
Kontsevich-Segal Criterion in the No-Boundary State Constrains Inflation

Thomas Hertog ,1 Oliver Janssen ,2 and Joel Karlsson 1

1Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
2International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy

and Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy

(Received 5 June 2023; revised 17 August 2023; accepted 16 October 2023; published 8 November 2023)

We show that the Kontsevich-Segal (KS) criterion, applied to the complex saddles that specify the
semiclassical no-boundary wave function, acts as a selection mechanism on inflationary scalar field
potentials. Completing the observable phase of slow-roll inflation with a no-boundary origin, the KS
criterion effectively bounds the tensor-to-scalar ratio of cosmic microwave background fluctuations to be
less than 0.08, in line with current observations. We trace the failure of complex saddles to meet the KS
criterion to the development of a tachyon in their spectrum of perturbations.
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Introduction.—Future experiments promise to tighten
the upper bound on the tensor-to-scalar ratio r of CMB
fluctuations down to around 10−3 [1,2]. It is therefore of
great experimental and theoretical interest to understand
whether quantum gravity can produce inflationary models
with a level of primordial gravitational waves above this.
The value of r predicted by inflationary theory is related

to the total amount of displacement experienced by the
inflaton field as it rolls down the scalar potential. While the
first string theory models of inflation predicted an unob-
servably low tensor contribution to the CMB anisotropies,
further studies have suggested that r might lie in the
detectable range after all [3,4]. Still, many suspect that
the quantum completion of inflation implies a theoretical
upper bound on r and it would be very interesting to
understand where it is.
Recently, Kontsevich and Segal (KS) in [5] have

advanced an interesting criterion that complex metrics
should satisfy in order to qualify as backgrounds for
physically meaningful quantum field theories. Witten [6]
subsequently explored whether this criterion might be
employed to select physically sensible saddles of gravita-
tional path integrals (see Refs. [7,8] for earlier work in this
direction). The idea behind this is that only those back-
grounds g on a D-manifoldM should be considered (or are
“allowable”) on which an arbitrary quantum field theory
could be defined. Concretely one takes this to mean that the
path integral for all free p-form matter on ðM; gÞ should
converge, or that

Reð ffiffiffi
g

p
gμ1ν1 � � � gμpνpFμ1���μpFν1���νpÞ > 0 ð1Þ

for all p∈ f0;…; Dg and all real-valued antisymmetric p
tensors F on M. For metrics that are diagonal in a real
basis [9] with diagonal elements λi, this is equivalent [5] to
the requirement that

XD
i¼1

j arg λij < π; ð2Þ

where arg ∈ ð−π; π�.
This criterion has passed several nontrivial checks [6].

For example, it eliminates pathological wormhole solutions
with vanishing action, but it does allow for the complexi-
fied Kerr solutions that correctly encode the thermody-
namic properties of rotating black holes. Yet it remains
unclear whether the KS criterion is necessary or sufficient.
Regarding necessity, recently solutions were found [10,11]
which violate the KS criterion but nonetheless appear to
describe physically sensible saddles. Regarding sufficiency,
clearly not all sensible quantum field theories are covered
by those of free p forms. Hence more work is needed both
to refine the KS criterion and to better understand its
physical implications, especially in the context of inflation
(for recent studies see Refs. [12–16]).
To this end we study the implications of the KS criterion

for our understanding of the quantum gravitational origin of
inflation. We assume the universe to be in the Hartle-
Hawking no-boundary state [17] and we consider this wave
function in a variety of single field, slow-roll models of
inflation. In each of these models the semiclassical no-
boundary wave function (NBWF) is specified by Oð4Þ-
invariant, complex solutions of the Einstein equations.
Loosely speaking, these complex saddles describe the
nucleation and subsequent quasiclassical evolution of an
expanding universe with an early phase of inflation.
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However, while the original NBWF implies an infla-
tionary origin, the theory allows for a vast range of inflatio-
nary potentials. That is, even though the no-boundary prior
favors some potentials over others (e.g., [18]), it does
not exclude slow-roll potentials entirely. We find that
the KS criterion does exactly this. In the next sections,
we show that the KS criterion in conjunction with no-
boundary initial conditions acts as a selection mechanism
on inflationary potentials. Specifically, the criterion pre-
dicts that universes with a significant number of e-folds
emerge from a concave patch of the potentials. This in turn
sets an upper bound on the tensor-to-scalar ratio of CMB
fluctuations, consistent with observations. Figure 1 sum-
marizes our findings. We now describe how we arrive
at these.
Allowable no-boundary saddles.—We consider the

Hartle-Hawking state in D ¼ 4 in a minisuperspace model
consisting of Einstein gravity minimally coupled to a
homogeneous scalar field with potential V. When it exists,
we assume that the semiclassical no-boundary amplitude
Ψðb; χÞ of a round three-sphere with volume ∝ b3 filled
with a uniform scalar field of value χ is specified by an
Oð4Þ-symmetric saddle living on the four-ballM ¼ B4 and
satisfying the KS criterion. That is, we follow [19] but
include KS.
We adopt the following ansatz for the saddle-point

geometries and field profile,

gμνdxμdxν ¼ dr2 þ aðrÞ2dΩ2
3; ϕ ¼ ϕðrÞ; ð3Þ

where the scale factor a and scalar field ϕ take the values
ðb; χÞ on the boundary ∂M ¼ S3. The saddle-point equa-
tions of motion (EOM) are (with Mpl ¼ 1)

�
a0

a

�
2

¼ 1

a2
þ 1

3

�ðϕ0Þ2
2

− VðϕÞ
�
;

0 ¼ ϕ00 þ 3
a0

a
ϕ0 − V 0ðϕÞ: ð4Þ

The coordinate r runs from the center of the ball at r ¼ 0 to
an end point at r ¼ v. Its range is determined by the
boundary conditions of regularity at the center,

aðrÞ ¼ rþOðr3Þ; ϕðrÞ ¼ ϕ0 þOðr2Þ as r→ 0; ð5Þ
together with the conditions that

aðvÞ ¼ b; ϕðvÞ ¼ χ: ð6Þ
These boundary conditions generally imply that ϕ0

and v are complex [20,21] and hence that the solutions
½aðrÞ;ϕðrÞ� are complex too. Note that this need not be at
odds with the assumption underlying the KS criterion that
one integrates over real matter field fluctuations, since
complex saddle-point solutions can arise as an approxi-
mation to an integral over real fϕg.
The r-coordinate runs along a curve γðlÞ∶0 → v in the

complex plane. Along this curve the metric reads

ds2 ¼ γ0ðlÞ2dl2 þ a½γðlÞ�2dΩ2
3: ð7Þ

We say that a given solution ½aðrÞ;ϕðrÞ; v� obeys the KS
criterion if there exists a curve γ such that the induced
metric (7) satisfies (2) along its entire length:

j arg γ02j þ 3jarg aðγÞ2j < π: ð8Þ

The boundary value problem (4)–(6) has two complex
boundary conditions in (6) and equally many free para-
meters in ðϕ0; vÞ. Hence it has a discrete solution set.
Furthermore for given ðb; χÞ, each solution ½aðrÞ;ϕðrÞ; v�
is fourfold degenerate: the tuples ½að−rÞ;ϕð−rÞ;−v�,
½aðr�Þ�;ϕðr�Þ�; v�� and ½að−r�Þ�;ϕð−r�Þ�;−v�� are also
solutions. Either they all satisfy the KS criterion or none
of them do, as it should be because the physical predictions
of the four saddles are identical (see the discussion). In all the
models we will consider, we find an Oð4Þ-symmetric
solution to (4)–(6) for all ðb; χÞ, but that solution does
not necessarily satisfy KS.
Considering the solution with v in the first quadrant, our

strategy to verify the KS criterion is based on the con-
struction of an “extremal curve” γe that saturates the
inequality (8) and lies in the first quadrant (cf. [13]):

arg γ02e þ 3jarg aðγeÞ2j ¼ π: ð9Þ

FIG. 1. The Kontsevich-Segal criterion applied to the no-
boundary state selects those inflationary models that predict
CMB fluctuations with a low tensor-to-scalar ratio r ≲ 0.08.
Shown are the predictions for the scalar tilt ns and r in eight
different slow-roll models of inflation (see Table I). Indicated in
green are inflationary trajectories of 50 to 60 e-folds that are
associated with no-boundary saddles that satisfy the KS criterion.
Shown in red are inflationary universes that are ruled out by KS.
The observational constraints from the 2018 Planck TT, TE,
EEþ lowEþ lensing analysis are indicated in purple. Finally,
the blue region shows the combined constraints of Planck and the
2018 BICEP/Keck data and BAO.
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From the known behavior (5) of the scale factor near the
origin it follows that liml→0 arg γeðlÞ ¼ π=8. Note that γe
is required to always be right moving. Also, the curves
everywhere satisfying (8) and starting at r ¼ 0 are con-
strained to remain below γe. Therefore if Imγe < Imv when
Reγe ¼ Rev, there is no allowable γ∶ 0 → v. Conversely if
Imγe ≥ Imv when Reγe ¼ Rev, we expect by continuity
there to exist an allowable curve γ∶ 0 → v, obtained from
(9) by decreasing the right-hand side.
For any given ðb; χÞ this procedure allows us to

determine whether there is an Oð4Þ-invariant no-boundary
saddle that meets the KS criterion [22]. A systematic
analysis for all ðb; χÞ thus divides the minisuperspace in
two regions. One range of configurations will be associated
with saddles that are physically meaningful, according to
the KS criterion. The semiclassical amplitude of these
configurations is specified by the usual Hartle-Hawking
saddle. But in regions of superspace where the KS criterion
fails, the original “vanilla” NBWF will be strongly modi-
fied. Specifically, the KS criterion strongly suppresses the
semiclassical NBWF in this regime, by excluding the
contribution from what would have been the dominant
saddle in the absence of the KS criterion. This in turn
sharpens the predictions of the theory [23].
We now carry out the above analysis, first in a particular

model that is analytically solvable and then in a represen-
tative class of slow-roll inflation models.
A solvable model.—Consider Einstein gravity minimally

coupled to a scalar subject to the potential

VðϕÞ ¼ Λ cosh

� ffiffiffi
2

3

r
ϕ

�
; Λ > 0: ð10Þ

Note that this potential does not have standard slow-roll
patches, since η ¼ V 00=V ¼ 2=3 everywhere. Rather it is
the combination of the cosmological constant and the scalar
field in the lower regions of this potential that can drive
exponential expansion.
A change of coordinates dr → dτ=a, together with an

overall rescaling so that

ds2 ¼
ffiffiffiffiffiffiffiffi
3=2

p
Λ

�
dτ2

aðτÞ2 þ aðτÞ2dΩ2
3

�
; ð11Þ

and the introduction of new variables

x¼
ffiffiffi
3

2

r
a2 cosh

� ffiffiffi
2

3

r
ϕ

�
; y¼

ffiffiffi
3

2

r
a2 sinh

� ffiffiffi
2

3

r
ϕ

�
ð12Þ

results in a quadratic Euclidean action for ðx; yÞ [24,25]:

S ¼
ffiffiffi
6

p
π2

Λ

Z
dτ

�
1

2
ðẏ2 − ẋ2Þ þ x − 3

�
: ð13Þ

The EOM with boundary conditions xð0Þ ¼ yð0Þ ¼ 0,
xðvÞ ¼ X, yðvÞ ¼ Y, where ðX; YÞ are specified by
ðb; χÞ through (12), are solved by

xðτÞ ¼ −
τ2

2
þ Aτ; ð14Þ

yðτÞ ¼ Bτ; ð15Þ

where

A ¼ 1

v

�
X þ v2

2

�
; B ¼ Y

v
; ð16Þ

while the Hamiltonian constraint determines the possible
values of the end point v in the complex τ plane. The
solution of interest in the first quadrant is given by

v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
CþD

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C −D

p
; ð17Þ

where

C ¼ 6 − X; D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 − Y2

p
: ð18Þ

The equation for the extremal curve in these coordinates
reads [26]

arg γ02e þ 2 arg aðγeÞ2 ¼ π; ð19Þ

where, via (12), a ¼ ½2ðx2 − y2Þ=3�1=4.
In the regime C ≥ D, which essentially corresponds to

bHðχÞ < Oð1ÞwhereHðχÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðχÞ=3p

,v in (17) is seen to
lie on the positive real axis. In this regime the metric (11) is
purely Euclidean on the segment ½0; v�. Hence the semi-
classical amplitude of all such configurations ðb; χÞ is given
by a no-boundary solution that meets the KS criterion.
In the regime C ≤ −D on the other hand, which

corresponds to bH > Oð1Þ and bχ > 63=4 when χ ≪ 1,
v is purely imaginary. From (19) it follows there can be no
curve that connects the origin to v along which the induced
metric satisfies (2). Thus the KS criterion, taken at face
value, appears to strongly suppress the semiclassical
amplitude of this part of the minisuperspace, by excluding
what would have been the leading saddle.
Finally, we have the intermediate regime jCj < D, which

corresponds to bH > Oð1Þ and bχ < 63=4 when χ ≪ 1,
and which includes the de Sitter (dS) solution with χ ¼ 0.
Here v is neither real nor imaginary but complex. A
solution for γe in (19) is given by γ0e ¼ i=aðγeÞ2, which
upon integration gives the relation

1

3
ðγ2e − Aγe − 6B2 − 12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2e − 4Aγe þ 24

q

− 4AB2tanh−1
�

γe − 2Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2e − 4Aγe þ 24

p
�

¼ i
ffiffiffi
6

p
lþ const;

ð20Þ
where the constant is determined by setting γeð0Þ ¼ 0. To
proceed, we set γe ¼ v in (20) and equate the real parts of
both sides. This yields a curve χ⋆ðbÞ that indicates those
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points which the KS criterion marginally allows. Points
lying above this curve in the ðb; χÞ plane are excluded while
points below it are allowable. Asymptotically this critical
line behaves as

χ⋆ðbÞ ¼
61=4

b
ffiffiffiffiffiffiffiffiffiffi
log b

p
�
1þO

�
1

log b

��
as b → ∞: ð21Þ

On the other hand, one can examine the set of classical
histories predicted byΨ in this model [20,25,27]. These are
the curves pα ¼ ∂αImS, where S is the action of the
complex saddle and pα, α∈ fa;ϕg, are the canonical
momenta. In a 2D minisuperspace model of this kind, this
is a one-parameter set of curves, or histories, in the ðb; χÞ
plane. In the regime jCj < D, these histories are charac-
terized by the relation

χclassicalðbÞ ¼ c
63=4

b

�
1þOð1=bÞ� as b → ∞ ð22Þ

with c∈ ½0; 1Þ labeling the history, where c ¼ 0 corre-
sponds to dS space [the dependence on b can be inferred
from (4) after rotating r → it]. Comparison with (21)
shows that, strikingly, every classical history except empty
dS exits the domain of allowability at some point. That is,
the no-boundary state augmented by the KS criterion
predicts that classical evolution does not continue forever
in this model. It would be interesting to better understand
whether this is a peculiar property of this particular model
or a more general prediction of the KS criterion in
conjunction with no-boundary conditions. In a realistic
cosmology, however, this would require one to take into
account the coupling of the inflaton to other forms of matter
in order to evaluate the wave function well after inflation
ends—and indeed at the present stage of evolution.
Slow-roll inflation.—We now turn to the no-boundary

saddles that appear in slow-roll models of inflation [20,21].
We are especially interested in regions of the minisuper-
space where the scale factor is large in local Hubble units,
bHðχÞ ≫ 1 withHðχÞ ≈ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðχÞ=3p
in the slow-roll regime.

Based on our results above, we expect that as the potential
becomes flatter, or more precisely, as the background aðrÞ
approaches the form

adSðrÞ ¼
1

H
sinðHrÞ ð23Þ

with H constant, more e-folds log bHðχÞ will be allowable.
The saddles ½aðrÞ;ϕðrÞ; v� that correspond to configu-

rations ðb; χÞ along a slow-roll trajectory are complex
deformations of the so-called real tunneling instanton
(23) that describes the quantum creation of empty dS.
In its familiar representation the dS saddle consists of half
of a four-sphere of radius 1=H, along the segment
½0; π=2H� of the real r axis, glued to the expanding branch
of Lorentzian dS space along a segment parallel to the

imaginary r axis [28]. No-boundary saddles associated with
slow-roll inflationary universes typically involve half of a
deformed S4 with an approximate radius 1=Hðjϕ0jÞ, which
transitions to a slow-roll attractor in the imaginary r
direction. Importantly, aðrÞ and ϕðrÞ are purely real along
neither segment except if the inflaton starts out at an
extremum of V. Instead, along the approximately
Lorentzian direction, the imaginary parts decay in a way
dictated by the real parts, whose evolution is governed by
the usual slow-roll approximation, viz. Ima ∼ ðReaÞ−2,
Imϕ ∼ ðReaÞ−3 [21]. It is this mere approximate reality of
the fields that can cause the KS criterion to fail for certain
configurations ðb; χÞ [29].
We proceed by solving the equations governing the

background (4)–(6) and the extremal curve (9) numerically
[22]. A trustworthy analysis of the KS criterion requires
exponential numerical precision. This can be seen even
from the pure dS saddle, where the extremal curve
asymptotes to the vertical line Rer ¼ π=2H on which
the end points vðbÞ are located, as

Re

�
π

2H
− γe

�
¼ O

�
1

H
exp ð−3HImγeÞ

�
as Imγe → ∞:

ð24Þ

Interestingly, this is the sort of level of detail through which
no-boundary saddle-point geometries in the large-volume
regime encode the fine details of the quantum origin of
inflation. Hence, physically the required accuracy stems
from the fact that KS is a global criterion on complex
saddles that probes the quantum nature of inflation, even at
late times.
We would like to determine in which models saddles

corresponding to inflationary histories with Ne¼Oð50−60Þ
e-folds meet the KS criterion. To identify these models we
first pick a potential and fix χ to its value at the end of
inflation, where ε ¼ ðV 0=VÞ2=2 or jηj ¼ jV 00j=V are equal to
unity. Then we vary log bH between 50 and 60. Finally we
use the method described above to verify whether the no-
boundary saddle corresponding to these configurations
ðb; χÞ is allowable.
We carried out this procedure for most of the inflationary

potentials discussed in the 2018 Planck analysis [30]. We
ensured all the numerics are trustworthy by dialing up the
precision of our numerical algorithm [22] and observing
convergence in the results. Note that the KS criterion does
not depend on the overall scale of the potentials [22], which
may thus be adjusted to match the observed amplitude of
CMB fluctuations.
We summarize some of our results in Table I, where for

eight one-parameter potentials we list the ranges of
parameter values f; μ;… for which the KS criterion applied
to saddles with Ne ¼ 60 e-folds is satisfied. As an example,
consider the power-law potentials V ∝ ϕp. Whereas the KS
criterion allows inflationary histories with Ne ¼ 60 for
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p≲ 1.05, for larger values of p we find that all slow-roll
saddles exit the regime of allowability before the end of
inflation [31]. In general, the table shows that the KS
criterion selects those universes in the no-boundary state
that emerge on a concave patch of the scalar slow-roll
potential, with an additional model-dependent pressure
towards lower values of r. This in turn favors small-field
models of inflation [32].
Figure 1 gives a representation of these KS constraints in

terms of predictions for two key observables associated
with the spectrum of CMB fluctuations generated by
inflation. The figure shows the values of the scalar tilt
ns and the tensor-to-scalar ratio r predicted by the eight
different inflationary models listed in the table above.
(Encircled numbers in Fig. 1 correspond to the number
of the model in the table.) Inflationary universes that remain
allowable by KS for 50–60 e-folds are indicated in green
whereas those for which the KS criterion fails before the
end of inflation are shown in red. Superposed on these
theoretical predictions are the observational constraints
following from the 2018 Planck TT, TE, EEþ lowEþ
lensing analysis [30] (68% and 95% confidence levels),
indicated in purple, and, in blue, the constraints with the
combined 2018 BICEP/Keck data and BAO added [33]. We
see that in this set of models, which we believe to be
representative, the KS criterion translates into an upper
bound on the tensor-to-scalar ratio of r≲ 0.08.
Discussion.—We have given strong evidence that the

semiclassical no-boundary wave function, augmented with
the Kontsevich-Segal criterion, selects inflationary models
with a relatively low tensor-to-scalar ratio r≲ 0.08 in the
microwave background anisotropies. This upper bound on
r is in accordance with the current observational con-
straints, yet it leaves room for a future detection of
gravitational waves from inflation.

Our results indicate that the KS criterion can be viewed
as a refinement of the no-boundary theory of the quantum
state that sharpens its predictions. In models of inflation
with larger values of r, no-boundary saddles fail to satisfy
the KS criterion when the universe becomes large. One
might wonder what can possibly cause the KS criterion to
fail during the quasiclassical slow-roll phase. Among the
p-form criteria in (1) it turns out that the “0-form” criterion
Re

ffiffiffi
g

p
> 0 fails. This criterion, which is related to the

convergence of the path integral of a massive scalar on
ðM ¼ B4; gÞ, is saturated by the extremal curve described
by (9) whereas the higher-form criteria are not. The failure
of allowability during inflation can thus be attributed to the
late-time development of a tachyon in the spectrum of
scalar perturbations around the Hartle-Hawking solution.
This being said, our analysis indicates that the KS criterion
does probe the fine details of the quantum origin of
inflation, for the latter are encoded precisely in the
exponentially small corrections to the late-time saddle-
point geometries that determine whether or not they satisfy
the criterion. Indeed our results lend further credence to the
raison d’être of quantum cosmology, namely, that a
quantum gravitational completion of inflation can have
verifiable observational consequences.
As an aside, we note that the alternative tunneling wave

function of the Universe [34], constructed via a gravita-
tional path integral [35], fails to meet the KS criterion. The
semiclassical tunneling wave function involves gravita-
tional instantons that belong to the fourfold degenerate
family of no-boundary solutions that we discussed below
(8). When evaluating their action, however, one chooses the
opposite sign for Re

ffiffiffi
g

p
along the curve γ∶ 0 → v com-

pared to what the KS criterion demands, viz. Re
ffiffiffi
g

p
< 0

instead of Re
ffiffiffi
g

p
> 0. This is consonant with the observa-

tion that the “naive” wave function of fluctuations in the
tunneling state appears to be non-normalizable (cf. [7]).
Instead it appears that a well-behaved wave function
of fluctuations in the tunneling state would have to be
based on a complexified integration contour for matter
field fluctuations [35], thereby evading the KS criterion
altogether.
Ultimately, the utility of quantum cosmology lies in the

fact that a theory of the quantum state combined with the
structure of the low-energy scalar potential yields a
cosmological measure that specifies a theoretical prior
for observations (see e.g., [36–38]). In this Letter we have
considered but the simplest quantum completion of infla-
tion, in which an observable phase of slow-roll emerges
directly from a no-boundary origin. It would be interesting
to study the implications of the KS criterion in more
elaborate models of initial conditions. For example, one
could take a more expansive view and conceive of the range
of models of inflation as different slow-roll patches in a
landscape potential. In this context, the no-boundary

TABLE I. Families of slow-roll potentials in which we sub-
jected the no-boundary instantons giving rise to 60 e-folds of
inflation to the KS criterion. In the allowable column we list the
ranges of parameter values f; μ;… that specify potentials in
which configurations ðb; χÞ at the end of 60 e-folds of inflation,
prepared by no-boundary conditions, satisfy the KS criterion. The
“disallowable” column lists parameter values for which the
criterion is not satisfied.

No. V=Λ Allowable Disallowable

① 1þ cosðϕ=fÞ [2, 6.09) [6.09, 10]
② 1 − ϕ2=μ2 ½101=2; 104�
③ 1 − ϕ4=μ4 ½10−1; 102�
④ 1 − expð−qϕÞ ½10−3; 103�
⑤ 1 − μ2=ϕ2 ½10−6; 103�
⑥ 1þ α logϕ ½10−3; 10�
⑦ ½1 − exp ð− ffiffiffi

2
p

ϕ=
ffiffiffiffiffi
3α

p Þ�2 ½10−1; 93.9Þ ½93.9; 104�
⑧ ϕp ½1=2; 1.05Þ ½1.05; 7=2�

PHYSICAL REVIEW LETTERS 131, 191501 (2023)

191501-5



amplitude of different backgrounds and fluctuations
implies a relative weighting over different landscape
regions and hence over cosmological observables that
differentiate between regions. Crucially, predictions for
observations follow from conditional probabilities. The
“bare” no-boundary weighting favors backgrounds starting
at a low value of the potential, followed by only a few
e-folds of slow-roll inflation. However, no-boundary prob-
abilities conditioned on a sufficiently accurate description
of our observational situation favor slow-roll backgrounds
originating on a flat plateau-like patch of the scalar
potential where the conditions for eternal inflation hold
[18,39]. In future work we intend to extend our analysis
into this regime and determine whether our findings are
sharpened or modified in this more elaborate setting.
It would also be interesting to understand how the KS

criterion relates to the swampland program. At first sight
there appears to be a certain tension between both
approaches, because KS appears to favor near-de Sitter
saddles whereas the swampland points towards a short-
lived inflationary phase. On the other hand, both consid-
erations seem to align on a relatively low tensor-to-scalar
ratio. It would be very interesting to study whether KS and
the swampland are somehow two different ways of saying
the same thing, or whether they are genuinely at odds with
one another.
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