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Two-mode squeezed states, which are entangled states with bipartite quantum correlations in continuous-
variable systems, are crucial in quantum information processing and metrology. Recently, continuous-
variable quantum computing with the vibrational modes of trapped atoms has emerged with significant
progress, featuring a high degree of control in hybridizing with spin qubits. Creating two-mode squeezed
states in such a platform could enable applications that are only viablewith photons. Here, we experimentally
demonstrate two-mode squeezed states by employing atoms in a two-dimensional optical lattice as quantum
registers. The states are generated by a controlled projection conditioned on the relative phase of two
independent squeezed states. The individual squeezing is created by sudden jumps of the oscillators’
frequencies, allowing generating of the two-mode squeezed states at a rate within a fraction of the oscillation
frequency.Wevalidate the states by entanglement steering criteria and Fock state analysis. Our results can be
applied in other mechanical oscillators for quantum sensing and continuous-variable quantum information.
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The Heisenberg uncertainty principle allows one to
“squeeze” the noise of one quadrature below the vacuum
fluctuation at the expense of increasing the noise of its
noncommuting quadrature, creating quantum correlations
between the quadratures. The squeezing, when created
between noncommuting quadratures of two modes, can be
used to create cross-correlations between them while the
modes contain no trace of correlations in their own
quadratures. Such a two-mode entangled state is also
known as an Einstein-Podolsky-Rosen (EPR) state. In
photonic systems, two-mode squeezed states have been
playing a pivotal role in optical quantum communications,
such as teleportation, dense coding, and quantum repeaters
[1–3]. Moreover, it has also been used to generate non-
Gaussian states and prepare cluster states for universal
quantum computation [1–3]. The implementation of con-
tinuous-variable quantum information with vibrational
modes of atoms, such as trapped ions, has been considered
favorably because of its flexibility and controllability in
hybridizing with atomic spin states [4–7]. It has been used
to prepare Gottesman-Kitaev-Preskill (GKP) state [8],
perform error corrections [9], and demonstrate hybrid
and non-Gaussian operations [10,11].
Proposals to generate a two-mode squeezed state in

trapped atom systems have used auxiliary oscillators or
qubits as “quantum bus” mediators to perturbatively
entangle two modes of motion while creating squeezing
at the same time [5,6,12,13]. As a weak coupling is often
necessary to avoid higher-order excitations, those methods
require significant time and resource overhead. On the

other hand, in the optical domain, overlapping two out-of-
phase independent squeezed states on a physical beam
splitter is an efficient way to create two-mode entanglement
[3] without any direct interaction of the two modes. In
mechanical oscillators, one can simulate such a physical
beam splitter by projecting two spatially orthogonal oscil-
lators onto a 45° basis as the two output ports of the beam
splitter. Here, we utilize atoms trapped in an isotropic two-
dimensional potential to realize an interaction-free two-
mode squeezed gate. Squeezing of each mode is initialized
independently along two orthogonal axes by implementing
sudden jumps of the oscillator frequencies [14]. The two-
mode entanglement is verified by satisfying the EPR
steering criteria when the two input independent squeezed
states are out of phase. Conditioning on the in-phase of the
two initial squeezed states, a two-dimensional single-mode
squeezed state can also be realized.
Consider two independent squeezing operators ŜxðξxÞ

and ŜyðξyÞ along the x and y directions with squeezing
parameters ξx ¼ rei2θx and ξy ¼ rei2θy , the transformation
of their annihilation operators âx and ây under squeezing
can be expressed in terms of operators

Âx ¼ Ŝ†xðξxÞâxŜxðξxÞ ¼ âx cosh r − ei2θx â†x sinh r;

Ây ¼ Ŝ†yðξyÞâyŜyðξyÞ ¼ ây cosh r − ei2θy â†y sinh r; ð1Þ

where r is the squeezing amplitude, θx ¼ ωt and θy ¼
θ0 þ ωt are the phases of the two oscillators, θ0 is the initial
relative phase of two oscillators, ω is the isotropic oscillator
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frequency, t is the free evolution time, and â†x and â†y are
the creation operators. Upon a 50=50 beam splitter, the
operators of the two output ports Â0

x and Â0
y can be written

as Â0
x¼ðÂxþÂyÞ=

ffiffiffi

2
p

and Â0
y¼ð−ÂxþÂyÞ=

ffiffiffi

2
p

. The uncer-
tainty of the momentum operators p̂0

x ¼ −iΔp0ðÂ0
x − Â0†

x Þ
and p̂0

y ¼ −iΔp0ðÂ0
y − Â0†

y Þ in this new basis can then be
calculated as

Δp0
xðyÞ ¼

D

0jðp̂0
xðyÞÞ2j0

E

1=2

¼ Δp0½cosh 2rþ sinh 2r cos ðθx þ θyÞ
× cos ðθx − θyÞ�1=2; ð2Þ

whereΔp0 is the uncertainty of the ground state momentum.
Conditioning on θx−θy¼π=2, the uncertainty of themomen-
tum at the outputs shows no correlation on the individual
modes, manifested by a constant width cosh 2r [15]. When
θx − θy ¼ 0, Δp0

xðyÞ ¼ Δp0½cosh2rþ sinh2r cosð2ωtÞ�1=2
exhibit a variation of single-mode squeezed state at a rate
of 2ω.
The two-dimensional harmonic potential in this experi-

ment is formed by two retroreflected 1064 nm lasers aligned
perpendicularly. Each beam has awaist of 60 μmand 1Wof
power, creating a two-dimensional optical lattice with an
isotropic peak trapping frequency ω ¼ 2π × 125 kHz as
quantum registers, shown in Fig. 1(a). An ensemble of cold
85Rb atoms is loaded into the optical lattice after sub-
Doppler cooling and then compressed by shuffling the
two lattice beams to minimize the inhomogeneous trapping
frequency (see Supplemental Material [16]). The ensemble

of 6 × 104 atoms inside the trap exhibits a Gaussian
distribution with a full width at half maximum (FWHM)
along the x and y directions of 47 and 64 μm, respectively.
After which, atoms are cooled down to the two-dimensional
ground states by resolved Raman sideband cooling [19] (see
Supplemental Material [16]). During absorption detection,
we selectively image a 30 μm × 30 μm area of atoms along
the x direction to sample a region with reduced inhomo-
geneous broadening of the oscillation frequency.
Our protocol for two-mode squeezing generation is

illustrated in Fig. 1(b). The wave functions of the ground
states in both directions are squeezed independently by
jumping the oscillator frequencies [14] between ω and ω0
through sudden changes in the optical lattice power. The
frequency jump determines the squeezing amplitude r as
ln ðω=ω0Þ. Such a method has been used to create nearly
instantaneous operations of squeezing [14]. To prepare two
squeezed states with a π=2 phase difference, the two
independent squeezing operations are relatively delayed
by a time π=ð2ωÞ, as shown in Fig. 1(c). Along the 45°
basis, each of the new position observable x̂0 and ŷ0 are
superpositions of observables x̂ and ŷ, which simulates a
physical beam splitter. The output modes along these two
directions are conventionally named Alice and Bob, who
possess quantum objects that are correlated with each other,
while the quadratures of their own show no correlations.
This is illustrated by the Wigner function [15] projected
into the p0

x − x0 plane, as shown in Fig. 2(a).
We measure the uncertainty of velocity v0x ¼ p0

x=m using
two-photon Raman velocimetry with different magnitudes
of frequency jump, where m is mass (see Supplemental
Material [16]). In this new basis, no correlation between the

FIG. 1. Illustration and experimental realization of two-mode squeezing gates in single atom oscillators. (a) Configuration of the
preparation and measurement of single atom oscillators in two-dimensional (x–y plane) quantum registers. Each ball represents a single
atom in a two-dimensional harmonic potential. The magnetic field B (along the y direction), optical pump, and depump beams are used
in resolved Raman sideband cooling. Colored thin arrows indicate the polarization of the optical beams. The Raman beams are
copropagating with the lattice beams. (b) Schematic diagram of the two-mode squeezing quantum logic. The vacuum (Vac) states in the
x and y modes are independently squeezed by a squeezing operator Ŝð−rÞ. The output states O1 and O2 are conditioned on the free
evolution operation Û of the modes before the beam splitter (BS). When θx − θy ¼ π=2, the output states are correlated as an EPR state.
When θx − θy ¼ 0, the output states are a two-dimensional single-mode squeezed state. (c) Timing sequence of setting θx − θy ¼ π=2
for two-mode squeezed states. The independent squeezed states are generated by jumping the oscillator frequency between ω and ω0.
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quadratures is indicated by the time-independent velocity
width. A linear function with zero slope is fitted to the data
with the uncertainty Δv0x ¼ 3.47ð2Þ and 4.89ð6Þ cm s−1, as
shown in Fig. 2(a). The error bars in this experiment
represent the standard error of the mean calculated from
20 datasets. Using Eq. (2) and the measured uncertainty of
the ground state velocity Δv0 ¼ 2.01ð4Þ cm s−1, we can
extract the experimental squeezing amplitudes r ¼ 0.89ð6Þ
and 1.24(7) by taking the ratio of Δv0x=Δv0 ¼ ðcosh 2rÞ1=2.
The measured squeezing amplitude is smaller than
ln ðω=ω0Þ ¼ 1.21 and 1.75 due to the imperfect ground
state cooling, anharmonicity, and the available bound states
[14]. When the two input squeezed states are in-phase
(θx − θy ¼ 0), the output state becomes a two-dimensional
single-mode squeezed state where the velocity width oscil-
lates at twice the oscillator frequency, as shown in Fig. 2(b).
The fitted squeezing amplitude r ¼ 0.89ð8Þ for ln ðω=ω0Þ ¼
1.21 agrees well with the measurement of the two-mode
squeezed state, which corresponds to 7.7 dB of squeezing.
The achievable squeezing in our system is limited by the
available bound states of the potential. For lnðω=ω0Þ ¼ 1.75,
the available bound states decrease from 15 to 3.
Despite our two modes in the two-mode squeezed state

remain degenerate, we can still use the Duan-Simon
criterion [20,21] to quantify the state. The two modes

are inseparable when the variance of the difference and
sum of the dimensionless quadrature amplitudes add up
to less than one: Δ2ðx̄0 − ȳ0Þ þ Δ2ðp̄0

x − p̄0
yÞ < 1, where

x̄0ðȳ0Þ≡ x0ðy0Þ=2Δx0, p̄0
xðp̄0

yÞ≡ p0
xðp0

yÞ=2Δp0, and Δx0 is
the uncertainty of the ground state wave packet size. A
more stringent criterion that satisfies the EPR criterion [22]
requires Δðx̄0 − ȳ0ÞΔðp̄0

x − p̄0
yÞ < 1=4, stemming from the

Heisenberg uncertainty principle that certifies steering.
Such a condition has been demonstrated with internal spin
states of atoms [23–28] but has not been fulfilled in
mechanical oscillators [29–31]. Although we could not
measure Δðx̄0 − ȳ0Þ directly, we can refer to it from the
measurement of Δðp̄0

x − p̄0
yÞ after a quarter period of the

free evolution. The uncertainty of the momentum can be
calculated as

Δðp̄0
x − p̄0

yÞ
ffiffiffi

2
p ¼ Δp̄xðθxÞ

¼ ðe−2rsin2θx þ e2rcos2θxÞ1=2=2;
Δðp̄0

x þ p̄0
yÞ

ffiffiffi

2
p ¼ Δp̄yðθxÞ

¼ ðe−2rcos2θx þ e2rsin2θxÞ1=2=2: ð3Þ

Two pairs of counterpropagating Raman beams along x
and y are used to measure the velocity distribution, as shown
in Fig. 1(a). The data in Fig. 3(a) are fitted with Eq. (3)
with measured squeezing amplitude r ¼ 0.88ð9Þ for
ln ðω=ω0Þ ¼ 1.21,which is consistentwith themeasurements
in Fig. 2. The ground state velocity uncertainty is plotted for
reference, and the smaller velocity uncertainty compared to
the measurements in Fig. 2(b) could be due to the imperfect
alignment of the Raman beams for the measurements
in Fig. 2(b). The EPR criterion in our system is calculated
by taking the first smallest velocity uncertainty data point
in the x direction from Fig. 3(a) as Δðp̄0

x − p̄0
yÞjθx¼π=2 and

that in the y direction as Δðp̄0
x þ p̄0

yÞjθx¼0
. The results yield

Δðp̄0
x − p̄0

yÞjθx¼π=2Δðp̄0
x þ p̄0

yÞjθx¼0
¼ 0.15ð3Þ, 3 standard

deviations below the EPR criterion. The velocity uncertainty
measurements of the two points are shown in Fig. 3(b).
Figure 3(c) plots the calculation of the Wigner function
projected in various coordinate planes versus time for
illustration.
In the Fock state representation, a two-mode squeezed

state can be written as jS2i¼sechrΣ∞
n¼0ðei2θ0 tanhrÞnjn;ni,

where n is the number of the Fock state of both modes.
Compared to a single-mode squeezed state where it only
contains the even number of the Fock states, the two-mode
squeezed state carries all the Fock states in both modes. We
characterize the state in the Fock state basis by conducting
Lamb Dicke spectroscopy on the state and measuring the
ratio R of the first red to the first blue sideband population
with different squeezing amplitude r as shown in Figs. 4(a)
and 4(b). The data are compared with theory (see

FIG. 2. Characterization of the controlled two-mode squeezing
gate. (a) Measurements of the velocity uncertainty as a function of
free evolution time along the x0 direction using the Raman beams
X2 and Y1 when the two input squeezed states are out of phase.
The red and purple lines are fitted constants to the data with
different squeezing amplitudes ln ðω=ω0Þ ¼ 1.21 and 1.75, re-
spectively. The dashed line marks the uncertainty of ground state
velocity. The bottom figures are the calculated time-dependent
Wigner functions projected onto p̄0

x–x̄0 plane with r ¼ 0.89,
where p̄0

x and x̄0 are dimensionless quadratures. The ground state
Wigner function is plotted for reference. (b) Measurements of the
velocity uncertainty as a function of free evolution time along the
x0 direction using the Raman beams X2 and Y1 when the two
input squeezed states are in phase. The blue curve fits the data
using Eq. (2), where the band indicates 68% confidence level.
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Supplemental Material [16]), and the single-mode squeezed
state results are also presented in Fig. 4(a). The main
discrepancy between single-mode and two-mode states is
the variance of their phonon numbers. Despite the same
mean phonon number of both single-mode and two-mode
squeezed states, the variance of phonon number in a
single-mode state is two times larger [32]. We further
illustrated this by reconstructing the two-dimensional Fock
states probability distributions of the two-mode and two-
dimensional single-mode squeezed states, as shown in
Fig. 4(c), using the fitted results of the squeezing amplitude
and the initial imperfect ground state from Fig. 2 combined
with Eqs. (S2) and (S3) for two-mode squeezed states and
Eqs. (S6) and (S7) in Ref. [14] for single-mode squeezed
states. Figure 4(d) characterize the coherence of the single-
mode squeezed states by waiting for a free evolution time τ
in between a unitary operation Ŝ†ðrÞÛðωτÞŜðrÞ, where
ŜðrÞ is the single mode squeezing operator and Û is the free
evolution operator. The fitted 1=e decay time of the
oscillation period of the measured R is 80ð9Þ μs and is
mainly contributed by the inhomogeneous broadening of
the oscillation frequency across different lattice sites,
matching well with the measured linewidth in the Lamb-
Dicke spectroscopy shown in Fig. 4(b).
Our demonstration of the interaction-free generation of a

two-mode squeezed state can be applied in quantum
information processing combined with other operations.
By modulating one of the outputs with a displacement
operator and recombining the two outputs, a quantum
dense coding scheme [33] can be realised in mechanical
oscillators. An unknown state from a third mode can be
teleported by combining it with one of the modes on a beam
splitter [34]. The measurement result of the output state is
then used to perform a displacement operation to obtain the

FIG. 3. EPR criterion measurements of the two-mode squeezed
states. (a) Measurements of the velocity uncertainty along the
xðyÞ direction as a function of free evolution time using Raman
beams X1ðY1Þ and X2ðY2Þwhen the two input squeezed states are
out of phase. The curves fit the data using Eq. (3), where the band
indicates 68% confidence level. The dashed line marks the
uncertainty of ground state velocity. (b) Velocity distribution
measurements of the data in Fig. 3(a). Top: The y direction data
point of free evolution time at 0.25 μs. Middle: The x direction
data point of free evolution time at 2 μs. Bottom: The ground
state velocity width measurement indicated by a dashed line in
Fig. 3(a). The curves are Gaussian functions fitted to the data.
(c) Calculated time-dependent Wigner function projected onto
p̄x–x̄, p̄y–ȳ, and p̄y–p̄x planes with r ¼ 1.10, where x̄, ȳ, p̄x, and
p̄y are dimensionless quadratures.
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FIG. 4. Analysis of the two-mode squeezed states in the Fock state basis. (a) Measured R, the ratio of the first red to first blue sideband
populations, versus squeezing amplitude r with one- and two-mode squeezed states. The curves are the theory based on the measured
quantities without any free parameters. (b) A typical Lamb-Dicke spectroscopy of the oscillators in the ground state and thermal state
(before RSC). The right, center, and left peaks are the first blue sideband, carrier, and first red sideband, respectively. (c) The
reconstructed probabilities of occupying a state with n0x phonons in the x0 mode and n0y phonons in the y0 mode from the fitted results of
Fig. 2 for the two-mode squeezed state (left) and the two-dimensional single-mode squeezed state (right). (d) Measured R of
Ŝ†ðrÞÛðωτÞŜðrÞ operation versus the free oscillation time τ with r ¼ 1.2. The curve is a fit to the data using an exponentially decaying
sinusoidal function. The fitted 1=e decay constant is 80ð9Þ μs.
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unknown state on the other mode. Non-Gaussian oper-
ations such as photon subtractions have many applica-
tions in the continuous-variable approach and the
generation of nonclassical states. Taking advantage of
discrete variables inherited from atomic oscillators, such
as spins, single-phonon subtraction can be accomplished
through spin-oscillator coupling [10] as a phonon counting
measurement. Preparation of cubic phase gate by displace-
ment operation and phonon counting on a two-mode
squeezed state has also been proposed [35]. Finally,
implementation of spin-dependent optical lattices along
different modes would allow us to separate two distinct
modes spatially, enabling a test of nonlocality of massive
particles using external degrees of freedom [36].
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