0, the
NESS can be classified as a hole superfluid [64,65]. For
J > Jm, the large bandwidth zJ overcomes the effect
of all dissipative effects, so that cavity photons form a
dilute particle superfluid, whose purity increases with J
[66]. Interestingly, in the strong pumping regime G≳ 1
[Fig. 1(c)], a second maximum of ρc develops for
Jc < J < Jm, corresponding to a particle superfluid near-
ing the equilibrium hard-core state [49].
Collective excitations.—Inspired by well-known lineari-

zation methods at equilibrium [67,68], we make use of the
approach introduced in [26] and consider small, spatially

dependent oscillations around the NESS configuration as
described by the space- and time-dependent Gutzwiller
ansatz

c⃗ðr; tÞ ¼ c⃗0 þ u⃗keiðk·r−ωktÞ þ v⃗�ke
−iðk·r−ω�

ktÞ: ð5Þ

Here, u⃗kðv⃗kÞ weighs a particle (hole) excitation with
energy ωkð−ω�

kÞ and the ansatz (5) is seen from the
rotating frame of the coherent field [49]. Linearizing its
evolution with respect to the oscillation amplitudes, one
obtains the Bogoliubov–de Gennes equations

ωk

�
u⃗k
v⃗k

�
¼ L̂k

�
u⃗k
v⃗k

�
; ð6Þ

where the superoperator L̂k is block diagonal because of
the Hermiticity relation v⃗k ¼ ðu⃗kÞT [49]. As a main result
of this Letter, the eigenvalue equation (6) provides the
energy spectra ωα;k of the collective many-body excitations
of the NESS as well as the strength of the system response
to different perturbation channels [49].
Insulating phase.—The low-energy part [49] of the

excitation spectrum in the IP phase [Figs. 2(a)–2(a′)] consists
of two dispersive branches ω�ðkÞ ¼ �εphðkÞ − iΓphðkÞ

FIG. 2. (a)–(a′) Excitation spectrum of the IP for Ω=Γp ¼
5 × 10−1 [see Fig. 1(c)] and increasing zJ=Γp. The gray dot in
panel (a) pinpoints the critical lasing frequency ω�. (b)–(b′)
Excitation spectrum of the SFP for Ω=Γp ¼ 3 × 10−1 and two
values of zJ=Γp below/above the antiadiabatic crossover at J ¼
Jm (solid-dashed). The letters G, A, and D indicate the (standard)
Goldstone, amplitude and D-mode branches. Here, the excitation
energy is calculated in the rotating frame of the lasing frequency
ω0. In panels (a′)–(b′), the gray solid line specifies the cavity loss
rate Γl=Γp. All panels refer to a d ¼ 2 array.
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(red lines) and a purely dissipative local mode ωD ¼ −iΓD
(blue lines), to which we refer as the D mode. The former
bands correspond to distinct particle (P) and hole (H)
excitations in the photon fluid, while the latter only involves
fluctuations of the TLEs excited state population. Deep in
the IP phase (solid lines), the P (H) damping ΓphðkÞ has a
gapped, quadratic dispersionwhich extends up to the energy
scale of the effective pumping rate Γem ≃ 4Ω2=Γp [49]. This
indicates that delocalized P and H excitations at small jkj
have a longer lifetime. As the hopping reaches the lasing
threshold Jc (dotted lines), the imaginary part ΓD of the D-
mode frequency approaches the bare loss rate Γl [gray solid
line in Fig. 2(a′)], while the one Γphð0Þ of the longest-lived
mode corresponding to the Liouvillian gap vanishes propor-
tionally to the distance from the critical point Jc − J [62] as
expected from quantum field theory [69]: this substantiates
the physical picture of long-lived P and H modes as
precursors of the nonequilibrium transition to the SFP.
Tuning the hopping has a dramatic effect also on the real

part of the P (H) excitation energy shown in Fig. 2(a),
which is well fitted by εphðkÞ ≈ JðkÞð1 − 2n0Þ þ ωc

[where JðkÞ is the free-particle dispersion on the lattice]
and is characterized by a density-dependent bandwidth. In
detail, at small J where n0 > 1=2, εphðkÞ has an inverted
profile with minimal gap at k ¼ π, while a more standard
quadratic dispersion is found at larger J when n0 < 1=2. In
between the two regimes, an intermediate value of J is
found for which n0 ¼ 1=2, and the P (H) band is
completely flat (dashed lines). Eventually, εphð0Þ nears
the lasing frequency ω� ¼ ω0ðJ ¼ JcÞ (gray dot) at the IP-
SFP transition point, which therefore can be regarded as an
authentic finite-frequency criticality [63,70].
Superfluid phase.—As the onset of the SFP corresponds

to a spontaneous breaking of U(1) symmetry, the Pmode is
replaced by a Goldstone branch whose complex frequency
tends to zero in the long-wavelength limit, ωGðk → 0Þ → 0
[70,71]. Physically, this mode can be understood as a slow
rotation of the condensate phase across the cavity array. Let
us analyze the main features of different SFP regimes in
more detail, starting from the region J ≲ Jm.
For this case, a typical example of the excitation

spectrum is given by the solid lines in Figs. 2(b)–2(b′).
Here, we recover in a novel strongly correlated regime the
usual behavior of out-of-equilibrium condensates with a
diffusive and nonpropagating ImωGðkÞ ∼ −k2 behavior of
the low-k Goldstone mode (red line) [72–75] and a gapped
amplitude mode with a finite imaginary part ImωAðkÞ in
the low-k limit [72,75]. The nontrivial dispersion of the D
mode ωDðkÞ ∼ −iΓl in our configuration and its relation-
ship with the Goldstone branch are pivotal to grasping the
physics of the deep SFP.
In this J ≲ Jm regime, there is a clear scale separation

between the imaginary part of the Goldstone energy ΓGðkÞ
and the D mode ωDðkÞ, which, however, gets reduced for
increasing J. The above situation changes dramatically at

the boundary between particle and hole superfluidity
J ¼ Jm: here, the timescales of pumping and loss processes
are comparable so the dissipative dynamics of the TLEs can
no longer be adiabatically separated from that of the
photons in the BH lattice. This translates into a stable
cross hybridization of the D-mode ωDðkÞ with the
Goldstone branch ΓGðkÞ at small momenta, which anyway
leaves the real part of the energy spectrum unaltered
[dashed lines in Figs. 2(b)–2(b′)].
Dynamical response to a weak probe.—Further light on

the collective modes can be obtained from the linear
response functions of the NESS to an additional weak
coherent probe beam that is able to inject or remove
particles from the system [76],

Ĥp ¼
X
r

ðηk;ωeiðk·r−ωtÞâ†r þ H:c:Þ: ð7Þ

In particular, we focus on the corresponding retarded
Green’s function, whose Fourier-space form GRðk;ωÞ
directly provides the transmission Tðk;ωÞ¼−iΓlGRðk;ωÞ
and the reflection Rðk;ωÞ ¼ 1þ Tðk;ωÞ amplitudes for
a weak probe beam of wave vector k and frequency
ω [1,77,78]. For these experimentally accessible quantities,
our theory provides a semianalytical result GRðk;ωÞ ¼P

α Zα;k=ðω − ωα;kÞ displaying poles at the collectivemode
frequencies [49].
In the deep IP, we find that the transmittivity jTðk;ωÞj2

[49] displays a peak at the P excitation pole but remains
well below unity. In contrast, the reflectivity [Fig. 3(a′)]
exhibits amplification as jRðk;ωÞj2 > 1. This result is
tightly linked with the intrinsic out-of-equilibrium nature
of the IP. While for the transmittivity we simply have
jTðk;ωÞj ∝ jGRðk;ωÞj, the reflectivity reads

jRðk;ωÞj2 ¼ ½1 − πΓ2
l Aðk;ωÞ�2 þ Γ4

l jReGRðk;ωÞj2 ð8Þ

and can be greater than 1 when the density of states (DOS)
Aðk;ωÞ ∝ −ImGRðk;ωÞ is negative, see Fig. 3(a). The
DOS negativity, already observed in the presence of
Markovian dissipation [63,79,80], is a signature of the
pump-induced population inversion taking place in the
deep IP and is conventionally associated with optical
gain [81–83] analogous to the one of a laser device driven
below threshold. Still, it is not yet able to support a
macroscopic coherence. Thus, we can draw a Janus-faced
portrait of the IP state: while it lacks long-range coherence
and behaves as an insulator from the viewpoint of many-
body excitations, its dynamical response features a broad-
band amplification distributed along the whole energy
dispersion of the P mode.
Upon increasing J, the P branch εphðkÞ is shifted to

larger energies and gradually crosses the critical lasing
frequency ω�. Interestingly, ω� acts here as an effective
chemical potential, as the DOS smoothly acquires a
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positive sign for ω > ω�. This spectral redistribution
strongly reflects on the IP response, especially when
the P band becomes flat [Figs. 3(b)–3(b′)]. In particular,
whereas the transmittivity concentrates around the con-
densation point ðk ¼ 0;ω�Þ, the reflectivity has a Fano-like
shape around ω�: namely, jRðk;ωÞj2 is above (below)
1 for ω < ω� ð> ω�Þ, because of the sign flip of the DOS.
Eventually, in proximity of the critical point [Figs. 3(c)–
3(c′)], the DOS becomes mostly positive and bounded by
ω� from below, while the divergence of ReGRðk;ωÞ around
ω� [63] marks the onset of condensation. This is visible as a
dramatic increase of the low-k response when approaching
the transition, similarly to the diverging amplification
displayed by a laser device as the pump strength reaches
the threshold. Still, as a key difference from a standard
laser, coherence appears at our IP-SFP transition as the
photon modes get depleted below unit filling for increas-
ing J=Γp.
On the SFP side, the behavior of our strongly interacting

system differs from other out-of-equilibrium super-
fluids [84] in that the transmittivity and reflectivity are
able to clearly resolve both the Goldstone and ghost

branches [Fig. 3(d)]. In analogy with strongly interacting
BH superfluids at equilibrium [65], this can be explained in
terms of the strong nonlinearity and the emergent particle-
hole symmetry of the low-k excitations [49].
Conclusions.—In this Letter, we have developed a

Gutzwiller approach to the collective excitations of a
driven-dissipative fluid of light in the regime of strong
photon-photon interactions, focusing on the nonequili-
brium insulator-superfluid transition of the system. In
particular, our results highlight experimentally accessible
signatures of the surprising peculiarities of the nonequili-
brium insulating state, shown to enable light amplification
in a pump-and-probe configuration, and of the rich inter-
play between coherence and dissipation underlying the
diffusive nature of the Goldstone mode. Thanks to its
flexibility, our theory paves the way to a more general
understanding of the exotic quantum phases that emerge in
lattice systems driven out of equilibrium and can find
experimental realization in the next generation of circuit-
QED experiments.
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