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We prove by construction that all tree-level amplitudes in pure (super)gravity can be expressed as
termwise, gauge-invariant double copies of those of pure (super-)Yang-Mills obtained via on-shell
recursion. These representations are far from unique: varying the recursive scheme leads to a wide variety
of distinct but equally valid representations of gravitational amplitudes, all realized as double copies.
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Introduction.—The rich connections between scattering
amplitudes in gauge theory and gravity have been a source
of tremendous progress in our understanding of both
theories. Among the most seminal of these is so-called
color-kinematic duality [1], which states that gravitational
scattering amplitudes may be represented as “double
copies” of those of Yang-Mills theory, provided the latter
is represented in terms of color-kinematic satisfying
(“dual”) numerators with denominators (typically) built
from scalar φ3 field theory (see, e.g., [2–5]). The existence
of such numerators was first conjectured, but can be proven
at tree level in a number of ways [6–12], with much
evidence suggesting that color-kinematic duality should
continue to the level of loop integrands (see, e.g., [13–23]).
The potential form, structure, and scope of these numer-
ators, as well as the theoretical origins of this story more
generally have been the subject of a great deal of research
(see, e.g., [24–30]).
Prior to the discovery of color-kinematic duality, on-shell

recursion relations [31–33] for tree-level scattering ampli-
tudes led to similarly great leaps in our understanding of
gravitational and gauge-theory amplitudes [34–41]. Some
of this Letter connected directly to results derived from
string and twistor string theory (e.g., [42–46]).
In this Letter, we show that on-shell recursion relations

directly lead to representations of amplitudes in color-
dressed, four-dimensional Yang-Mills theory (YM) and
gravity (GR) that may be expressed in the form

AYMð1;…;nÞ¼
X

a⃗∈SðAÞ

X
Γ

ca⃗αβnðΓα
a⃗
βÞ

DðΓα
a⃗
βÞ

δ2×2ðλ · λ̃Þ

AGRð1;…;nÞ¼
X

a⃗∈SðAÞ

X
Γ

nðΓα
a⃗
βÞnðΓα

a⃗
βÞ

DðΓα
a⃗
βÞ

δ2×2ðλ · λ̃Þ ð1Þ

for any choice fα; βg ⊂ ½n� of the external legs, where
A ≔ ½n�nfα; βg,SðAÞ denotes permutations of the labels in
A and Γ indexes on-shell diagrams arising in recursion. The
realization that on-shell recursion takes this form consti-
tutes a novel proof that all tree amplitudes can be realized as
double copies.
For Yang-Mills theory, the form (1) will be seen to

be somewhat quixotic, as the color-kinematic dual
“numerators” will be simply defined to be the product of
DðΓα

a⃗
βÞ and a more familiar gauge-invariant, on-shell

function [47]; as such, the real novelty arises in the
identification of the denominators DðΓα

a⃗
βÞ, which we

define recursively. It is worth pointing out that because
the color factors appearing in (1) are entirely independent,
these numerators are only “color-kinematic dual” in a rather
trivial sense: neither satisfies any identities.
The existence of formulas such as (1) follows from the

on-shell diagrammatic interpretation of on-shell recursion
in YM. Ignoring factors of color and momentum conser-
vation, the double-copy follows from the fact that for any
primitive [48] on-shell diagram Γ, the on-shell functions fΓ
of gravity and Yang-Mills differ by a simple Jacobian factor
JðΓÞ depending on the graph

fGRΓ ¼ JðΓÞðfYMΓ Þ2: ð2Þ

This general fact (see, e.g., [49–53]) is a simple conse-
quence of the definition of an on-shell function and the
relationship between the 3-particle S matrices of the two
theories: an on-shell function may be defined as the product
of amplitudes evaluated on the residue 1=JðΓÞ of the scalar
graph, which puts all internal lines on-shell; squaring an
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on-shell function in YM gives the correct product of
3-particle amplitudes in GR but squares also 1=JðΓÞ, which
must be corrected by the numerator of (2).
Tree-level, on-shell recursion for YM and GR.—The

starting point for on-shell (BCFW) recursion [33] is to
consider an amplitude as meromorphic function of external
momenta and deform the momenta of any two particles
labeled fα; βg according to

pα↦ p̂αðzÞ≔pαþzλαλ̃β; pβ↦ p̂βðzÞ≔pβ−zλαλ̃β; ð3Þ

where pa≕ λaλ̃a are spinor-helicity variables [54]; this
deformation preserves momentum conservation and keeps
each particle on-shell. (For superamplitudes, the shift (3) is
accompanied by a shift in the Grassmann parameters η̃α ↦
η̃α þ zη̃β that encode the on-shell coherent states [55].)
Note that the choice fα; βg is distinct from the choice
fβ; αg: they differ by parity. At tree level, amplitudes have
poles at finite z corresponding to factorization channels, the
residues of which we may represent diagrammatically as

ð4Þ

where 1=p2
L is the off-shell propagator being cut, with the

left and right amplitudes evaluated with pα�;β� ≔ pα;βðz�Þ
on the location of the pole z� ¼ p2

L=hαjðpLÞjβ� and
summed over the states I that can be exchanged.
Importantly, the deformed legs must necessarily be on
opposite sides of the factorization channel for the simple
reason that p̂α þ p̂β ¼ pα þ pβ is z-independent.
Provided there are no poles at infinity, Cauchy’s theorem

allows us to write an amplitude as a sum over all residues of
the form (4) [56]. For YM or GR, this will be the case
provided the deformed momenta are chosen judiciously
according to their helicity (see, e.g., [57]), while amplitudes
in maximally supersymmetric (N ¼ 4) YM (sYM) or
(N ¼ 8) GR (sGR) will be free of poles at infinity
regardless of which legs are chosen. Because tree-level
amplitudes in pure (or any degree of less supersymmetric)
YM and GR are identical to those of sYM and sGR for
appropriately restricted sets of external states [55], we may
therefore without loss of generality consider the case of
maximally supersymmetric YM and GR, ensuring that
amplitudes are free of poles at infinity for any choice of legs
fα; βg. Upon truncation of the external states to those
appropriate, our results are equally valid for YM and GR
with any degree of less or no supersymmetry.
Notice that the channels (4) allow for arbitrary distri-

butions of the other ðn − 2Þ legs A ≔ ½n�nfα; βg. Thus, on-
shell recursion results in a sum of terms of the form

A ¼
X
a⃗∈SðAÞ

ða⃗L;a⃗RÞ¼a⃗

ALðα̂�; a⃗L; IÞ
1

p2
αaL

ARðI; a⃗R; β̂�Þ

≕
X

a⃗∈SðAÞ
Aðα; a⃗; βÞ; ð5Þ

whereAðα; a⃗; βÞ ≔ Aðα; a1;…; an−2; βÞ are partial ampli-
tudes involving external momenta with specific ordering.
As amplitudes in color-dressed YM and gravity are fully

permutation-invariant (due to Bose symmetry), any choice
of legs fα; βg may be taken; and any particular ordering of
the other legs a⃗∈SðAÞ will suffice to generate the full
amplitude upon summation over permutations of the labels
a⃗. Thus, we may without loss of generality focus our
attention on the determination of the partial ampli-
tude Að1; 2;…; n − 1; nÞ.
It is important to note that in neither theory (sYM nor

sGR) is the partial amplitude unique: not only does it
depend on the legs chosen, but also the specific sequence of
choices made for iterated recursion. Of course, the so-
called “primitive” amplitudes of YM—those partial ampli-
tudes that have been stripped of their color tensors—do
enjoy many scheme independent properties. But for our
purposes, it is more natural to use “partial amplitude” to
denote a term arising in the recursion with a particular
ordering of their external legs, including their color
tensors, which are recursively defined in terms of 3-particle
amplitudes.
One particularly convenient recursion schemewould be to

always choose the first and last leg of every iteratively
recursed amplitude, and use the same parity of bridge at
each stage of recursion. In the case of Yang-Mills, this results
in partial amplitudes dressed by the color factors appearing in
the familiar representation ofDelDuca–Dixon–Maltoni [58].
Letting AYMðα; a⃗; βÞ≕ cαa⃗βAYMðα; a⃗; βÞ, it is easy to see
that the recursion (5) separates color and kinematics cleanly
so that, upon recursing iteratively down to factorizations
involving only three-point amplitudes, we find

ca⃗αβ ≔
X
ei

cα;a1;e1ce1;a2;e2 � � � ce−1;an−2;β; ð6Þ

where cacb are the structure constants of some Lie algebra
(intowhichwemay freely absorb any coupling constant), and
fa; b; cg are (adjoint) color labels for the gluons. These color
tensors are all independent under Jacobi relations, and the so-
called “primitive’’ ordered amplitudes of YM turn out to be
gauge-invariant, local, dihedrally symmetric, and to enjoy
Kleiss-Kuijf relations [59]. (All of these properties can be
deduced from the Jacobi identity and Bose symmetry of
color-dressed amplitudes alone.) Besides gauge invariance,
none of these properties will be enjoyed by the partial
amplitudes of gravity, the meaning of which will depend
strongly on how recursion is implemented (analogously to
how the specific color tensors involved in partial amplitudes
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in YM are recursively defined via a particular recursion
scheme).
Because this recursion scheme results in the same color-

factor cαa⃗β coefficient for every term, it is common to factor
it out entirely and focus on the color-stripped partial
amplitude primitive AYMð1; 2;…; n − 1; nÞ.
On-shell diagrammatics of YM and GR.—For color-

stripped partial amplitudes in YM, there exists a powerful
diagrammatic manifestation of recursion relations follow-
ing from the simple fact that

ð7Þ

Here, we have introduced “flat” vertices to denote ordered
partial amplitude primitives. The right-hand side represents
an on-shell function of YM: the product of (color-stripped)
amplitudes at the vertices, summing over all the on-shell,
internal states that can be exchanged between them. These
functions are extremely well understood: they are classified
combinatorially, and all their functional relations can be
understood to arise homologically from an auxiliary
Grassmannian “positive” geometry (see, e.g., [47,60]).
Applying recursion successively results in a representa-

tion of color-stripped YM partial amplitudes as sums
over on-shell functions encoded by specific on-shell dia-
grams fΓg,

AYMð1;2;…;n−1;nÞ¼
X
Γ
fYMΓ ≕

X
Γ
f̂YMΓ δ2×2ðλ · λ̃Þ; ð8Þ

where the sum is over on-shell diagrams fΓg of the form (7)
involving exclusively three-point vertices. The NkMHV-
degree of an amplitude is encoded by the graph according
to k ¼ 2nB þ nW − nI − 2, where nBðnWÞ denotes the
number of blue(white) vertices and nI the number of
internal lines. Even for maximally helicity violating
(MHV) amplitudes, there are vastly more on-shell dia-
grams than on-shell functions as diagrams related by
mergers and square moves leave on-shell functions
unchanged in YM [47]. On-shell diagrams in gravity enjoy
only the square move as an (unmodified) equivalence
relation [49].
Color-kinematic denominators for gravity.—For ampli-

tudes in GR, there is no simple analog of (7) (see, e.g.,
[49,50]), but, supposing that there is some diagrammatic
representation for partial amplitudes in GR in terms of on-
shell diagrams of YM, we may recursively conclude that

ð9Þ

The fact that BCFW recursion for GR can be expressed in
the form (9) is reasonably well-known [49–53]. The precise
form of DðΓÞ depends both on the graph Γ and the
recursion scheme followed. If we always choose the first
and last labels for subsequent recursion, so that every
diagram appearing is of the form Γα

a⃗
β ≔ ΓL½α̂�; a⃗L; I� ⊗

ΓR½I; a⃗R; β̂��, then DðΓÞ will be

DðΓα
a⃗
βÞ ¼ p2

αaL
DðΓα̂�

a⃗L
IÞDðΓI

a⃗R
β̂
� Þ: ð10Þ

(Here, we have used notation Γα
a⃗
β to emphasize the

different roles of legs involved in any particular diagram
arising via successive recursion, and also to highlight the
similarity these factors will have with color tensors.)
We call these factors color-kinematic denominators

because if we let nðΓÞ ≔ DðΓÞf̂YMΓ then individual terms
appearing in the recursion of an amplitude in YM take the
form

cαa⃗βnðΓα
a⃗
βÞ

DðΓα
a⃗
βÞ

¼ cαa⃗β f̂
YM
Γα
a⃗
β
; ð11Þ

while terms in gravity are given by the double-copy

nðΓα
a⃗
βÞnðΓα

a⃗
βÞ

DðΓα
a⃗
βÞ

¼ DðΓα
a⃗
βÞðf̂YMΓα

a⃗
β
Þ2: ð12Þ

Illustrations of on-shell double copies.—Arguably the
simplest amplitudes in either theory are the so-called
ðNk¼0ÞMHV amplitudes [42,46,61]. On-shell recursion
results in a single term for ordered partial amplitudes in
either theory:

AYM
MHVð1;…; nÞ ¼ ca⃗1 n

δ2×4ðλ · η̃Þδ2×2ðλ · λ̃Þ
h12ih23i � � � hn − 1nihn1i

≕ ca⃗1 n
nðΓMHV

1 n Þ
DðΓMHV

1 n Þ δ
2×2ðλ · λ̃Þ

≕ ca⃗1 nPTð1 � � � nÞδ2×2ðλ · λ̃Þ; ð13Þ

where the denominators are determined recursively. In the
default recursion scheme (10), we find
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DðΓMHV
1 n Þ ≔ p2

n−1n

Yn−1
j¼4

h1jð2 � � � j − 2Þjðj − 1Þjji
h1ji ;

nðΓMHV
1 n Þ ≔ DðΓMHV

1 n Þ δ2×4ðλ · η̃Þ
h12ih23i � � � hn − 1nihn1i

¼ ½32�
h23ihn1i2

Yn−1
j¼4

h1jð2 � � � j − 1Þjj�
h1ji δ2×4ðλ · η̃Þ;

ð14Þ

this representation immediately allows us to write the
corresponding expressions for GR as a double-copy:

AGR
MHVð1;…;nÞ¼ nðΓMHV

1 n ÞnðΓMHV
1 n Þ

DðΓMHV
1 n Þ δ2×2ðλ · λ̃Þ

¼DðΓMHV
1 n ÞðPTð1 � � �nÞÞ2δ2×2ðλ · λ̃Þ: ð15Þ

Unlike the case of YM, these partial amplitudes in GR are
noncyclic and involve nonlocal poles. Only upon summing
over all ðn − 2Þ! orderings of f2;…; n − 1g do we recover
a local, permutation-invariant amplitude. We have checked
that this formula agrees with the closed-form expression of
Hodges [62] through n ¼ 12 particles.
It is worth noting that this representation of MHV

amplitudes in gravity (15) is identical (upon a rotation
of labels) to that found in [40]. And as with [40], the use of
the “bonus relations” stemming from the good large-z
behavior of amplitudes in GR [55] allows us to rewrite (15)
as a sum over ðn − 3Þ! terms [38]:

ÂGR
MHV¼

X
a⃗∈Sð3;…;n−1Þ

hn1ih23i
hn2ih13iDðΓ2a⃗

1 nÞðPTð12a⃗nÞÞ2: ð16Þ

[Here, Â is used analogously to (9): it simply denotes
the amplitude divided by the momentum-conserving δ
function δ2×2ðλ · λ̃Þ.]

For higher Nk>0MHV degrees, on-shell recursion typ-
ically involves a sum over terms, each represented in YM
by a particular, primitive on-shell diagram. The simplest
nontrivial example is the 6-particle NMHV amplitude,
which involves three terms to represent the ordered
amplitude. Following the recursion scheme described
above, the three on-shell diagrams fΓ1;Γ2Γ3g that result
are given in Table I, where we have also indicated the
numerators nðΓiÞ and denominators DðΓiÞ of each. Thus,
we may write the ordered, partial NMHV amplitude
primitive in YM as

AYM
6;1 ð1;…;nÞ¼ ca⃗1 6

�
nðΓ1Þ
DðΓ1Þ

þ nðΓ2Þ
DðΓ2Þ

þ nðΓ3Þ
DðΓ3Þ

�
δ2×2ðλ · λ̃Þ

ð17Þ

and the corresponding partial amplitude in GR as the
double-copy

AGR
6;1 ð1;…; nÞ ¼

�
nðΓ1Þ2
DðΓ1Þ

þ nðΓ2Þ2
DðΓ2Þ

þ nðΓ3Þ2
DðΓ3Þ

�
δ2×2ðλ · λ̃Þ:

ð18Þ

In both cases, these partial amplitudes must be summed
over the ðn − 2Þ! orderings of the legs f2;…; 5g. Although
all diagrams involved in the representation of a single
partial amplitude involve the same color tensor, this is not
in any conflict with (1). We have checked this expression
against the those obtained by the string-based results of
Kawai-Lewellen-Tai [63].
The numerators listed in Table I involve Grassmann δ

functions involving the η̃’s that label the external states of
each supermultiplet [55]; they are defined by

δ3×4ðCa · η̃Þ ≔ δ2×4ðλ · η̃Þδ1×4ð½aaþ 1�η̃a−1
þ ½aþ 1a − 1�η̃a þ ½a − 1a�η̃aþ1Þ: ð19Þ

TABLE I. On-shell, gauge-invariant contributions to the 6-point NMHV partial amplitudes of Yang-Mills and gravity. The Grassmann
δ functions δ3×4ðCi · η̃Þ appearing in these numerators are defined in (19).

Γi

JðΓiÞ s61s234s34DðΓ1Þ s61s23s45DðΓ2Þ s61s345s34DðΓ3Þ
1 − 1DðΓiÞ s56fh1jð2Þjð34Þj5i=h15ig

fh1jð23Þjð4Þjð3Þj2�=h1jð43Þj2�g
s123fh1jð2Þjð3Þjð45Þj6�=h1jð23Þj6�g

fh1jð23Þjð4Þjð5Þj6�=h1jð45Þj6�g
s12f½2jð34Þjð5Þj6�=½26�g

fh5jð4Þjð3Þjð45Þj6�=h5jð34Þj6�g
1 − 1nðΓiÞ fh12ih34i½56�δ3×4ðC3 · η̃Þ=

s234h1jð56Þj2�½34�h51ih61ig
f½23�h45iδ3×4ðC5 · η̃Þ=
h1jð23Þj6�2½45�h23ig

fh12i½34�½56�δ3×4ðC1 · η̃Þ=
s345h5jð34Þj6�h34i½26�½61�g
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Notice that δ3×4ðCa · η̃Þ is invariant under permutations of
both the set fa − 1; a; aþ 1g and its complement. This will
turn out to have interesting consequences as we discuss in
the forthcoming work [64].
Although the expression (17) may seem unusual, it is

worth observing that, for example,

nðΓ2Þ
DðΓ2Þ

¼ δ2×4ðλ · η̃Þδ1×4ð½56�η̃4 þ ½64�η̃5 þ ½45�η̃6Þ
½56�h12ih3jð45Þj6�s123½4jð56Þ1ih23i½45�

; ð20Þ

is simply the (momentum-space version of the) familiar R
invariant R½1; 3; 4; 5; 6� (see, e.g., [65]).
Up to minor conventional differences, the recursion

scheme used to construct denominators (10) generally
reproduces the form of amplitudes in GR as they were
derived in [39]. We have implemented in this in
MATHEMATICA and have verified agreement against
Kawai-Lewellen-Tai [63] through the 10-particle
N3MHV amplitude. With BCFW we can recursively
construct gauge-invariant double copies for all n, thus
concluding the proof. These tools will be made available in
a forthcoming, public package for tree amplitudes more
generally [66] (see also [67]).
Nonuniqueness of dual denominators.—As emphasized

above, even restricting ourselves to successively choosing
the first last legs for all iterated recursions, variability
emerges from the chiral asymmetry of the BCFW

deformation (3). Even for five particles, choosing fα; βg
to be f1;5g versus f5; 1g (conjugating the shifting rule)
results in twodistinct diagramsΓa andΓb as shown inTable II
corresponding to the distinct primitives nðΓiÞ2=DðΓiÞ

AGR
a ð1;…; 5Þ ≔ h1jð2Þjð3Þj4i½45�δ2×8ðλ · η̃Þ

h14ih45iðh12ih23ih34ih51iÞ2 δ
2×2ðλ · λ̃Þ;

AGR
b ð1;…; 5Þ ≔ h2jð3Þjð4Þj5i½12�δ2×8ðλ · η̃Þ

h12ih25iðh23ih34ih45ih51iÞ2 δ
2×2ðλ · λ̃Þ:

Nevertheless, it is easy to verify that the sum over their
permuted images agree:

AGR ¼
X

a⃗∈Sð½2;…;4�Þ
AGR

a ð1; a1;…; a−1; 5Þ

¼
X

a⃗∈Sð½2;…;4�Þ
AGR

b ð1; a1;…; a−1; 5Þ:

This variability only proliferates for higher multiplicity,
as evidenced by the four examples for 6-point MHV given
in Table III, where the alternative expressions were found
by merely varying the parity of the recursive choice made at
each step. For example, Γa represents the default scheme—
a consistent choice of parity—leading to an instance
of (14); while for Γc, the opposite parity was chosen at
the first stage, relative to all subsequent recursions. More

TABLE II. Alternative recursion schemata resulting in distinct ordered, partial amplitudes AGRð1; 2; 3; 4; 5Þ.

Γi

JðΓiÞ s51s23DðΓaÞ s51s34DðΓbÞ
DðΓiÞ s45fh1jð2Þjð3Þj4i=h14ig s12fh2jð3Þjð4Þj5i=h25ig
nðΓiÞ f½23�½45�=h14ih23ih51igδ2×4ðλ · η̃Þ f½12�½34�=h34ih25ih51igδ2×4ðλ · η̃Þ

TABLE III. Alternative recursion schemata resulting in distinct ordered, partial amplitudes AGRð1; 2; 3; 4; 5; 6Þ.

Γi

JðΓiÞ s61s23s234DðΓaÞ s61s34s234DðΓbÞ s61s34s345DðΓcÞ s61s23s345DðΓdÞ
DðΓiÞ s56fh1jð2Þjð3Þj4i=h14ig

fh1jð23Þjð4Þj5i=h15ig
s56fh2jð3Þjð4Þj5i=h25ig
fh1jð2Þjð34Þj5i=h15ig

s12fh2jð3Þjð4Þj5i=h25ig
fh2jð34Þjð5Þj6i=h26ig

s12fh2jð3Þjð45Þj6i=
h26igfh3jð4Þjð5Þj6i=h36ig

nðΓiÞ fh1jð23Þj4�½23�½56�=
h14ih15ih23ih61igδ2×4ðλ · η̃Þ

fh5jð34Þj2�½34�½56�=
h15ih25ih34ih61igδ2×4ðλ · η̃Þ

fh2jð34Þj5�½12�½34�=
h25ih26ih34ih61igδ2×4ðλ · η̃Þ

fh6jð45Þj3�½12�½45�=
h26ih36ih45ih61igδ2×4ðλ · η̃Þ
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generally, the equivalence of expressions upon distinct
variations gives powerful identities among not merely the
partial amplitudes in YM, but even among individual on-
shell functions appearing in Nk>0MHV amplitudes. We
will explore the scope of these possibilities and their
consequences in a forthcoming work [64].
Conclusions and futures directions.—The number of

terms generated by BCFW to represent the n particle
NkMHV amplitude for a specific ordering is given by a
Narayana number f1=½n − 3�gðn−3kþ1

Þðn−3k Þ. It is natural to
suppose that including a sum over ðn − 2Þ! permutations of
leg labels would result in as many more terms in the
expression for gravity. This turns out to not be the case—as
evidenced, for example, by the more compact expression
for MHV amplitudes (16).
Interestingly, for higher multiplicity and NkMHV degree,

considerations of Grassmannian geometry of the η̃ coef-
ficients expose even more symmetry than would result from
mere permutation invariance of amplitudes in GR [64].
For the 10-particle N3MHV amplitude, for example, we
require only 343 252 distinct superfunctions—about 20
times fewer than the naïve estimate of ð175 × 8!Þ.
Moreover, the contributions that appear are found to satisfy
a number of novel functional relations, some of which can
be demonstrated using bonus relations or by equating
formulas resulting from different recursion schemata, but
we have also stumbled into yet further relations that
remain to be understood. We explore some of these aspects
of gravitational amplitudes in [64]. This additional, geo-
metric structure hints at the possibility of a broader
geometric story, perhaps analogous to the “gravituhedron”
described in [52].
While the existence of color-kinematic dual numerators

remains conjectural beyond tree level, there is a great deal
of evidence from specific examples that the double-copy
should generalize to loop integrands (in some form or
other) [13–16,68–70]. In Ref. [49], Heslop and Lipstein
gave evidence at one loop that the obvious extension of on-
shell recursion for loop integrands for sYM [71] works also
for sGR. It is natural to wonder if this Letters more
generally, and if loop amplitude integrands for sGR
continue to be generated as a double-copy of those for
color-dressed sYM.
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