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We study the process eþe− → Λþ
c Λ̄−

c at twelve center-of-mass energies from 4.6119 to 4.9509 GeV
using data samples collected by the BESIII detector at the BEPCII collider. The Born cross sections and
effective form factors (jGeff j) are determined with unprecedented precision after combining the single and
double-tag methods based on the decay process Λþ

c → pK−πþ. Flat cross sections around 4.63 GeV are
obtained and no indication of the resonant structure Yð4630Þ, as reported by Belle, is found. In addition, no
oscillatory behavior is discerned in the jGeff j energy dependence of Λþ

c , in contrast to what is seen for the
proton and neutron cases. Analyzing the cross section together with the polar-angle distribution of the Λþ

c

baryon at each energy point, the moduli of electric and magnetic form factors (jGEj and jGMj) are extracted
and separated. For the first time, the energy dependence of the form factor ratio jGE=GMj is observed,
which can be well described by an oscillatory function.
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One of the most challenging aspects of the standard
model of particle physics is to understand quantitatively
how the strong interaction, as described by the fundamental
theory of quantum chromodynamics (QCD), binds quarks
into hadrons and generates the majority of hadron mass.
Important information concerning the quark dynamics
inside hadrons is obtained from their intrinsic electro-
magnetic structure and described by electromagnetic form
factors [1]. While spacelike form factors for the proton and
neutron are accessible through elastic electron scattering,
the most viable option for unstable hadrons is the timelike
form factors. Recently, precise measurements of pair
production of protons [2–6], neutrons [7–9], and strange
hyperons [10–15] in the annihilation of electron and
positron has brought renewed insights into the electromag-
netic structure of baryons [16]. In these measurements, the
nonzero cross sections near kinematic threshold, followed
by a wide-range plateau, have triggered various theoretical
interpretations [17–19]. Moreover, a striking oscillation
feature has been observed in the energy dependence of the
effective form factor of the proton [20]. This feature has
been confirmed for the neutron with the same oscillation
frequency by BESIII [7], while a recent SND measurement
near threshold suggests a much lower frequency [8]. A
similar oscillatory behavior has also been extracted from

the proton jGE=GMj distribution [21]. The source of the
oscillations is not yet established but has been discussed
extensively [22–25].
As the charm analog of proton, the Λþ

c hadron can shed
new light on baryon structure. The pair production process
of eþe− → Λþ

c Λ̄−
c was first studied by Belle via the initial-

state radiation (ISR) technique [26]. A resonant structure
around the center-of-mass (c.m.) energy (

ffiffiffi
s

p
) of 4.63 GeV,

denoted as the Yð4630Þ, was discerned in the cross section
line shape. This charmoniumlike state is regarded as an
exotic-hadron candidate, such as a charmed baryonium
[27,28], a meson-meson molecular state [29], or a tetra-
quark state [30,31]. However, the BESIII measurement of
eþe− → Λþ

c Λ̄−
c from the threshold to 4.6 GeV [32] implies

a different energy-dependence trend of the cross section.
This significantly affects the parametrization of the
Yð4630Þ [33–36]. To understand the interplay between
the Λþ

c pair production and the charmoniumlike resonance,
a high-precision measurement of the cross section around
4.63 GeV is required [37–39]. A yet deeper understanding
of these dynamics can be gained by investigating the energy
dependence of jGE=GMj [40,41]. This has only been
measured at two points below 4.6 GeV by BESIII [32].
Therefore, a thorough study of the effective form factor and
jGE=GMj ratio of the Λþ

c baryon is highly desired for the
interpretation of the oscillation features and baryon
structure.
In this Letter, the Born cross sections (σ) of the process

eþe− → Λþ
c Λ̄−

c and the effective form factor of Λþ
c are

determined at twelve c.m. energies from 4.6119 to
4.9509 GeV [42]. In addition, the Born polar angle (θ)
distribution of Λþ

c is analyzed at each energy point to
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determine jGE=GMj and from that, jGMj. The polar angle of
the Λþ

c baryon, which is produced by a virtual photon (γ�),
assuming one-photon exchange in electron-positron anni-
hilation, is defined as the angle between the momenta ofΛþ

c
and positron in the rest frame of γ�. In this work, the decay
mode Λþ

c → pK−πþ and its charge conjugate (referred to
as the signal mode hereafter) are employed to reconstruct
the Λþ

c and Λ̄−
c signals, respectively. This mode benefits

from a relatively large branching fraction (BF) [43]. As a
result, two individual measurements of the cross section
and the polar-angle distribution are obtained at each c.m.
energy, which are then averaged to yield the final result. To
reduce the systematic uncertainty related to the BF of the
signal mode and detection efficiency, a double-tag (DT)
approach, where both the Λþ

c and Λ̄−
c baryons are recon-

structed in each event, is used in addition to the single-tag
(ST) method [32].
The data were collected with the BESIII detector [44]

operating at BEPCII. Monte Carlo (MC) packages based on
the GEANT4 software [45] are used to produce simulated
events, where the interaction between secondary particles
and the detector material is included. To estimate the
detection efficiency, the KKMC [46] program is used to
generate the ST and DT signal MC events, where the
ISR [47] and beam-energy spread [48] effects are simu-
lated. In the signal MC samples, the tagged Λ�

c is set to
decay via the signal mode which is modeled by the
dedicated partial-wave analysis, while the untagged one
decays inclusively according to the BFs listed in Particle
Data Group (PDG) [43,49]. In addition, the c.m. energy-
dependent Born cross section and polar angle distribution
of Λþ

c , which are measured and parameterized in this work,
are implemented in KKMC iteratively. To study the back-
ground, inclusive MC samples, including the Λþ

c Λ̄−
c , QED-

related, and hadronic [50] (with the Λþ
c Λ̄−

c events excluded)
events, are produced. The subsequent decays of all the
intermediate states in MC samples are simulated by
EVTGEN [51].
The Λ�

c candidates are formed with the charged tracks
selected with the same criteria as those used in Ref. [52].
The energy difference ΔE ¼ E − Ebeam and beam-con-
strained mass MBC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam=c

4 − p2=c2
p

are utilized to
determine the number of the ST signal events, where E and
p are the energy and momentum of the Λ�

c candidates,
respectively. The same approach, as described in Ref. [32],
is applied here on the ST signal candidates at all the c.m.
energies, except for an asymmetric requirement window of
ð−34; 20Þ MeV for ΔE. Studies based on the signal and
inclusive MC samples demonstrate that the simulation
reproduces experimental data well and the background
in the MBC distribution can be described by an ARGUS
function [53]. The ST yield (NST) and detection efficiency
(εST) are determined by applying unbinned maximum
likelihood fits on the MBC distributions of data and
the ST signal MC samples, respectively. The fit result at

ffiffiffi
s

p ¼ 4.6819 GeV is shown in Fig. 1, and those at other
c.m. energies can be found in the Supplemental
Material [54].
The Born cross section of the eþe− → Λþ

c Λ̄−
c process is

calculated using

σ� ¼ N�
ST

ε�STfISRfVPLintB�
; ð1Þ

where the indexes “�” denote the positive and negative ST
modes. The ISR correction factor fISR is derived from the
QED theory [47] and calculated with KKMC in an iterative
process where the Born cross-section line shape is used as
input and updated in each iteration. The vacuum polariza-
tion (VP) correction factor fVP is between 1.054 and 1.056
in this energy region [56]. The integrated luminosity Lint is
measured with Bhabha events at each energy point [42].
The BFs of the signal mode and its charge conjugate,
denoted as B�, are known to a precision of 5.1% [43]
which would give rise to a significant uncertainty in the
cross section. To avoid this problem, a DT analysis is
carried out using the datasets with Lint greater than
350 pb−1. The total number of the DT events (NDT) is
proportional to B� as [54]

NDT ¼ B�
X9
n¼1

�
N∓;n

ST εnDT
ε∓;n
ST

�
; ð2Þ

where nine datasets, including that at
ffiffiffi
s

p ¼ 4.5995 GeV,
are analyzed and εDT is the DT detection efficiency. The
superscript “n” indicates the nth c.m. energy used in the DT
analysis. Because of the limited BF of the signal mode,
Nþ;n

ST and N−;n
ST are almost statistically uncorrelated [57] and

thereby usually different, hence Bþ and B− are considered
to be separate observables. Combining Eqs. (1) and (2), the
individual cross section is recast as
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FIG. 1. Fit to the MBC distribution of the Λþ
c candidates atffiffiffi

s
p ¼ 4.6819 GeV, where the black dots denote data and the blue
solid curve is the sum of fit functions. The signal and background
functions are illustrated by the red dashed and green dash-dotted
curves, respectively. Here, Nþ

ST and εþST are the ST yield and
detection efficiency, where the uncertainties are statistical.
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σ� ¼ N�
ST

ε�STfISRfVPLintNDT

X9
n¼1

�
N∓;n

ST εnDT
ε∓;n
ST

�
; ð3Þ

where the ratio εnDT=ðε∓;n
ST ε�STÞ cancels most of the system-

atic effects caused by the efficiency differences between
data and MC simulation in tracking and particle identi-
fication (PID).
Candidate DT events are selected with the following

criteria: (i) at least one proton, K− and πþ meson, as well as
their charge conjugates, are selected and identified in each
event via the same tracking and PID requirements as
applied in the ST analysis; (ii) the Λþ

c and Λ̄−
c candidates

are reconstructed with the decays Λþ
c → pK−πþ and

Λ̄−
c → p̄Kþπ−, respectively. If there is more than one

Λþ
c ðΛ̄−

c Þ candidate in an event, the one with the smallest
jΔEþjðjΔE−jÞ is retained; (iii) the same acceptance win-
dow as used in the ST analysis is implemented on jΔE�j at
all the nine c.m. energies to suppress the background from
nonsignal Λ�

c decays. These selection criteria are also
applied on the DT signal MC sample to evaluate the
corresponding εDT [54].
After the above selection, the two-dimensional (2D)

distribution, i.e., ðMþ
BC;M

−
BCÞ, is obtained at each c.m.

energy. Studies with MC samples demonstrate that the
simulated DT events reproduce data well and the contami-
nation from Λþ

c Λ̄−
c events with nonsignal decays is neg-

ligible. The dominant background comes from the inclusive
hadronic events, which accumulates in the vicinity of
Mþ

BC ¼ M−
BC. To determine NDT, a 2D simultaneous

unbinned likelihood fit is applied on the (Mþ
BC;M

−
BC)

distributions of the nine datasets, where the BF B� is
the shared parameter at all the c.m. energies. In each
(Mþ

BC;M
−
BC) distribution, the signal is described by the

corresponding DT signal MC shape convoluted with a 2D
Gaussian function. The background is described by the
product of an ARGUS function and a Gaussian function
with the arguments ðMþ

BC þM−
BCÞ=2 and ðMþ

BC −M−
BCÞ,

respectively. In the background functions, the truncation
parameter of the ARGUS function is fixed to be the
corresponding Ebeam, while the other parameters are free
and shared by different c.m. energies. There are two
simultaneous fits sharing Bþ and B−, respectively. The
one-dimensional projections of the two 2D fits at different
c.m. energies are shown in [54]. From these fits, the
BFs are determined to be Bþ ¼ ð6.53� 0.21Þ% and
B− ¼ ð6.79� 0.22Þ%, which give an average of
B ¼ ð6.66� 0.22Þ%. Here the uncertainties are statistical,
and Bþ and B− are fully correlated. The DT approach is
validated by a MC study using the combined inclusive
Λþ
c Λ̄−

c and hadronic MC samples, which reproduce the
signal and background processes, respectively. These
inclusive MC samples are ten times the size of the data
samples. Moreover, the B� are evaluated individually at
each c.m. energy by the similar 2D fit. No energy

dependency is observed in the nine groups of B� and
their weighted averages are consistent with the values
obtained with the two simultaneous 2D fits.
From the DTanalysis, the total DTyield is determined to

be NDT ¼ 1007� 32. Accordingly, the individual cross
sections at each c.m. energy are determined with Eq. (3),
which are given in [54].
The systematic uncertainties on the cross-section meas-

urement come from reconstruction-related and general
sources. The former is mainly due to the size of the signal
MC samples, the MC modeling of the Λ�

c production and
decay, the tracking and PID efficiencies of final-state
particles, and the DT analysis. The uncertainty of εST
arising from the limited MC sample size, which varies from
0.1% to 0.2% for different c.m. energies, is taken as the
systematic uncertainty. At higher energies, Λ�

c is usually
produced with higher momentum, therefore the rest frame
of its decay products is highly boosted. Since the detection
efficiency of Λ�

c with small scattering angle decreases due
to the limited acceptance at the edge of the detector, the
uncertainty of the polar-angle distribution input into KKMC

propagates into εST and εDT, and thereby the cross section.
These systematic uncertainties are estimated to be less than
0.6%. The MC modeling of the signal decay mode is
validated by extensive comparisons between data and MC
simulation, and is considered to have a negligible contri-
bution to the systematic uncertainty. Although the DT
procedure is intrinsically robust against systematic bias,
there is still a residual uncertainty associated with the
tracking and PID efficiencies. Studies based on the control
samples of J=ψ → pp̄πþπ− and J=ψ → K0

SK
�π∓ decays,

are used to correct εST and εDT, and reevaluate the cross
sections. The observed relative differences in σþ and σ−,
which are less than 0.4% and 0.1%, respectively, are taken
as the systematic uncertainties.
The systematic uncertainty associated with the DT

analysis has three components: (i) the statistical uncertainty
of NDT which is determined to be 3.2% from the 2D
simultaneous fit; (ii) the description of the background
component in the simultaneous 2D fit, for which two
alternative background functions are tested; (iii) the uncer-
tainties of N∓;n

ST , ε∓;n
ST , and εnDT appearing in Eq. (3). The

total uncertainty on the cross section from these sources is
3.3%, which is less than the 5.1% uncertainties on B�
according to PDG [43]. This is the reason we implement the
DT approach in this analysis.
The systematic uncertainties on the cross section asso-

ciated with the ΔE and MBC requirements are negligible
since the signal MC sample reproduces the data well.
Moreover, the fit model ofMBC in the ST analysis does not
introduce any significant systematic uncertainty.
The general sources that contribute to the systematic

uncertainties on the cross section arise from the evaluations
of fISR, fVP, and Lint. By using different calculation
algorithms, inputting alternative cross section line shapes
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in the KKMC generator, and considering the uncertainties of
the c.m. energy [42] and energy spread [48], the total
uncertainty of fISR is estimated to be 2.3% at

ffiffiffi
s

p ¼
4.7397 GeV and lower than 1.0% at all other energy
points. The uncertainty on fVP is assigned to be 0.5% [56]
and that of Lint is about 0.5% [42] at all the c.m. energies.
All the systematic uncertainties of σþ and σ− are

correlated at the same c.m. energy, except for those arising
from the statistical uncertainties of NST, εST, and εDT.
Furthermore, the systematic uncertainties from the DT
analysis, fVP, and Lint, obtained at different energy points,
are correlated. Details of these systematic uncertainties are
tabulated in [54].
At each c.m. energy, the average cross section is

determined with the method described in Refs. [32,58].
The results are presented in Table I. Figure 2 illustrates the
comparison of the eþe− → Λþ

c Λ̄−
c cross sections measured

in this study, and by Belle [26]. Also shown are the results
of the previous BESIII measurements [32], which
have been reevaluated [54] using N�

ST and ε�ST of only

the Λþ
c → pK−πþ mode and the updated variables required

in Eq. (3). In our data, the near threshold cross-section
plateau is confirmed up to 4.66 GeV and no resonance
structure is observed around 4.63 GeV.
The effective Λþ

c form factor is calculated from the
average cross section σ as

jGeff j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
σ0
3

�
1þ κ

2

�s
; ð4Þ

where σ0 ¼ 4πα2βC=s, C is the Coulomb factor [32],
β ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − κ
p

, κ ¼ 4m2c4=s, and m is the known mass of
the Λþ

c baryon [43]. Table I lists the calculated jGeff j above
4.6 GeV while those near threshold are given in [54]. The
three-pole model [21] is used to fit the jGeff j distribution,
where an oscillatory behavior is expected in the residuals
between data and the fitted model. However, neither the
model nor its variants [20] can describe the jGeff j distri-
bution. In addition, there is no discernible oscillation
feature in the residual distribution [54].
To precisely determine the jGE=GMj value for Λþ

c
production at a given c.m. energy, the Born polar-angle
distribution of Λþ

c production is studied [59] using the ST
signal sample. There is a sizable fraction of Λþ

c Λ̄−
c ISR-

return events in the ST signal sample, for which the polar
angle of Λþ

c is not accessible. However, for pure Born
events, the polar angle coincides with the scattering
angle. Therefore, the Born polar-angle distribution can
be obtained by applying a cos θ-dependent correction,
accounting for ISR effects, on the produced scattering
angle distribution. Based on the ST signal MC sample,
where the ISR events can be distinguished, the correction is
obtained by dividing the normalized generated scattering-
angle distribution of all the ST signal events by that of the
ST sample with the ISR events excluded. The ISR
correction is further parameterized by an empirical function
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FIG. 2. Comparison of the cross sections of the eþe− → Λþ
c Λ̄−

c
process, where the red dots denote the results of this study and the
green open squares indicate those of Belle [26]. The results of the
previous BESIII measurement [32] are also updated and shown as
red open dots.

TABLE I. Summary of the measured average production cross section, effective form factor, polar angle distribution parameter,
electromagnetic form factor ratio, and magnetic form factor of the charmed baryon in the eþe− → Λþ

c Λ̄−
c process at each energy point,

where the uncertainties are statistical and systematic, respectively.

ffiffiffi
s

p
(GeV) Lint (pb−1) σ (pb) jGeff j (10−2) αΛc

jGE=GMj jGMj (10−2)
4.6119 103.7 208.4� 6.9� 7.0 49.2� 0.8� 0.8 −0.26� 0.09� 0.01 1.31� 0.12� 0.01 43.5� 3.3� 1.5
4.6280 521.5 206.4� 3.1� 6.9 45.5� 0.3� 0.8 −0.21� 0.04� 0.01 1.25� 0.06� 0.01 41.8� 1.5� 1.5
4.6409 551.6 205.1� 3.0� 6.9 43.4� 0.3� 0.7 −0.09� 0.05� 0.01 1.11� 0.05� 0.01 41.8� 1.4� 1.4
4.6612 529.4 200.3� 2.9� 6.8 40.6� 0.3� 0.7 −0.02� 0.05� 0.01 1.04� 0.05� 0.01 40.2� 1.4� 1.4
4.6819 1667.4 188.1� 1.6� 6.3 37.7� 0.2� 0.6 0.15� 0.03� 0.01 0.88� 0.03� 0.01 39.2� 0.8� 1.3
4.6988 535.5 172.3� 2.7� 6.0 35.1� 0.3� 0.6 0.34� 0.07� 0.01 0.72� 0.06� 0.01 38.2� 1.4� 1.3
4.7397 163.9 123.5� 4.2� 5.0 28.2� 0.5� 0.6 0.49� 0.16� 0.03 0.61� 0.13� 0.02 31.4� 2.4� 1.3
4.7500 366.6 128.5� 2.8� 4.4 28.5� 0.3� 0.5 0.42� 0.10� 0.01 0.66� 0.08� 0.01 31.4� 1.6� 1.1
4.7805 511.5 124.0� 2.4� 4.2 27.2� 0.3� 0.5 0.17� 0.07� 0.01 0.88� 0.07� 0.01 28.2� 1.2� 1.0
4.8431 525.2 84.8� 2.0� 2.9 21.6� 0.3� 0.4 0.38� 0.10� 0.01 0.71� 0.09� 0.01 23.4� 1.3� 0.8
4.9180 207.8 98.1� 3.3� 3.5 22.4� 0.4� 0.4 0.62� 0.17� 0.01 0.52� 0.15� 0.01 25.3� 1.9� 0.9
4.9509 159.3 89.6� 3.6� 3.1 21.2� 0.4� 0.4 0.63� 0.21� 0.01 0.52� 0.18� 0.01 24.1� 2.2� 0.9
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to achieve a smooth cos θ-dependent correction. More
details of the parameterization of the ISR correction could
be found in [54].
Benefiting from the large ST yields [54] at each c.m.

energy, the ST sample is divided into 20 cos θ bins [60]. In
each bin, the ST yield is obtained via a fit to the
corresponding MBC spectrum. The one-dimensional bin-
by-bin efficiency and ISR corrections are successively
applied on these cos θ-dependent ST yields to obtain the
individual Born polar-angle distributions. Then the average
Born polar-angle distribution of Λþ

c is fitted with the
function fðcos θÞ ¼ N0ð1þ αΛc

cos2 θÞ, where N0 is pro-
portional to the average Born cross section, and the shape
parameter is defined as αΛc

¼ ð1 − κR2Þ=ð1þ κR2Þ with
R ¼ jGE=GMj [59]. The fit results are shown in [54]. The
obtained αΛc

and jGE=GMj are listed in Table I. The
modulus of the magnetic form factor is evaluated [54] as

jGMj2 ¼
2Nbin

σ0fISRfVPLintB
N0ð1þ αΛc

Þ; ð5Þ

where Nbin ¼ 20 and B is the average BF given previously.
The reliability of the method is validated by studying a ST
signal MC sample which is of a size 100 times larger than
that of data.
The systematic uncertainty of αΛc

, which propagates to
that of jGE=GMj and jGMj, is addressed source by source.
Using the tracking and PID efficiencies obtained from the
aforementioned control samples, εST in each cos θ bin is
corrected and αΛc

is reevaluated. The resulting differences,
which are typically less than 1.2% [61], are regarded as the
systematic uncertainties. The uncertainties of αΛc

arising
from the signal migration between different cos θ bins are
found to be smaller than 4.7%. Since the size of the ST
signal MC sample is limited, there is uncertainty in the
parameters of the empirical ISR correction function. These
parameters are changed by the size of the corresponding
uncertainty to estimate the systematic uncertainty of αΛc

,
for which 5.5% is obtained at most. The systematic
uncertainties due to the ΔE requirement, the MBC fit,
the MC modeling of the signal decay, the bin size, and fit
range of cos θ are negligible.
Table I lists the measured αΛc

, jGE=GMj, and jGMj,
where the systematic uncertainty of jGMj includes the
contributions from the uncertainties of the variables in the
denominator of Eq. (5). Figure 3 shows the resulting
jGE=GMj obtained in this work and the previous BESIII
measurement [32], where that at

ffiffiffi
s

p ¼ 4.5995 GeV is
updated [54] by imposing the ISR correction mentioned
in this Letter. The figure also illustrates a fit using a
function combining the monopole decrease with a damped
oscillation [21]:

jGE=GMjðsÞ ¼
1

1þ ω2=r0
½1þ r1e−r2ω sinðr3ωÞ�; ð6Þ

where ω ¼ ffiffiffi
s

p
− 2m and ri with i ¼ 0, 1, 2, 3 are free

parameters. The oscillation frequency is determined to be
r3 ¼ ð32� 1Þ GeV−1, which is about 3.5 times greater
than that measured for the proton [21].
In summary, the Born cross sections and polar angle

distributions of the process eþe− → Λþ
c Λ̄−

c are studied at
twelve c.m. energies from 4.6119 to 4.9509 GeV.
Benefiting from the large data samples, which enable ST
and DT approaches via the decay Λþ

c → pK−πþ, the cross
sections and effective form factors of Λþ

c are determined
with an unprecedented precision. From the threshold up to
4.66 GeV, our measured cross sections indicate no
enhancement around the Yð4630Þ resonance, which is
different from Belle [26]. In contrast to the case for the
proton and neutron, no oscillatory behavior is discerned in
the effective form-factor spectrum of Λþ

c . However, the
energy-dependence of jGE=GMj reveals an oscillation
feature with a significantly higher frequency than that of
the proton. Our data will serve as important inputs for
theoretical models concerning the internal structure and
production mechanism of baryons.
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