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We develop and experimentally demonstrate a methodology for a full molecular frame quantum
tomography (MFQT) of dynamical polyatomic systems. We exemplify this approach through the complete
characterization of an electronically nonadiabatic wave packet in ammonia (NH3). The method exploits
both energy and time-domain spectroscopic data, and yields the lab frame density matrix (LFDM) for the
system, the elements of which are populations and coherences. The LFDM fully characterizes electronic
and nuclear dynamics in the molecular frame, yielding the time- and orientation-angle dependent
expectation values of any relevant operator. For example, the time-dependent molecular frame electronic
probability density may be constructed, yielding information on electronic dynamics in the molecular
frame. In NH3, we observe that electronic coherences are induced by nuclear dynamics which
nonadiabatically drive electronic motions (charge migration) in the molecular frame. Here, the nuclear
dynamics are rotational and it is nonadiabatic Coriolis coupling which drives the coherences. Interestingly,
the nuclear-driven electronic coherence is preserved over longer timescales. In general, MFQT can help
quantify entanglement between electronic and nuclear degrees of freedom, and provide new routes to the
study of ultrafast molecular dynamics, charge migration, quantum information processing, and optimal
control schemes.
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Introduction.—Molecular quantum electronic dynamics
[1–6] govern important natural processes, including photo-
synthesis [7], vision [8], photochemistry [9,10], and solar
energy conversion [11]. Attosecond science probes popu-
lation dynamics and coherences between electronic states
[9,12–18]. The former often involves conical intersections
generated by strong nonadiabatic coupling between the
electrons and nuclei [1,6], the fundamental mechanism of
energy transfer between them [10,19,20]. In general, the
nuclear motions inducing such dynamics involve either
rotation or vibration. Nuclear-driven electronic coherences
generated at conical intersections are sensitive probes of
their local topography [21–23]. Electronic coherences may
play an important role in fundamental light-induced proc-
esses [7,12,24–27], thus measuring and controlling such
coherences is of broad interest [18,28–38]. In general,
measurement and control of electronic populations and
coherences requires experimental determination of the
time-dependent-electronic density matrix—a quantum
tomography [39,40]. The latter underlies aspects of the

foundations of quantum mechanics [41–43] and molecular
quantum information processing [44]. While probability
distributions (static and dynamical) have been measured
[45–50], quantum tomography was only demonstrated in
restricted cases: a ground state rotational wave packet, a
stationary vibrational state, and a dissociative vibrational
state [51–55]. Recently, we proposed a systematic method
for determination of the time-evolving electronic lab frame
density matrix (LFDM) from experimental data [56]. We
present here the first time-resolved molecular frame quan-
tum tomography (MFQT).
Molecular frame quantum tomography in NH3.—In this

proof-of-concept demonstration, we resonantly excited a
pair of electronic states in NH3, nonadiabatically coupled
by molecular frame (MF) rotation [57,58]. MFQT was
achieved by combining data from ultrafast time-resolved
measurements [58] with that of high-resolution spectros-
copy [59]. The resulting density matrix yields the time-
resolved electronic probability distribution in the MF, as a
function of lab frame (LF) orientation angles. We show that
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nuclear-driven charge distributions evolve differently
at different MF orientations. Importantly, the observed
aperiodic charge migration is direct evidence of an
angle-dependent nonadiabatic coupling, the angular analog
to vibrational-coordinate-dependent nonadiabatic coupling.
In our example, the electronic coherence persists over the
entire 5 ps window of the time-resolved experiment. Long-
lived electronic coherences are rare [31,37], offering new
opportunities for quantum control of molecular electronic
dynamics [60], the study of electronic-nuclear entangle-
ment [27,41,42], and the development of quantum infor-
mation processing protocols in isolated molecules [44], for
which quantum tomography is a necessary prerequisite.
In Fig. 1, we depict NH3 resonantly excited from a

thermal rotational state distribution in the ground X̃1A0
1

electronic state, j0i, to its doubly degenerate B̃1E00 state,
j�i, with three quanta in the umbrella vibrational mode. We
determine the 2 × 2 orientation-dependent LFDM in the
j�i basis, where Λzj�i ¼ �1j�i, and Lz ¼ ξΛz [61]. Lz is
the component of the electronic orbital angular momentum
along the MF z axis, the threefold symmetry axis of NH3,
and ξ ¼ �h�jLzj�i. In general, matrix elements of the
LFDM can be written as [56]

ρnn0 ðΩ; tÞ ¼
X
KQS

AK
QSðn; n0; tÞDK�

QSðΩÞ; ð1Þ

where Ω ¼ fϕ; θ; χg are the MF Euler angles and
n; n0 → � indicate the coherently excited electronic states.
Molecular angular distribution moments (MADMs)

AK
QSðn; n0; tÞ specify the evolving excited state molecular

dynamics [56] and the DK
QSðΩÞ are Wigner D-Matrix

elements [62]. MFQT is enabled by determination of all
relevant MADMs from the experimental data. The
MADMs are multipole moments of the LFDM which track
the time varying anisotropy of each LF matrix element.
Selection rules for linearly polarized light restrict us to
MADMs with K ¼ 0, 2, Q ¼ 0 and S ¼ 0;�2, jSj ≤ K
[56]. Furthermore, the symmetry of the B̃1E00 state permits
only three unique, nonzero MADMs: A0

00ðþ;þ; tÞ ¼
A0
00ð−;−; tÞ, A2

00ðþ;þ;tÞ¼A2
00ð−;−;tÞ and A2

02ðþ;−; tÞ ¼
A2
0−2ð−;þ; tÞ [57,58,61]. The MADMs A0

00ð�;�; tÞ track
the total population in each excited state, while
the A2

00ð�;�; tÞ track the alignment of the z axis for the
population in each state. The A2

0�2ð�;∓; tÞ track the
orientation of the electronic coherence in the lab frame.
Their critical relationship to the electronic dynamics is
detailed below.
Determining MADMs.—In both the time- and frequency-

resolved experiments, the excited states were probed by
single photon photoionization to the X̃2A00

2 state of NHþ
3

[58,59,63,64]. The time-resolved data lead us to the time-
dependent LFDM and the temporal evolution of the MF
charge density. Here, NH3 was excited by a 160.9 nm, 77 fs
pump pulse, and ionized by a time delayed 400 nm, 40 fs
probe pulse [58]. The photoelectron angular distribution
and kinetic energy spectrum were measured as a function of
time delay. Spherical harmonic expansion of the signal
as a function of electron ejection angles θe and ϕe,
Pðθe;ϕe; ϵ; tÞ ¼

P
LM βLMðϵ; tÞYLMðθe;ϕeÞ, provides the

time- and electron-kinetic-energy (ϵ)-dependent anisotropy
parameters βLMðϵ; tÞ. With linearly polarized pump and
probe pulses, each a one-photon process, the three nonzero
anisotropy parameters are β00, β20, and β40 [20,65,66].
These, in turn, are expressed in terms of the MADMs
[20,67,68],

βLMðϵ; tÞ ¼
X
KQS

X
nn0

CLM
KQSðn; n0; ϵÞAK

QSðn; n0; tÞ: ð2Þ

Since the pump also generates three, unique nonzero
MADMs then, with known coefficients CLM

KQSðn; n0; ϵÞ,
Equation (2) becomes a matrix equation with solution
A⃗ðtÞ ¼ Ĉ−1β⃗ðtÞ at each time delay. NH3 is well-studied
spectroscopically [69–73]: the coefficients CLM

KQSðn; n0; ϵÞ
comprising Ĉ were previously determined by high-
resolution resonant enhanced multiphoton ionization
(REMPI) spectroscopy [59,63,64]. The coefficients can
be written as CLM

KQSðn; n0; ϵÞ ¼
P

ζζ0 Γ
ζζ0LM
KQS dnn

0
ζζ0 ðϵÞ with

dnn
0

ζζ0 ðϵÞ ¼ Dn
ζðϵÞDn0�

ζ0 ðϵÞ. The factors Γζζ0LM
KQS are analytical

and their properties were previously discussed at length
[74]. The Dn

ζðϵÞ are matrix elements of the dipole operator
between the bound state labeled n and a continuum channel

FIG. 1. Electronic coherences nonadiabatically driven by nu-
clear motion. NH3 is excited to the B̃1E00 state, a pair of near
degenerate electronic states j�i, the LF Z axis being the laser
polarization direction. This excitation results in the time-
dependent LF density matrix ρnn0 ðΩ; tÞ, with n → �. The planar
geometry of NH3 is shown with MF symmetry axis z at angle θ
with respect to the LF Z axis. In-plane rotation about z is given by
the angle χ. Photoionization into the X̃2A00

2 ionic state by the
dipole operators Dζ

nðϵÞ produces an electron with kinetic energy
ϵ ¼ 0.26 eV. Both states ionize to overlapping continuum
channels, ζ, permitting the detection of electronic coherences.
As we show, rapid nuclear motion along the θ coordinate induces
electronic coherences which drive charge migration in the MF.
For details, see the text.
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ζ, specifying the final state of the ion plus free electron with
kinetic energy ϵ. Some partial wave matrix elements were
determined for several electron kinetic energies, constitut-
ing a “complete experiment” [67,68,75–79]. Here, we use
the results for ϵ ¼ 0.26 eV, relevant to our time-resolved
experiments. Equation (2) is valid for D3h dipole matrix
elements, symmetry adapted to the point group of NH3 in
its B̃1E00 state. The β⃗ðtÞ from the time-resolved and Ĉ from
the frequency-resolved experiment (with associated exper-
imental uncertainties) determine the MADMs [80]. The
normalization

P
n A

0
00ðn; n; tÞ ¼ 1=8π2, equivalent to

TrfρðtÞg ¼ 1 [56], was applied at the initial time point
and we rescaled the K > 0 MADMs such that the ratio
AK
0S=A

0
00 remains unchanged. The resulting MADMs track

the time varying population and molecular orientation in
each electronic state and, critically, the coherence between
them. These construct the LFDM ρðΩ; tÞ in Eq. (1) for any
MF orientation Ω.
Probing nonadiabatic dynamics.—We consider the elec-

tronic dynamics induced by nuclear motions. Selected
elements of the extracted LFDM are plotted, at selected
MF orientations, in Fig. 2. We note that the diagonal
elements tracking populations, ρþþðΩ; tÞ ¼ ρ−−ðΩ; tÞ, are
the same for all three orientations (black crosses), increas-
ing in the first 0.5 ps and then slowly decaying. This
indicates a higher probability for MF orientations with θ ¼
π=2 after 0.5 ps independent of χ. The observed asymptotic
behavior is expected for a perpendicular pump transition
and a symmetric top geometry [57,69,86]. MF electronic
dynamics at any orientation are dominated by the coher-
ence ρþ−ðΩ; tÞ. The real part of ρþ−ðΩ; tÞ is counterphased
for molecules oriented with χ ¼ 0 (top) and χ ¼ π=2
(bottom), the imaginary part being zero. The electronic
density at these orientations exhibit the complementary
time evolution seen in the top and bottom rows. In contrast,
at χ ¼ π=4 (middle) the real part of the coherence is zero,
yielding entirely different electronic dynamics at this
orientation.
From the orientation-dependent LFDM elements of

Fig. 2, we construct the MF one-electron reduced density,

pðr1;Ω; tÞ ¼
X
nn0

ρnn0 ðΩ; tÞ
Z

dr2 � � � drNψ�
nðr⃗Þψn0 ðr⃗Þ; ð3Þ

where r⃗ ¼ friji ¼ 1; 2;…; Ng is the set of position vectors
of the electrons and ψnðr⃗Þ is the wave function for a basis
state j�i. This yields a one-electron attachment density,
pAðr⃗1;Ω; tÞ, shown in Fig. 3, depicting the orientation- and
time-dependent accumulation of MF electron density
relative to the static reference ground electronic state
(for details see Supplemental Material [80]). To be con-
sistent with common usage, we will refer hereafter to the
observed MF evolution of the attachment density as
“charge migration” [18,31–36], but use this term to include
both vectorial (directional) and tensorial (polarization)

moments of the electronic dynamics. The left and right
columns show the attachment density migrating along
the y axis for the orientations Ω ¼ fπ=2; 0g and
Ω ¼ fπ=2; π=2g, but in opposing directions. Comparing
these with the coherences at Ω ¼ fπ=2; 0g and Ω ¼
fπ=2; π=2g of Fig. 2 reveals the correlation between the
coherences and the MF electronic dynamics. At χ ¼ 0, as
the coherence first increases (between 0 and 0.5 ps), the
density migrates downward, reversing as the coherence
subsequently decreases. Interestingly, at χ ¼ π=4, the one-
electron attachment density migrates around the z axis. The
radial extent of the plotted electronic density at all three
orientations tracks the evolving population of perpendicu-
larly oriented (θ ¼ π=2) molecules. A nuclear coordinate-
dependent aperiodic migration of electronic density in the
MF is direct evidence of non-adiabatic dynamics [15,85].
Since we excite a single vibrational state, the nuclear
dynamics of relevance here are rotational. Using the
LFDM, we construct the time-varying molecular axis
distribution, Pðθ; tÞ ¼ P

n ρnnðθ; tÞ, plotted in Fig. 4(a),
revealing the rotational dynamics, which are independent

FIG. 2. Experimentally determined elements of the time-
resolved LFDM, ρnn0 ðΩ; tÞ, for a molecule with z axis
perpendicular to the laser polarization (i.e., θ ¼ π=2), for differ-
ent in-plane rotation angles (see Fig. 1) χ ¼ 0 (top), π=4 (middle),
and π=2 (bottom). The electronic populations ρ��ðfπ=2; χg; tÞ,
black crosses, are independent of χ; they initially increase then
steadily decay, tracking the population of molecules oriented at
θ ¼ π=2. In contrast, the electronic coherences ρþ−ðfπ=2; χg; tÞ
vary with χ and are the dominant contribution to the charge
migration dynamics. They are real but counterphased for χ ¼ 0
(top) and π=2 (bottom), indicating complementary electronic
dynamics at these orientations. They are imaginary at χ ¼ π=4
(middle), revealing completely different electronic dynamics as a
function of the nuclear coordinate χ.
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of χ as expected for a symmetric top [86]. In the first 1.5 ps,
the most probable MF orientation oscillates rapidly
between θ ¼ 0 and θ ¼ π=2. The electronic dynamics in
Fig. 3 appear in this same time interval: the electronic
coherence in Fig. 2 simultaneously exhibits large varia-
tions. Rapid nuclear motion, rotation of the MF z axis, at
early times drives the electronic coherence and, therefore,
the charge migration in the MF. The power spectrum of the
electronic coherence is shown in Fig. 4(b), with peaks at
33.6� 0.2 cm−1 and its overtone, providing the timescale
for MF charge migration: 0.99� 0.3 ps. Later small
fluctuations in Pðθ; tÞ explain the persistent coherence.
Beyond 1.5 ps, the most probable orientation remains
relatively stable around θ ¼ π=2, with the time-averaged
axis distribution peaking at θ ¼ π=2, as expected for a
perpendicular transition [69,81,86]. Later frames of the MF
electron density (see Supplemental Material [80]) show that
the density remains localized, with only small fluctuations.
Slower fluctuations of molecular alignment (slower MF θ
rotation) at later times thus stabilizes the electronic coher-
ence. Furthermore, due to Coriolis coupling, frequency
components of the electronic coherence also appear in the

power spectrum of Pð0; tÞ, shown in Fig. 4(c). Pð0; tÞ also
exhibits contributions, shown in Fig. 4(c), near expected
locations of rotational quantum beats, determined assuming
a symmetric top Hamiltonian [58,81]. Nevertheless, non-
adiabatic coupling renders the electronic and rotational
degrees of freedom non-separable. Therefore, all observed
LF frequencies must be classified as quantum beats
between ro-electronic molecular eigenstates. MFQT allows
assignment of such beats by revealing which specific set of
dynamical effects they contribute to in the LF and MF.
MFQT reveals the dynamics underlying nonadiabatic

nuclear-driven electronic coherences. In this proof-of-
concept example, the nuclear dynamics are rotational, with
Coriolis coupling driving the nonadiabaticity [81].
Specifically, we note that (i) the rotational and electronic
dynamics, separable in the cation-plus-free-electron final
state [58], are nonseparable in the excited state; (ii) rapid
rotation of the MF z axis (θ) at early times drives a dynamic
MF charge migration with a ∼1 ps period; (iii) subsequent
small fluctuations of the MF z axis preserve the electronic
coherence over a long time. We emphasize that all this

FIG. 3. Nuclear-driven MF charge migration, constructed from
the experimentally determined ρðΩ; tÞ. To illustrate, we show
three columns depicting the time evolving attachment density
pAðr1;Ω; tÞ which tracks the variation of MF electron density, at
three selected orientations; Ω ¼ fθ; χg ¼ fπ=2; 0g (left),
fπ=2; π=4g (middle), fπ=2; π=2g (right). The black arrow in-
dicates the laser polarization direction Z (see Fig. 1). The
electronic density evolves differently, and aperiodically, as a
function of MF orientation, demonstrating nuclear coordinate-
dependent nonadiabatic coupling between electronic states
[15,85], the angular analog of the well-known vibrational-
coordinate-dependent nonadiabatic coupling.

FIG. 4. Experimentally determined nuclear-driven electronic
coherences in NH3. (a) The molecular Z axis distribution Pðθ; tÞ,
determined from the experimental LFDM, characterizes the
excited state rotational dynamics. It can be seen that the nuclear
coordinate θ varies rapidly at first but slows down at later times;
(b) Electronic coherences and charge migration. Power spectrum
of the real part of the ρþ−ðfπ=2; 0g; tÞ. The dominant frequency
33.6� 0.2 cm−1 (side bands at 25.2� 0.2 and 42.0� 0.2 cm−1).
The overtone appears at 65.6� 0.2 cm−1. These determine the
timescales of the nuclear-induced charge migration in the MF.
(c) Rotational dynamics. Power spectrum of Pð0; tÞ with the
locations of expected symmetric top rotational frequencies based
on the deperturbed spectrum [81]. It can be seen that the quantum
beats cannot be classified as either rotational or electronic,
rendering the motions inseparable. See text for additional details.

PHYSICAL REVIEW LETTERS 131, 193001 (2023)

193001-4



information is extracted from the experiment, without
resorting to ab initio dynamical simulations [87,88].
Conclusions.—We conclude by considering limitations

and future applications of MFQT to complex molecules,
charge migration and quantum control, and foundational
quantum mechanics in molecules. A clear limitation is that,
in determining the LFDM, ρnn0 ðΩ; tÞ≡ hΩnjρjn0Ωi, we do
not determine matrix elements of the density operator off-
diagonal in the orientation angles, Ω. While this fully
characterizes the electronic and vibrational dynamics in the
MF, LF information is missing. We can construct the
molecular axis distribution, but not observables sensitive
to quantum coherences between different orientations,
hΩnjρjn0Ω0i, in the LF. Such observables are difficult to
conceive since measurements relying on MF multipole
interactions (like photoionization) are diagonal in jΩi by
definition. The von Neumann entropy, S ¼ −Trfρ log ρg,
is one quantity containing these coherences and thus cannot
be constructed here.
There remain important avenues of investigation. The

entanglement entropy of the vibronic subsystem, SvibðtÞ ¼
−Trfρ̃ðtÞ log ρ̃ðtÞg, where ρ̃nn0 ðtÞ ¼ 8π2A0

00ðn; n0; tÞ is the
reduced vibronic density matrix, can be constructed. The
time-varying electron entropy, SelðtÞ in the NH3 B̃1E00 state
may provide a quantitative measure of the electronic-
rotational entanglement [89–92]: its time dependence
may illuminate the role of entanglement in molecular
electronic dynamics [41–43,93]. Investigating entangle-
ment with an initially thermalized subsystem, as in this
example, is an interesting prospect from the perspective of
quantum thermodynamics [89,92,94]. Opportunities for
optimal quantum control of MF dynamics via ρðΩ; tÞ also
emerge [60]. For instance, in NH3, the j�i states may
be controlled by the non-resonant dynamic Stark effect
[95–97]. Manipulating the LFDM in such a manner would
control the time dependence of the electron density, a
feature directly relevant to the burgeoning field of ultrafast
molecular chirality [98,99]. MFQT would allow similar
experimental manipulation of charge migration in mole-
cules, since the MF charge dynamics are directly accessible
experimentally.
Photoinization-based MFQT requires as input complete

REMPI experiments achieved only for a handful of
molecules [59,63,64,75]. Emerging attosecond techniques
may be applicable: rotational wave packet studies [100] or
angle-resolved RABBIT [101,102] may provide sufficient
information for in situ complete photoionization experi-
ments from an electronic molecular wave packet. In
general, when many electronic and/or vibrational states
are excited, the matrix inversion problem in Eq. (2)
becomes ill posed. Sophisticated mathematical methods
were developed to deal with such situations, if physical
constraints can be provided [82,103]. Although the com-
plete photoionization experiment problem itself can be
similarly ill posed, only products of the dipole matrix

elements are needed to determine Ĉ, circumventing the
more complex problem of determining individual dipole
matrix elements [74]. High quality ab initio dipole matrix
elements [104–107] may provide another suitable meth-
odology. Finally, other angle-resolved scattering probes
sensitive to the MADMs also apply [108–110], provided
the link between experiment and the MADMs is rigorously
determined. We anticipate that this work will inspire a
number of interesting directions in the study of quantum
dynamics, charge migration, coherences, and entanglement
in isolated molecules.
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