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We theoretically describe macroscopic quantum synchronization effects occurring in a network of all-to-
all coupled quantum limit-cycle oscillators. The coupling causes a transition to synchronization as
indicated by the presence of global phase coherence. We demonstrate that the microscopic quantum
properties of the oscillators qualitatively shape the synchronization behavior in a macroscopically large
network. Specifically, they result in a blockade of collective synchronization that is not expected for
classical oscillators. Additionally, the macroscopic ensemble shows emergent behavior not present at the
level of two coupled quantum oscillators.
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In the presence of a sufficiently strong coupling, limit-
cycle oscillators adjust their frequencies and exhibit coher-
ence even in the presence of noise and disorder in their
natural frequencies. This phenomenon is called synchroni-
zation; it appears, e.g., in physical, biological, engineered,
and social systems [1–3] and has been extensively studied in
classical nonlinear dynamics [4–8].
Recently, understanding synchronization of quantum

oscillators has attracted a great deal of interest [9–64].
Quantum limit-cycle oscillators [10,11] can be implemented
using harmonic oscillators [12–14] or few-level systems
[15,16] supplemented by gain and loss. Experimental real-
izations span systems of cold atoms [17], nuclear spins [18],
trapped ions [19], and a simulation on a quantum computer
[20]. Large networks of quantum oscillators have been
discussed, particularly two-level systems [21,22] and har-
monic oscillators [12,13,23–30]. In most cases, their syn-
chronization is similar to that of classical noisy oscillators.
Some quantum features in such systems are discussed in
Refs. [22–26], e.g., the presence of entanglement and
quantum discord. Quantum effects beyond the influence
of quantum noise that lead to a synchronization behavior
qualitatively different from classical expectations have been
studied mostly on the level of one, two, or three coupled
oscillators [31–35].
So far, it has remained an open issue whether quantum

effects in synchronization survive when increasing the
number of oscillators. Will the quantum nature of the
oscillators be reflected in the macroscopic dynamics? Or
does the detailed microscopic description of each oscillator
become irrelevant resulting in large-scale dynamics
described by generic classical synchronization models?
A third possibility is the emergence of behavior not visible
at the level of few coupled oscillators.
In this Letter, we show how in a macroscopic ensemble

of interacting quantum oscillators, the synchronization
behavior is qualitatively shaped by their quantum nature.

Both their wavelike character leading to interference and
the discreteness of their energy levels result in quantum
synchronization effects that remain visible in a large
network. We explain these effects based on a comprehen-
sive understanding of the behavior of each oscillator. In
contrast, we identify aspects of the dynamics that are
understood as typical synchronization transitions independ-
ently of the microscopic quantum properties. Finally, we
discuss phase frustration in the network: if the coupling
causes each oscillator to favor antialignment of its phase
with respect to the other oscillators, collective synchroni-
zation is suppressed. This results in emergent blockades of
synchronization only present in the many-body system.
Model.—To address the issue of quantum synchroniza-

tion effects in large networks of oscillators, we consider the
minimal model schematically shown in Fig. 1. It comprises
two groups of oscillators and thus resembles models of
two ensembles of classical phase oscillators [7,8]. Here,
however, each group consists of quantum oscillators with
three states j0i, j1i, and j2i each. In the frame rotating
with the common frequency ωz (see Fig. 1), the time
evolution is governed by the quantum master equation
ρ̇ ¼ −i½H0 þHint; ρ� þ Lρ, with

H0 ¼
X
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In the sums, i and j take values from 1 to N and σ ∈ fA; Bg
is the group label. The spin-1 operators are defined
as Sz ¼ j2ih2j − j0ih0j, Sþ ¼ ffiffiffi

2
p ðj2ih1j þ j1ih0jÞ, and
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S− ¼ ðSþÞ†. The Lindblad dissipator is D½o�ρ ¼ oρo† −
ðo†oρþ ρo†oÞ=2.
The bare Hamiltonian H0 describes the coherent dynam-

ics in the absence of any coupling. The two groups labeled
A and B differ by the detuning δ between them. The
parameter K sets the asymmetry in energy differences
between levels j2i and j1i, and the levels j1i and j0i. The
interaction among the oscillators is described by Hint. All
oscillators are reactively coupled to all others. The coupling
strength within each group is V, while the coupling strength
between oscillators of different groups is VAB. Finally, each
three-level oscillator is incoherently driven to the level j1i,
with strength γþ (γ−) from level j0i (j2i). Because of these
gain and loss processes, each three-level oscillator forms a
limit cycle [15], whose population (measured by Sz) is
stabilized, while the phase of the amplitude (measured by
Sþ) is free.
Because of the exponential growth of the Hilbert space

size, solving the master equation becomes intractable for
large N. We employ a mean-field treatment, which for
the case of an all-to-all coupling discussed here gives an
exact solution for the macroscopic dynamics in the limit
N → ∞ [65]. This approach corresponds to neglecting all
correlations between operators, or, equivalently, using the
product ansatz, ρ ¼⊗σ;i ρσ;i [66]. Since all oscillators
within each group are identical, their time evolution can
be described in terms of two three-level oscillators with
density matrices ρA and ρB coupled to the mean amp-
litudes hSþiσ ¼ Tr½ρσSþ� ¼ 1=N

P
ihSþσ;ii of each group.

Consequently, the dynamics of the two groups is described
by the two coupled nonlinear master equations

ρ̇A ¼ −i½HA þ VABðSþhS−iB þ H:c:Þ; ρA� þ L̃ρA;

ρ̇B ¼ −i½HB þ VABðSþhS−iA þ H:c:Þ; ρB� þ L̃ρB; ð2Þ

where Hσ ¼ �ðδ=2ÞSz þ Kj2ih2j þ VðSþhS−iσ þ H:c:Þ
and L̃ ¼ γþD½j1ih0j� þ γ−D½j1ih2j�. The sign in front of
δ=2 is plus (minus) for group A (B). To obtain our results,
we numerically time-integrate the nonlinear master equa-
tions (2). Additionally, we perform a stability analysis of
the unsynchronized state ρσ ¼ j1ih1j, which is a solution
of ρ̇σ ¼ 0.

Synchronization of a single group.—We begin to analyze
the behavior of a single group by setting the intergroup
coupling VAB to zero. For simplicity, the group subscript
σ ∈ fA; Bg is omitted in this section. To investigate the
state of the group, we utilize the mean amplitude
hSþi ¼ 1=N

P
ihSþi i. The phase ϕi of each oscillator is

defined through hSþi i ¼ expðiϕiÞjhSþi ij. In the absence of
any coupling, all oscillators exhibit random phases due to
the intrinsic quantum noise. Therefore, we expect the mean
amplitude to vanish in the limit of infinitely many oscil-
lators N → ∞. This conclusion follows from the mean-
field analysis by noting that for small coupling strength, the
group of oscillators converges to the steady state ρ ¼ j1ih1j
exhibiting no phase preference since hSþi ¼ 0. The cou-
pling among the oscillators, however, tends to align their
phases. As in the Kuramoto model describing classical
phase oscillators [4,67], there is a critical coupling strength
Vc beyond which the group synchronizes. The critical
coupling usually depends on both the noise and the
frequency disorder inherent in the system. For a single
group of identical oscillator, there is only intrinsic noise due
to quantum fluctuations that increases with the rates γ− and
γþ at which each oscillator couples to the environment.
Figure 2(a) displays the time evolution of the mean

amplitude in both the unsynchronized and synchronized
regimes. Below the critical coupling strength, the zero-
amplitude state is stable. For V > Vc, in the synchronized
regime, the alignment of phases leads to a finite amplitude
in the long-time limit with persistent oscillations of
Re½hSþi�. The frequency of this oscillation will be further
addressed when discussing the behavior of two coupled
groups. Other quantities not shown in Fig. 2(a) also change
when entering the synchronized phase: the states j0i and j2i
become populated, and the coherence hj0ih2ji exhibits
oscillations at twice the frequency compared to those
of hSþi.
To analyze the presence of synchronization among the

oscillators, we use the time average of the (in general time-
dependent) absolute value of the amplitude jhSþijt in the
steady state. Figure 2(b) depicts this order parameter as a
function of the coupling strength, showing a sharp tran-
sition between the unsynchronized and synchronized
states. This resembles transitions to continuous time
crystals [68,69] or to superradiance [70] that also result
from the competition of coherent and incoherent dynamics
in open quantum systems.
So far, we set γþ=γ− ¼ 1=2 and observed a typical

synchronization transition. We now present the order
parameter as a function of both the coupling strength
and the ratio γþ=γ− in Fig. 2(c). Most notably, for
equal gain and loss rates, the critical coupling diverges,
i.e., the transition to synchronization disappears. This is a
macroscopic manifestation of the interference blockade.
Synchronization of a single three-level quantum limit-cycle
oscillator subject to an external drive is suppressed when

FIG. 1. Two groups A and B of N quantum oscillators each are
all-to-all coupled through reactive interactions. Each oscillator
consists of three levels and is incoherently driven to state j1i. The
asymmetry of the level structure is parametrized by K. The
oscillators in group A are detuned from the ones in group B by δ.
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gain and loss rates are equal due to destructive interference
[15,59,61]. Our result reveals that the wavelike character of
the oscillators allowing for interference also shapes the
dynamics in the macroscopic ensemble.
For a single asymmetric three-level oscillator, the inter-

ference blockade is lifted for any nonzero value of the
asymmetry parameter K [61]. In contrast, we find that the
blockade in the macroscopic ensemble is lifted only for
K < 0, but persists for K ≥ 0; see Fig. 2(c). To understand
this apparent discrepancy, we examine the microscopic
quantum synchronization behavior. Figure 2(d) shows the
phase distribution sðϕÞ of a single oscillator coupled to an
external drive in the steady state for various values of K.
The distribution sðϕÞ indicates the phase response of the
driven oscillator [71]. In the case γþ ¼ γ− and K ¼ 0, the
phase shifts ϕ ¼ 0 and ϕ ¼ π between oscillator and drive
are equally likely. For the ensemble of oscillators, this
implies that any mean field present causes each oscillator to
align itself both in and out of phase with the mean field.
Hence, the response of each oscillator will not amplify the

coherence of the group, which leads to the absence of
synchronization, i.e., the macroscopic interference block-
ade. For K < 0, however, each oscillator preferably aligns
its phase with the mean field leading to synchronization of
the group. On the other hand, for K > 0, each oscillator
favors a phase shift of π with respect to the mean field,
resulting in phase frustration that hinders synchronization.
Therefore, unlike the interference blockade of a single
oscillator, the macroscopic interference blockade is only
lifted for negativeK. For γþ ≠ γ−, we similarly find that the
phase distribution tends to peak closer to ϕ ¼ 0 (π) for
negative (positive) values of K, which is reflected by the
respective critical coupling strengths shown in Fig. 2(c)
being smaller (larger).
In summary, the ensemble of quantum oscillators may

synchronize above a critical coupling strength, as expected
from generic models of noisy classical oscillators.
Importantly though, the quantum nature of the oscillators
remains influential on the macroscopic scale: destructive
interference manifests itself as a blockade of global
synchronization. Moreover, phase frustration causes an
emergent additional blockade only present in the large
network.
Synchronization of two groups.—We now consider the

full model where one half of the oscillators is detuned by δ
from the other half. We identify three different states in the
long-time limit. The first is the absence of any synchro-
nization, indicated by both amplitudes hSþiσ vanishing.
Secondly, all oscillators of both groups can fully synchron-
ize. Thirdly, there is a state of partial synchronization where
all oscillators within each group synchronize internally but
not with the oscillators of the other group.
To distinguish full and partial synchronization, we

compare the oscillation frequencies of both groups. For
this purpose, we compute the discrete Fourier transform of
the amplitudes in the long-time limit to obtain the spectra
PσðωÞ ¼ jFTfhSþiσðtÞgj for each group. Figures 3(a)
and 3(b) display the spectra as a function of the detuning
δ. We set V > Vc such that the oscillators are synchronized
within each group. For sufficiently small detuning com-
pared to the intergroup coupling strength, we find a fully
synchronized state as indicated by the identical spectra in
this regime. Since each spectrum is dominated by one
frequency, we continue the analysis using the two frequen-
cies at which the spectra peak, ωσ ¼ argmaxωPσðωÞ. The
frequency difference ωA − ωB between the two groups is
displayed in Fig. 3(c). At small δ, the frequencies are equal
and the two groups are synchronized, while for large
detunings, ωA and ωB differ by δ. This corresponds to
the dynamics described by the Adler equation [5,77] for
classical phase oscillators. To further demonstrate this
correspondence, we show the frequency difference in
Fig. 3(d) as a function of the intergroup coupling strength.
For VAB < V, both individually synchronized groups of
oscillators can be regarded as two large oscillators that

FIG. 2. Synchronization of a single group. (a) Time evolution
of the amplitude hSþi below and above the critical coupling
strength Vc. (b) Time-averaged long-time limit amplitude jhSþijt
and coherences, showing a sharp transition at Vc. Parameters in
(a) and (b): γþ ¼ γ−=2 and K ¼ 0. (c) Order parameter jhSþijt as
a function of the coupling strength V and γþ=γ− as a gray-scale
image for asymmetry parameter K ¼ 0. The black dashed line
displays the corresponding critical coupling strength obtained
from a stability analysis. The orange and blue lines show the
critical coupling strengths for K=ðγ− þ γþÞ ¼ −1=10 and
þ1=10, respectively. In the region γþ=γ− around 1, synchroniza-
tion is suppressed for K ≥ 0 due to the interference blockade; for
negative values of K, the blockade vanishes and synchronization
reappears, as indicated by the finite critical coupling strength for
K=ðγ− þ γþÞ ¼ −1=10 (orange line). (d) Phase distributions sðϕÞ
(the mean 1=2π is subtracted) for the same values ofK=ðγ− þ γþÞ
as in (c).
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synchronize when their coupling is larger than their
detuning. In this regime, the microscopic details are
irrelevant and the behavior matches that of generic syn-
chronization models. Specifically, we observe an Arnold
tongue [5], i.e., the locking range grows with increasing
coupling strength. For VAB > V, the intergroup coupling
dominates, so that the analogy of two large coupled
oscillators fails and the spectra showmore than one relevant
frequency component [71].
The previous analysis was done for a symmetric three-

level structure, i.e., K ¼ 0. We now vary the asymmetry
parameter K in addition to the detuning δ and present the
resulting phase diagram in Fig. 4. Remarkably, for large
jKj=γ−, we find synchronization only if jδj ∼ jKj, while
synchronization is absent for δ around zero. This is a
macroscopic manifestation of the quantum synchronization
blockade [32]: the two groups synchronize when they are
distinct, but not if they are similar. This is in contrast to the
expected behavior that a greater similarity of oscillators
increases their tendency to synchronize [see Fig. 3(d)]. The
absence of synchronization is caused by the discrete energy
spectrum of the oscillators. The effect of the coupling
between two oscillators is suppressed when jKj signifi-
cantly differs from jδj because the dominant transitions are
off-resonant [71]. Only close to the resonances K ¼ δ and
K ¼ −δ, there is strong phase alignment of the two
oscillators. This explains the microscopic synchronization
blockade; however, it does not yet fully capture the
macroscopic quantum synchronization blockade, since
we find synchronization only below the lines K ¼ δ and
K ¼ −δ. Below these lines, oscillators of different groups
tend to align their phases, while above, they favor opposite
phases [71]. This becomes apparent in the phase difference

of the two groups; see Fig. 4(c), which shows the relative
phase approaching π close to the diagonals. Each oscillator
reacts to the mean fields of both groups, such that their
influence cancels if they have opposite phases. This
constitutes another instance of phase frustration, which
in this case results in an additional blockade of synchro-
nization for K > δ.
To summarize the analysis of two groups, parts of their

dynamics can be understood as a typical synchronization
transition. In general, however, the quantum properties
change the dynamics significantly: we demonstrated a
blockade of global synchronization resulting from the
quantized nature of the oscillators. Moreover, an extended
blockade of synchronization emerges in the ensemble not
present in the case of two coupled oscillators.
Experimental considerations.—Possible experimental

realizations include superconducting circuits [32,78] and
trapped ions [13,32,38]. We discuss these two implemen-
tations and general requirements to observe the phenomena
presented in our work in [71]. We also address finite-size
effects, and show that the lifetime of the coherence in a
single group increases linearly with the number of
oscillators [71]. Since global synchronization can persist
for finite-range interactions in networks of classical oscil-
lators [4] and quantum oscillators [22], we expect the all-to-
all coupling that we assumed not to be essential.
Conclusion.—While quantum effects in synchronization

have been studied at the level of few coupled oscillators, it

FIG. 3. Synchronization of two groups. (a),(b) Spectra PσðωÞ
for σ ¼ A, B obtained via Fourier transform of the time evolution
of hSþiσ as a function of detuning δ. (c) Difference of the two
dominant frequencies, ωA − ωB. (d) Frequency difference be-
tween the two groups as a function of detuning δ and intergroup
coupling VAB. Parameters: K ¼ 0, V ¼ 2γþ ¼ γ− (such that
V > Vc). (a)–(c): VAB ¼ V=2.

FIG. 4. Macroscopic quantum synchronization blockade. Pan-
els (a)–(c) show the frequency difference, the order parameter,
and the relative phase, respectively, as a function of detuning δ
and asymmetry parameter K. The phase ϕσ for σ ¼ A, B is the
argument of hSþiσ in the long-time limit. In (b) and (c), δ and K
have the same range as in (a). In (a) and (c), black color indicates
regions where the order parameter vanishes, i.e., synchronization
is absent. When each group synchronizes individually, i.e., in the
blue and red regions in (a), the relative phase in (c) takes arbitrary
values since there is no fixed phase relation between the two
groups. Parameters: VAB ¼ V ¼ 2γþ ¼ γ−.
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has remained an open question whether these effects
remain when increasing the number of oscillators. To
address this issue, we investigated the synchronization
behavior of two macroscopically large groups of reactively
coupled quantum limit-cycle oscillators. We demonstrated
that quantum effects in synchronization persist on a macro-
scopic scale: for a single group, destructive interference
manifests itself as a blockade of collective synchronization
if gain and loss rates are comparable; for two detuned
groups of oscillators with an asymmetric level structure,
their quantized nature counterintuitively leads to synchro-
nization of dissimilar groups. We also identified certain
aspects of the dynamics that can be understood from
classical generic synchronization models: for a single
group, the transition to synchronization necessitates a
critical coupling strength to overcome disorder through
quantum fluctuations; for two groups of oscillators with a
symmetric level structure in the regime of small intergroup
coupling strength, their dynamics can be understood as the
synchronization of two classical phase oscillators. Finally,
we uncovered emergent behavior only present in the
macroscopic ensemble: phase frustration, i.e., oscillators
antialigning their phases, suppresses the global coherence
and results in the absence of collective synchronization.
We expect our work to stimulate the exploration of other

intriguing aspects in many-body quantum synchronization
beyond classical expectations. Additionally, our results
further connect synchronization to dissipative quantum
phase transitions, such as superradiance and time crystals.
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